3 – Quantification

0. Intro

- **Q1:** Was für syntaktische und semantische Unterschiede gibt es zwischen den quantifizierenden Elementen *zwei* und *jeder* in (1ab)?
- (1) a. Zwei Studenten kamen herein.

b. Jeder Student kam herein.

- **Q2:** Gibt es semantische Unterschiede zwischen (2a) und (2b)?
- (2) a. **Most** students left for Paris.

b. The students **mostly** left for Paris.

1. Adnominal Quantifiers: The Classical View (Montague 1973, Barwise & Cooper 1981)

- All quantified expressions are determiner-heads that combine with NPs to denote *generalized quantifiers* of type <et,t>
- $\begin{array}{ccc} (3) & DP < et, t > \\ & & \\ & D_Q & NP \\ & every & painting \\ < et, < et, t > > & < et > \end{array}$
- Quantifying determiners denote 2nd-order relations between sets of individuals:
- (4) a. [[DP]] = [[D]]([[NP]])
 - b. [[D_Q]] = $\lambda P_{\langle et \rangle}$. $\lambda Q_{\langle et \rangle}$. PRQ
- (5) a. [[every]] = $\lambda P_{\langle et \rangle}$. $\lambda Q_{\langle et \rangle}$. $P \subseteq Q$
 - b. [[two]] = $\lambda P_{\langle et \rangle}$. $\lambda Q_{\langle et \rangle}$. $|P \cap Q| \ge 2$

(6) a. [[every student came in]] = [[student]] \subseteq [[came in]]

- = 1 iff $\forall z [student(z)]$: came_in'(z)
- b. [[two students came in]] = $|[[student]] \cap [[came in]]| \ge 2$

= 1 iff $\exists x [student(x) \land |x| \ge 2 \land *came_in'(x)]$

2. Universals in Adnominal Quantification

2.1 Conservativity

• The range of logically possible relations between sets that can be expressed by natural language determiners is restricted by the semantic property of *conservativity* (or: *live-on property*).

(7) *Conservativity:*

for arbitrary sets A,B: $Det(A)(B) \Leftrightarrow Det(A)(A \cap B)$

- → The result of applying the determiner meaning to its two set arguments is equivalent to applying the determiner meaning to the first set argument A (the NP-denotation) and the intersection of first and second argument $A \cap B$
- → as a result, only the NP-denotation A and the intersection of A with B, i.e. $A \cap B$, are relevant for establishing the truth-conditions of a sentence;

Elements of B that are not in A do not matter for the interpretation !

- → conservativity implies that the NP-denotation A is more important than the second set B (typically the VP-denotation): *quantifiers live on A*
- Empirical test for conservativity

There is a simple empirical test for conservativity. A determiner Det applied to an NP and a VP is conservative if the following equivalence holds:

- (8) *Det NP VP* is true iff *Det NP is a/ are NP(s) that VP* holds
- (9) a. Some students smoke. \Leftrightarrow Some students are students that smoke.
 - b. Every student smokes. \Leftrightarrow Every student is a student that smokes.
 - c. No student smokes. \Leftrightarrow No student is a student that smokes.
 - d. Two students smoke. \Leftrightarrow Two students are students that smoke.

• Formal Proof for Conservativity: some

(10)	some (A)(B)	= 1	iff	$A \cap B \neq \emptyset$	(meaning of some)
			\Leftrightarrow	$\mathbf{A} \cap \mathbf{A} \cap \mathbf{B} \neq \emptyset$	(set theory: $A = A \cap A$)
			\Leftrightarrow	$A \cap (A \cap B) \neq \emptyset$	
			=	1 iff some(A)(A \cap B)	(meaning of some)

→ The criterion of conservativity makes a clear prediction as to which of the logically possible quantifiers can occur as quantifiers in natural language.

By doing so, it restricts the number of logically possible determiner denotations from **65536** to **512** in a model with only two individuals.

• Prediction

There are no equivalences of the form $Det(A)(B) \Leftrightarrow Det (A \cap B)(B)$, where the meaning of the NP-complement A in its entirety does not play a role for the semantic interpretation:

- (11) Every beer drinker is a student. \neq Every beer drinking student is a student.
- → *Example:* The logically possible quantifier *schmevery* in (12a) with the meaning in (12b) is not attested in English, and cross-linguistically (?), even though the meaning is plausible and not difficult to compute, cf. (13):

- (12) a. Schmevery student drinks beer = 1 iff
 b. every beer drinker is a student: [[beer drinker]] ⊆ [[student]])
- (13) a. [[schmevery]] = $\lambda A \in \mathcal{O}(D)$. $\lambda B \in \mathcal{O}(D)$. $B \subseteq A$
 - b. [[schmevery student]] = $\lambda B \in \mathcal{D}(D)$. $B \subseteq [[student]]$
 - c. [[schmevery student drinks beer]] = 1 iff [[beer drinker]] \subseteq [[student]]
- Formal proof that *schmevery* is not conservative:
- (14) i. the inference from left to right is valid:

schmevery(A)(B) = 1 iff $B \subseteq A$ (meaning of schmevery) $\Rightarrow A \cap B \subseteq A$ (set theory) iff schmevery(A)(A \cap B) = 1 (meaning of schmevery)

ii. the inference from right to left is invalid: schmevery (A)(A \cap B) = 1 iff A \cap B \subseteq A (meaning of *schmevery*) $// \Rightarrow B \subseteq A$ iff schmevery(A)(B) = 1

From $A \cap B \subseteq A$ it does not follow automatically that $B \subseteq A$!

- Q3: What about the semantics of only in Only Students are beer drinkers?
- \rightarrow Only is an adverbial, and not a D-head ! The universal rule does not apply !
- **Q4:** What about the following Polish quantifiers discussed in Zuber (2004)?
- <mark>(15)</mark>

2.2 Some B&C-Universals

- **U3:** Every natural language has conservative determiners.
- → compatible with the existence of (some) non-conservative quantifiers in (some) languages
- U1: Every natural language has DPs that denote Generalized Quantifiers
- (16) Determiner Universal:

Every natural language contains basic expressions (called *determiners*) whose semantic function is to assign to common noun denotations (i.e., *sets*) A a quantifier that lives on A (Barwise & Cooper 1981: 179).

BUT: The universal does not stand up to closer scrutiny as ...

- i. Not all languages have adnominal quantifiers that map NP-denotations onto Generalized Quantifiers \rightarrow Lillooet Salish (Matthewson 2001), see §3
- ii. Not all languages feature genuine adnominal quantifiers (Jelinek 1995, Baker 1995), §5

- **3.** Variation in the Domain of Genuine Adnominal Quantification: D+NP vs. D+QP Lillooet Salish (St'át'imcets) vs. English (Matthewson 2001)
- standard GQ-analysis of adnominal quantifiers:

DP <et,t> D NP <<et>,<<et>,<<et>,t>> <et> most chiefs

• The problem:

(17)

In Lillooet Salish (aka St'át'imcets) constructions as in (17) are systematically ungrammatical: Adnominal quantifiers do not combine with NPs, but with DPs!

(18) a. **tákem** [i smelhmúlhats-a] all DET.PL woman(PL)-DET 'all the women'

Q5: How is the structure in (18b) interpreted?

3.1 Basic facts about DPs in St'át'imcets (Matthewson 2001)

i. All arguments require the presence of an overt determiner

(19)	a.	q'wez-ílc	[ti	smúlhats- a]	b.	*	q'wez-ílc	[smúlhats]
		dance-INTR	DET	woman-DET			dance-INTR	woman
'The/a woman danced.'								

ii. Determiners must be absent on all main predicates, including nominal predicates.

(20)	a.	kúkwpi7	[kw-s	Rose]	b. *	[ti kúkwpi7 -a][kw-s	Rose]
		chief	DET-NOM	Rose		DET chief-DET DET-NOM	Rose
		'Rose is a	chief.'			'Rose is a / the chief.'	

• Quantifiers inside arguments always co-occur with determiners:

(21) a. léxlex [tákem i smelhmúlhats-a] intelligent all DET.PL woman(PL)-DET 'All (of) the women are intelligent.'
b.*léxlex [tákem smelhmúlhats] intelligent all woman(PL) 'All women are intelligent.'

- (22) a. úm'-en-lkhan [**zí7zeg' i** sk'wemk'úk'wm'it-a] [ku kándi] give-TR-1sg.subj each DET.PL child(PL)-DET DET candy 'I gave each of the children candy.'
 - b.*úm'-en-lkhan [**zí7zeg'** sk'úk'wm'it/ sk'wemk'úk'wm'it] [ku kándi] give-TR-1sg.subj each child / child (PL) DET candy 'I gave each child / each (of the) children candy.'
- Structure for quantified arguments in St'át'imcets (see also Demirdache et al. 1994, Matthewson & Davis 1995, Matthewson 1998):

3.2 Semantic analysis

- Interpreting (23):
- i. NPs in St'át'imcets denote (one-place) predicates, cf. (20a).
- ii. The entire QP in St'át'imcets denotes a generalized quantifier (Matthewson 1998)

- iii. As DPs never function as predicates in St'át'imcets (cf.23b), quantifiers in St'át'imcets combine with sisters of argumental type: $type(DP) = \langle e \rangle$.
- iv. D-heads in St'àt'imcets denote variables over choice functions, which apply to the NPset and choose one (singular or plural) individual from the set denoted by the NP predicate: **type(D) = <et,e>**.

v. St'àt'imcets adnominal quantifiers take an individual and a predicate as semantic arguments, and quantify over the atomic subparts of that individual:

- (26) Distributive universal quantifier:
 - a. [[zí7zeg']] = $\lambda x_{\langle e \rangle}$. $\lambda Q_{\langle e t \rangle}$. $\forall y \leq x [atom(y) \rightarrow Q(y)]$

zi7zeg' takes an individual and a predicate and specifies that every atomic subpart of that plural individual satisfies the predicate.

- b. [[zí7zeg' i smelhmúlhats-a qwatsáts]] each DET women(PL)-DET leave 'Each woman left.'
 - = 1 iff for all y which are atomic parts of the plural individual of women that is chosen by the choice function g(k), y left.
- Conclusions:
- i. Adnominal quantifiers in St'àt'imcets do not denote relations between two sets (<et,<et,t>>), as would be expected on the standard GQ-analysis. Rather, their first argument is of type <e>.
- ii. the creation of a generalized quantifier proceeds in two steps: (i.) the creation of an individual (DP-denotation), *which depends on the context*; (ii.) the quantification over the subparts of this plural individual
- \rightarrow the two-step procedure is reminiscent of the two interpretive steps (domain restriction, and GQ-formation), which appear to take place simultaneously in English

3.3 How to deal with this semantic variation?

- *Two options:*
- i. In line with the Transparent Mapping Hypothesis, adnominal quantifiers in St'àt'imcets and English exhibit macro-variation in that quantifiers denote semantic objects of different type. This semantic difference is reflected by differences in the surface syntax of quantified expressions in the two languages.
- ii. In line with the Universal Hypothesis, the systems of adnominal quantification in the two languages do not differ. As the standard GQ-analysis for English does not extend to St'àt'imcets (the complement DPs in St'àt'imcets can never be interpreted as predicates), perhaps one can re-analyse English quantification in the light of the St'àt'imcets facts?
- \rightarrow option (ii.) is stronger and may give rise to new and unexpected insights into the quantificational system of English

4. Weak vs. Strong Quantifiers, with special attention on Hausa

- 4.1 Weak and Strong Quantifiers (Kamp 1981, Heim 1982, Kamp & Reyle 1993)
- **Q7:** Should all quantifying expressions be semantically analysed as GQs?
- *Observation:* The at first sight homogenous class of quantifying expressions falls into two groups that differ in a number of semantic (symmetry-asymmetry, quantificational variability, binding) and syntactic respects (+/- occurrence in existential *there*-sentences):

(27)	a. Two students drink beer. = b. Every student drinks beer. \neq	Two beer drinkers a Every beer drinker	are students. (+/- symmetric) is a student.
(28)	 a. A_i / Some_i student came late. H b. *Every_i student came late. He_i a 	e _i apologized. apologized.	(+/-cross-sentential binding)
(29)	a. If a student gets a question_i, heb. *If a student gets every_i question	answers it _i . n, he answers it _i .	(+/- donkey pronouns)
(30)	a. There is a unicorn in the garderb. *There is every unicorn in the g	ı. garden.	(+/- existentials)

- *Two kinds of adnominal quantifying expressions:*
- i. Genuine quantifiers, which map NP-denotations (i.e. sets or predicates) on GQs, (31a).
- ii. Modifying elements that inherit their apparent quantificational force from a covert ccommanding existential quantifier (viaEC)

(31) a. [[every]] =
$$\lambda P_{\langle et \rangle}$$
. $\lambda Q_{\langle et \rangle}$. $P \subseteq Q$

b. [[two]] = $\lambda x. |x| \ge 2$

- \rightarrow This semantic distinction corresponds to the traditional distinction into +/- existential quantifiers (Keenan 1987), or *weak and strong quantifiers* (Milsark 1977):
- (32) weak quantifiers *a, sm* (unstressed form of *some*), numerals, *mny, few, ...* (indefinites) strong quantifiers *every, each, all, most, sóme, féw, mány*

2.4 Weak and Strong Quantifiers and Transparent Mapping

- There is some evidence that the different interpretation of weak and strong quantifiers is correlated with a different syntactic status:
 - i. Genuine adnominal quantifiers are determiner heads, cf. (7).
 - ii. Quantificational modifiers are adjectival in nature (Hoeksema 1983, Higginbotham 1987)

- Quantificational modifiers in English:
 - i. can be preceded by the definite determiner (plus other adjectives) (cf. 18a),
 - ii. or by strong quantifiers (in D) (cf. 18b),
 - iii.can function as predicates (cf. 18c).
- (18) a. the (notorious) *two* arguments against UGb. every *two* weeks
 - c. His sins were *many*.

2.5 Weak and Strong Quantifiers in Hausa (West Chadic, Nigeria/ Niger)

- Observation: In Hausa, the evidence for two kinds of adnominal quantifying expressions is even more direct (Zimmermann 2005):
 - i. Hausa weak quantifiers behave syntactically like non-quantifying NP-modifiers
 - ii. Hausa weak quantifiers differ from strong quantifiers, which occur in a different syntactic position and show no parallels to non-quantifying modifiers
- *Weak Quantifiers in Hausa* = elements occurring in indefinite NPs:
- (19) i. numerals: daya 'one', biyu 'two', ukù 'three', cf. (20ai,ii)
 ii. many: dà yawàa, màasu yawàa, cf. (20b)
 iii. few: kàd'an, cf. (20c)
- (20) ai. yaaròo d'aya boy one students two three 'one boy'
 ii. dàalibai biyu / ukù (postnominal) students two three 'two/ three students'

b.	maataa	dà /màasu	yawàa	с.	birai	kàd'an
	wom	en with /owr	er.plquantity		mor	nkeys few
	'man	y women'			'a fe	ew monkeys'

- Weak quantifiers show the same behaviour as NP-modifiers (adjectives, PPs):
 - i. Weak quantifiers occur in the same *postnominal position* as adjectives and PP-modifiers, cf. (21a-c).
 - ii. Some of them (*da yawàa*, *màasu yawàa*) employ the same linkers as other modifiers, cf. (21bc).
 - iii. Weak quantifiers can be followed by modifying adjectives, cf. (22a).
 - iv. Weak quantifiers can occur in predicate position, cf. (22b).

(21)	a.	gidaa house	fa wl	r ii nite		'white house'	(cf. 20ai.ii)
	b.	yaaròo boy	<i>dà</i> wi	sànd th stick	aa	'boy with a stick'	(cf. 20b)
	c.	yaaròo boy	m ov	ài vner-of	hùulaa cap	'boy with a cap'	(cf. 20c)
(22)	a.	mootoo cars	cii	bìyar five	jaajàayee red	'five red cars'	
	b.	maata-n wifes-hi	sà .s	hud'u four		'His wives are four.'	

As modifying expressions, weak quantifiers *denote* (second order) properties and are of $type < e^*, t >$

• Strong quantifiers occur in DP-initial position and show head-like behaviour (e.g. gender/number agreement with head noun).

(23)	a. koowànè / koowàcè / koowàd'ànne	'each, every (m./f./pl.)'		
	i. koowànè _{masc.} d'aalìbii ii. koowàcè _{fem} mootàa	'every student' 'every car'		
	b. wani / wata / wa(d'an)su	'some (other), a certain (m./ f./ pl.)'	=∃	
	i. wani_{masc} mutûm ii. wata fem màcè iii. wa(d'an)su pl mutàanee	'some man' 'some woman' 'some men' = 'some people'		

→ Strong quantifiers are functional elements in a head position. As functional elements, they can be analysed as genuine quantifiers of type $\langle et, \langle et, t \rangle \rangle$. (cf. 7)

• Conclusions

- i. Typologically unrelated languages exhibit two kinds of adnominal quantifying expressions: genuine quantifying expressions (in D) and adjective-like, modifying expressions.
- ii. The existence of adjective-like, modifying quantifying expressions makes a good candidate for a semantic universal (*and a good topic for a typologically oriented paper!*)
- *Q:* To what extent do languages have strong adnominal quantifiers of type <et, <et,t>>?

5. Variation 2: D- vs. A-Quantifiers