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Barwise & Cooper (1981). Generalized Quantifiers and Natural Language. 
Linguistics & Philosophy 5: 159-219. 

 

1.  Introduction 

• Objectives & Claims: 

i.  A semantic characterization of (English) determiners and DPs that pays close 

attention to their syntactic structure by deriving the meaning of DPs in 

compositional fashion from the meaning of a determiner and its DP-complement and 

ii. formulation of linguistic universals that are based on this semantic characterization. 

Semantically, all DPs are generalized quantifiers of type <<e,t>,t> (as in Montague 

(1973)): The determiner itself takes a set (<e,t>) and maps it onto a set (or: family) of 

sets (<<e,t>,t>). Determiners thus establish a relation between two sets. 

The range of logically possible relations between sets that can be expressed by natural 

language determiners is restricted by the semantic property of conservativity (or: live-on 

property). 

�  The focus on the syntax and on the meaning contribution of DPs, and in particular of the 

determiner are new features in the discussion of (quantified) noun phrases: 

-  Russell (1905): On denoting 

„This is the principle of the theory of denoting I wish to advocate: that denoting phrases 

[i.e. complex DPs, MZ] never have any meaning in themselves, but that every 

proposition in whose verbal expression they occur has a meaning.[...] 

“This leaves ‘a man’, by itself, wholly destitute of meaning, but gives a meaning to 

every proposition in whose verbal expression ‘a man’ occurs.” 

“but we agreed that denoting phrases have no meaning in isolation.” 

-  Montague (1973): PTQ 

Montague  does assign a meaning to denoting expressions, or terms: They are functional 

expressions of type <<e,t>,t>. However, Montague assigns no independent syntactic or 

semantic status to the determiner itself. Determiners are introduced 

syncategorematically by the family of rules in S2, and their quantificational 

interpretation is brought about by the corresponding translation rules in T2. 

� B&C’s treatment of generalized quantifiers is an elaboration of Montague’s work with a 

focus on natural language rather than on intensional logic: 

p.160: „Our hope is to develop Montague’s treatment of noun phrases further in a 

straightforward way (without lambdas), and to show some of its implications for a 

theory of natural language.“ 

 

2.  The Basic System: Generalized Quantifiers in Natural Language 

2.1 Motivation: Problems with logical approaches to the meaning of DPs  

• The inadequacy of first order PL 

Standard first order predicate logic with its two quantifiers ∀x(...x...) and ∃x(...x....) 

cannot express the meaning of certain natural language determiners: 
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(1)  most, more than half,  finitely many, ... 

(2)  Most children are asleep. 

(3)  a.  ∀x [child’(x) → sleep’(x)]  = All children are asleep 

  b.  ∃x [child’(x) ∧ sleep’(x)  =  Some child is asleep. 

c. ∀x [child’(x) ∧ sleep’(x)]   =  All enitites are sleeping children. 

d. ∃x [child’(x) → sleep’(x)  =  There is an entity such that, if it is a child, it sleeps.  

�  no combination of the available logical operators gives the right result 

�  the introduction of a new operator MOST does not give the correct result either. 

(4)  MEIST x [ϕ(x)] = 1 iff ϕ is true for more than half of the entities in the domain 

(5)  a. Possibility 1: MOST x [child’(x) ∧ sleep’(x)]  

= most entities are sleeping children 

  b. Possibility 2: MOST x [child’(x) → sleep’(x)]  

=  For most entities x: if x is a child, then x is asleep.   

 

(6)  a. S1:  10 persons, among them 5 adults that are awake and 5 childen four of which  

are asleep.  

   �  (2) intuitively true, (4) false (unter the interpretation of most in (5a)) 

 

b. S2:  10 persons, among them 5 adults that are awake and 5 childen only one of  

which is asleep. 

   �  (2) intuitively false, but (4) true (unter the interpretation of most in (5b)) 

� a major problem with (4) is that its structure does not reflect the syntactic structure of 

(2) because operators must take the entire formula in their scope in PL, but natural 

language determiners does not. 

p.159:“[...], the syntactic structure of quantified sentences in predicate calculus is completely 

different from the syntactic structure of quantified sentences in natural language.“ 

• Semantic structure resembles syntactic structure 

An adequate paraphrase of (2) would be something like most x such that x is a child 

have the property of being asleep. 

�  most is not a quantifier (ranging over formulas), but a determiner that combines with the 

set-denoting expression childen to produce a quantifier. This semantic procedure is fully 

parallel to the syntactic structure: 

 

(7)  a.     Quantifier        b.     DP 

 

   Determiner     Set expression     Det     NP 

                    most     children 

 

• Unlike in PL, some quantifiers (most NP, many NP, few NP) are not logical quantifiers, 

i.e. their meaning is model-dependent and varies depending on context: 
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�  The meaning of many in (8ab) depends on the measurement by which we calculate what 

counts as relatively many under the circumstances described. 

(8) Situation: In total 20 Swedes won the Nobel Price, and 20 Swedes live in Berlin. 

  a. Many Swedes have won the Nobel Price. � true 

(compared to the overall number of Nobel price winners, the number of Nobel price 

winners from other countries, and given the relatively small population of Sweden) 

  b. Many Swedes live in Berlin.     � false 

(compared to the overall number of inhabitants of Berlin and the number of 

inhabitants from other countries) 

• Natural language quantifiers can be partially defined 

(9)  a. the king of France �  fails to denote of there is no or more than one king of  

France  

b. both authors   �  fails to denote if the set of authors comprises less  

than or more than two authors 

c. neither author   �  fails to denote if the set of authors comprises less  

than or more than two authors 

  [NB: German has no simplex counterpart for neither, which translates as keiner der beiden Autoren] 

 

2.2 Generalized Quantifier Theory 

• The Syntax of Generalized Quantifiers (GQs) 

Generalized Quantifiers are typically complex DPs consisting of a determiner and an 

NP, cf. (7b). The complex expressions are built by applying the determiner to the NP by 

rule R3 (p.168): 

(10) a. R3: If D is a determiner and η is a set term then D(η) is a quantifier Q 

Quantifiers (= full DPs) combine with set terms by R5 

(10) b. R5: If Q is a quantifier and η is a set term Q(η) is a formula (= a sentence) 

 

• The Semantics of Generalized Quantifiers 

The denotation of a generalized quantifier is derived by functionally applying the 

denotation of a determiner to the denotation of an NP (S5, S9, T1): 

(11) [[  DP]] = [[  D]] ( [[  NP]]  ) 

Generalized quantifiers are sets (= families) of sets, i.e. they are of type <<e,t>,t> 

���� Quantifiers are second-order predicates that are used to assert that a set has some 

property: 

(12) a. some boy denotes the set of all sets X that contain at least one boy (S5a):  

{X| X ∩ [[ boy]] ≠ ∅} 

b. every boy denotes the set of all sets X that contain every boy (possibly plus 

additional elements) (S5b): {X| [[   boy]] ⊆ X} 
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Determiners denote functions from sets into generalized quantifiers, i.e. sets of sets, i.e. 

they are of type <<e,t>,<<e,t>,t>> 

���� Determiners denote second-order relations between two sets A and B 

• No semantic difference between different kinds of nominal expressions 

As in Montague, all nominal expressions, i.e. complex DPs, proper names as well as 

variables, are generalized quantifiers of type <<e,t>,t>. To capture the intuition that 

proper names and variables appear to denote individuals, B&C (p.166) postulate the 

following split between N- and DP-denotation (see also Elbourne 2005 for a recent 

proposal along these lines): 

(13) a.      DP <<e,t>,t> 

         | 

        N  <e> 

       Harry 

 

  b. [[HarryNP ]]  =  [[the]]({y| y = harry}) 

        = [[the]]({harry}) 

        = {X | {harry} ⊆ X} 

        = {X | harry ∈ X}   

�  the principal ultrafilter generated by [[Harry]] 

 

2.3 Conservativity (the ‘live on’-property) 

The range of logically possible relations between sets that can be expressed by natural 

language determiners is restricted by the semantic property of conservativity (or: live-on 

property). 

(14) Conservativity: 

for arbitrary sets A,B: Det(A)(B) ⇔ Det(A)(A∩B) 

� The result of applying the determiner meaning to its two set arguments is equivalent to 

applying the determiner meaning to the first set argument A (the NP-denotation) and the 

intersection of first and second argument A ∩ B 

� as a result, only the NP-denotation A and the intersection of A with B, i.e. A ∩ B, are 

relevant for establishing the truth-conditions of a sentence; 

 Elements of B that are not in A do not matter for the interpretation ! 

 

� conservativity implies that the NP-denotation A is more important than the second set B 

(typically the VP-denotation): quantifiers live on A 

 

• Empirical test for conservativity  

There is a simple empirical test for conservativity. A determiner Det applied to an NP 

and a VP is conservative if the following equivalence holds: 

(15) Det NP VP is true iff Det NP is a/ are NP(s) that VP holds 

(16) a. Some students smoke.   ⇔  Some students are students that smoke. 

  b. Every student smokes.  ⇔  Every student is a student that smokes. 
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c. No student smokes.    ⇔   No student is a student that smokes. 

  d. Two students smoke.  ⇔  Two students are students that smoke. 

 

• Formal Proof for Conservativity: some 

(17) some (A)(B)  = 1  iff  A ∩ B ≠ ∅     (meaning of some) 

         ⇔  A ∩ A ∩ B ≠ ∅   (set theory: A = A ∩ A) 

         ⇔  A ∩ (A ∩ B) ≠ ∅  

         =   1 iff some(A)(A ∩ B) (meaning of some) 

 

�  The criterion of conservativity makes a clear prediction as to which of the logically 

possible quantifiers can occur as quantifiers in natural language.  

By doing so, it restricts the number of logically possible determiner denotations from 

65536 to 512 in a model with only two individuals. 

• Prediction 

There are no equivalences of the form Det(A)(B) ⇔ Det (A∩B)(B), where the meaning 

of the NP-complement A in its entirety does not play a role for the semantic 

interpretation: 

(18) Every beer drinker is a student. ≠  Every beer drinking student is a student.  

Example: The logically possible quantifier schmevery in (19a) with the meaning in 

(19b) is not attested in any natural language, even though the meaning is plausible and 

not difficult to compute, cf. (20):  

(19) a. Schmevery student drinks beer = 1 iff 

b. every beer drinker is a student: [[ beer drinker ]] ⊆ [[student]]) 

(20) a. [[schmevery]]          =  λA∈℘(D). λB∈℘(D). B ⊆ A   

  b. [[schmevery student]]       =  λB∈℘(D). B ⊆ [[student]] 

  c. [[schmevery student  drinks beer]] =  1 iff [[beer drinker]] ⊆ [[student]] 

 

• Formal proof that schmevey is not conservative: 

(21) i. the inference from left to right in (14) is valid: 

schmevery(A)(B) = 1  iff  B ⊆ A       (meaning of schmevery) 

           ⇒⇒⇒⇒  A∩B ⊆ A      (set theory) 

           iff  schmevery(A)(A∩B) =1  (meaning of schmevery) 

   

ii. the inference from right to left in (15) is invalid: 

schmevery (A)( A∩B) = 1 iff  A∩B ⊆ A     (meaning of schmevery) 

            // ⇒⇒⇒⇒ B ⊆⊆⊆⊆ A   

iff schmevery(A)(B) = 1 

From A∩B ⊆ A it does not follow automatically that B ⊆ A ! 

 

Question: What about the semantics of only in Only Students are beer drinkers? 
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2.4 The syntax and semantics of sentences containing generalized quantifiers 

 General interpretation scheme of sentences containing quantifiers: 

(22) [[  S]] = D(A)(B)  

 Generalized quantifiers in subject position take the VP-denotation as argument and 

deliver a truth value: 

(23) a. [DP Every [NP man]] [VP sneezes] 

� every (man) sneeze   (by R3 and R5) 

b. [DP some [NP thing]] [VP runs] 

� some (thing) run   (by R3 and R5) 

� Quantifiers in non-subject position are always interpreted by means of quantifying in 

(T2, SD6, T6). The quantifying-in rule SD6/T6 is equivalent to Montague’s rule F10n 

(S14/T14) 

� Unlike in Montague (1973), there is no option to raise the type of the verb such that it 

can combine with a generalized quantifier in situ. 

(23) c. Five or more woman kiss the man. 

  � 5(woman) [λλλλx. the(man) [ λλλλy. kiss(x,y)]] 

  d. Most man kiss a (particular) woman. 

  � some(woman) [λλλλy. most(men) [ λλλλx. kiss(x,y)]] 

� (23d) is the semantic representation of the inverse scope reading. 

 

3.  Universals and different semantic properties of generalized quantifiers 

Section 4 of Barwise & Cooper (1981) discusses possible linguistic applications of the 

formal apparatus developed in sections 2 and 3. B&C postulate a number of universals 

for the semantic behavior of quantifiers in natural language that are not logically 

necessary. 

� If correct, the existence of the universals points to an important difference between 

natural language and formal (i.e. logical) languages. The former are restricted in that 

they only make use of a limited subset of the possibilities that are available from a 

logical point of view. 

� If correct, the validity of the universals thus qualifies as a distinguishing feature 

between natural language, on the one hand, and formal languages, on the other. 

 

U1: Every natural language has DPs that denote Generalized Quantifiers 

 

U2: Since semantic scope is the property of the entire DP rather than the determiner 

itself, at least DP’s will occur in positions associated with variable binding 

���� There should be no language that allows for determiner movement, but not DP-

movement 

 

U3: Every natural language has conservative determiners 
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U4: For every partially defined determiner D, there is a morphologically simple 

determiner D
+
 that is always defined 

�  There should be no language with a word for both but not word for two, or with a word 

for neither but no word for no. 

 

• Strong and weak quantifiers 

Milsark (1974, 1977) points out that not all determiners behave alike in all respects. For 

instance, only a subset of all determiners (the weak determiners) can freely occur in 

existential there-sentences, while others (the strong determiners) are infelicitous. 

 

(24) a. *?There is every /the cat in the garden. 

  b. *?There are most cats( the two cats in the garden. 

  c. There is a / some unicorn in the garden. 

  d. There are two/ more than five / less than six dogs in the garden. 

  B&C provide a formal definition for the weakness or strength of determiners 

(25) strength/weakness of D: 

A determiner is positive strong (or negative strong) if for every model M with a domain 

E and every A ⊆ E, if the quantifier ||D||(A) is defined then A ∈ ||D||(A) (or A ∉ 

||D||(A)). If D is not strong it is weak. 

� Empirical test: 

(26) D N is a N/ are Ns 

 a. tautology   �  D is positive strong 

 b. contradiction  �  D is negative strong 

 c. contingency:   �  D is weak 

(27) a. Every gnu is a gnu  �  tautology: every is positive strong 

 b. Neither gnu is a gnu  �  contradiction: neither is negative strong 

 c. Two gnus are gnus  �  true if there are gnus; false if there are no gnus: two is 

 weak 

 

Question: Why is no a weak determiner? 

 

�  all definite determiners are partially defined and positive strong. 

�  weak determiners are symmetrical and intersective: 

(28) a. Two students smoke. =  Two smokers are students. 

�  strong determiners are asymmetrical and non-intersective: 

(28) b. Most students smoke. ≠ Most smokers are students. 

 

(29) a. D is symmetrical and intersective iff for all A,B ∈ D<e,t> : D(A)(B) = D(B)(A) 

b. D ist aymmetrical and non-intersective iff for all A,B ∈ D<e,t>: if D(A)(B) = D(B)(A) 

then A = B. 

� the arguments of symmetrical Ds can be exchanged without a change in meaning (28a), 

while the arguments of asymmetrical Ds can only be exchanged salva veritate if A=B 

(28b). 
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• Monotone increasing and decreasing quantifiers 

monotone increasing quantifiers license the inference from subsets to supersets, (30a); 

monotone decreasing quantifiers license the inference from supersets to subsets, (30b): 

(30) a. Every letter arrived yesterday morning  �  Every letter arrived yesterday. 

  b. Less than two letters arrived yesterday  �   

Less than two letters arrived yesterday morning. 

� negation reverses the monotonicity properties of quantifiers 

(31) a.  Not every letter arrived yesterday morning  // �  Not every letter arrived yesterday. 

  b. Not every letter arrived yesterday  �  Not every letter arrived yesterday morning. 

 

U5:  There is a simple monotonous decreasing quantifier only if there is also a simple 

 monotonous increasing quantifier with a weak non-cardinal quantifier 

� There should be no languages with a word for no, but no word for some, or a word for 

few but no word for many. 

U6: The simple NPs of any natural language express monotone quantifiers or 

conjunctions of monotone quantifiers 

� There should be no languages in which the concepts exactly three or exactly five or all 

but one are lexicalized in a basic determiner meaning 

U7: In natural languages, positive strong determiners are monotone increasing and 

negative strong determiners are monotone decreasing. 

 

• Persistence:  

A determiner is persistent if it is monotone increasing concerning the NP-argument: 

(32) At least two beautiful cows give a lot of milk. � At least two cows give a lot of milk. 

U8: If a determiner is monotone increasing concerning its first argument, it is also 

monotone increasing concerning its second argument. 

Question: Which determiner is monotone increasing in its second argument, but decreasing 

in its first argument? 

 

 


