

Artificial neural networks

Simulate computational properties of brain neurons (Rumelhart, McClelland, & the PDP

Research Group, 1995)

Learning implicit language knowledge

Deep Learning (Hinton, 2007)

·

Neurons (firing rate = activation)

Connections with other neurons (strength of relationship = weights)

-

-

·

Phonology (Elman & McClelland, 1988 TRACE)

Morphology (Plunkett & Juola, 1999)

Lexical Processing (Plaut et al., 1996)

Speech errors (Dell, 1986)

Syntax (Elman, 1990)

Sentence Production (Chang et al. 2006)

-

-

-

-

-

-

·

Youtube transcription (50% Gaussian Mixture Model)-

Deep neural network improves performance by 20%-

3/77

Mapping between meaning and words

Language-specific mappings

To learn these languages, you need to link meaning and word forms

·

American English: tea = DRINK+LEAF

Cantonese Chinese: cha = DRINK or cha = MEAL (yum cha)

British English:

-

-

-

tea = DRINK+LEAF ("Do you drink tea?")

tea = MEAL+LATEAFTERNOON ("We often eat beans on toast for tea")

-

-

·

Meaning: DRINK, LEAF -> tea-

4/77

Mapping represent logical functions ()

Language mappings can be represented in terms of semantic feature inputs·

DRINK (1=there is a drink, 2=no drink), LEAF (1=there are tea leaves, 0=no leaves)

tea (1 = say tea, 0 = don't say tea)

-

-

Different logical function in each language.·

American = AND function ()

Cantonese = OR function ()

British = Exclusive OR function XOR ()

-

-

-

5/77

Learning logical functions

 - AND and

OR functions are only off by 0.25, but XOR model does not learn anything.

AND and OR functions are easier to learn than XOR.

Regression: lm(tea ~ EAT + LEAF)

·

·

Predicted output in column P-

6/77

Learning XOR functions

If we add an interaction term, then the model can learn XOR

Regression: lm(tea ~ EAT + LEAF + EAT:LEAF)

·

·

If we add interaction terms, then we can learn any function.

Curse of dimensionality: If we add more features, we get too many interaction terms.

Can we learn these interaction terms?

·

·

For c concepts, interaction terms, e.g., 20 concepts = 1,048,575 interaction terms-

·

7/77

Neural networks

Similar to regression: Prediction

Artificial neurons (units) encode input and output values [-1,1]

Weights between neurons encode strength of links (betas in regression)

Neurons are organized into layers (output layer ~ input layer)

Beyond regression: Hidden layers can recode the input to learn mappings like XOR

·

·

·

·

·

8/77

Learning Hidden Representations

Back-propagation of error (Rumelhart, Hinton, & Williams, 1986)

Vectorized/Matrix operations

·

Learns hidden representations

Forward pass (spreading activation)

Error = difference between target and output activation (residuals)

Backward pass (pass error back in the network to change weights)

-

-

-

-

·

·

R, matlab, python do vectorized operations

SSE = sum((O - T)^2)

-

-

9/77

Matrices and networks

Input Matrix

Target Matrix

Weight Matrix - initialized with random weights

·

I =

-

·

T =

-

·

10/77

Back-propagation Overview

Forward Pass

Backward Pass

Repeat for each layer

·

Multiply inputs and weights

Apply activation function

-

-

·

Compute error ()

Compute delta weight change matrix

Back-propagate error to previous layer

-

-

Change weights (learning rate)

Add Momentum ()

-

-

-

·

11/77

Forward Pass (Input->Hidden)

 = = =

Spreading Activation·

Add bias column of 1s to Input Matrix (intercept term in regression)

Dot product (Matrix Multiplication) of input vector with weight matrix

-

-

0.9 * 0.23 + 0.9 * 0.73 + 1 * 0.23 = 1.09-

Dot product: AxB matrix BxC matrix -> AxC matrix·

12/77

Forward Pass (Input->Hidden)

 = tanh() = tanh() =

Apply activation function to netinput -> output ·

Forces values to range of [-1,1]

Hidden layer can recode inputs

-

-

13/77

Forward Pass (Hidden->Output)

 = = =

 = tanh() = tanh() =

Spreading Activation: multiplying input vector against the weight matrix -> netinput ·

Apply activation function·

14/77

Backward Pass

= =

Compute Error (difference between output and target T)·

15/77

Changing weights based on error

Derivative (): how variables change in relation to change in other variables.

How do we learn to brake when driving a new car?

How do we adjust the weights in the network?

·

Acceleration is the derivative of speed-

·

Target would be to stop at some good distance from other cars

Error would be distance between your actual stopping distance and the target

Derivative: how changes in the car's speed changes in response to changes in force on the

pedal

-

-

-

·

tanh changes the netinput into output

Derivative D of tanh is

-

-

16/77

Adjusting the error by the derivative

 = =

Gradient is calculated by multiplying the error by the output layer derivative ·

element-wise matrix multiplication (Hadamard product).-

17/77

How do we change the weights?

 = (7)

delta weight matrix is computed by calculating the dot product of the transposed input

for the output layer and the gradient matrix

·

If an input is activated and the output is wrong, then we blame that unit

Input is transposed to get the right shape delta weight matrix

-

-

18/77

Learning rate

 = + 0.03 = (8)

Learning rate allows us to adjust the speed that the model changes in response to this input

Deltas are then added to the weights to update them to the new weights

·

·

19/77

Back-propagation of Error

 = =

Error at the output layer can be back-propagated back to the hidden layer (Rumelhart et al.,
1986)

Dot product of the gradient and the transpose output-hidden weights

·

·

20/77

Change input-hidden weights

 = =

 = =

Same equations are used for the hidden layer·

Compute delta weight matrix·

21/77

Change input-hidden weights

 = + 0.03 =

Update weight using new delta weight change matrix·

22/77

Cost functions

 * log() * log() =

Cost: Function that network is trying to minimize

Cross-entropy loss function L for back-propagation with tanh activation function

·

Regression uses a cost function of sum of squares error , where it is trying to
minimize residuals between the regression line and all of the target points in the data set

-

·

23/77

Error during training

MeanCE: mean cross-entropy loss over all patterns·

loss reduces as the model becomes better at predicting the correct output-

24/77

Plotting weight changes during training

Cost function do not provide much information about how the network is learning

MSDelta = mean sum of squares of delta weight change matrix

·

·

25/77

Error space

To understand the model, it is useful to track the model's weights as it learns·

Output layer has three weights (hidden1, hidden2, bias)

Simulate values [-3,3] for hidden1 and hidden2 and see how cost function changes

Model's path is shown by black lines (random initial weights)

-

-

Background colour = meanCE (red = hills, yellow = valleys)-

-

26/77

Momentum descent

Steepest descent: Move down in the weight space in the direction that reduces cost function·

Sometimes traps you in local minima, rather than the global minima-

27/77

Momentum descent

 = + 0.03 =

 = + 0.9 =

move in the same direction in weight space as the last weight change

Deltas from the previous timestep are multiplied by the momentum term (0.9) and
added to the t+1 weights .

·

ball will continue traveling in the same direction due to momentum ()-

·

28/77

Recoding the Hidden Layer

Mapping at end of training

Mapping at time 20

·

Output Y_300 exhibits XOR function

Predict XOR output (P_300) from hidden H1_300 and H2_300 using regression

-

-

·

Output Y_20 exhibits OR function (positive when either input is on)

Not possible to predict XOR output (P_20) from hidden H1_20 and H2_20

-

-

29/77

Summary Back-propagation

Forward Pass

Backward Pass

Repeat for each layer

·

Multiply inputs and weights

Apply activation function

-

-

·

Compute error

Compute delta weight change matrix

Back-propagate error to previous layer

-

-

Change weights (learning rate)

Add Momentum

-

-

-

·

30/77

Non-linear Regression

Regression models are a type of linear model

Link functions in general linear models are akin to the activation functions in neural networks

Neural network models are non-linear regression models

·

Predicted outputs are a weighted sum of their inputs (e.g., y = a + bx)

Hidden->output part of XOR model without tanh would be linear model

-

-

·

Binomial link function is akin to using sigmoid logistic activation function

tanh is another type of sigmoid function that goes between [-1,1]

-

Netinput to the neuron is called the logit (Bishop, 2006)-

-

·

Recoding the hidden layer to solve the mapping (regression cannot do this)

Recoding takes time and there are many solutions (local minima)

-

-

Children also make errors during language learning (e.g., goed instead of went)

Regression can't learn one solution and then recover later

-

-

31/77

R Code: Initializing the input

backpropLib.R, xor.R·

xor = matrix(c(0,0, 0,
 0,1, 1,
 1,0, 1,
 1,1, 0), nrow=4, byrow=TRUE)
xor2 = convertRange(xor,-0.9,0.9) ## tanh requires range of [-1,1]
Inputs = xor2[,1:2]
print(Inputs)

[,1] [,2]
[1,] -0.9 -0.9
[2,] -0.9 0.9
[3,] 0.9 -0.9
[4,] 0.9 0.9

Targets = matrix(xor2[,3])
print(t(Targets)) # transposed function t

[,1] [,2] [,3] [,4]
[1,] -0.9 0.9 0.9 -0.9

32/77

R Code: Initializing the network

NumInputs = 2
NumHidden = 2
NumOutputs = 1
layerList <- list() # network is stored in global variable layerList
makeLayer("input", NumInputs)
makeLayer("hidden", NumHidden)
makeLayer("output", NumOutputs)
makeLink("input","hidden") # create weights from input to hidden
makeLink("hidden","output") # create weights from hidden to output
class(layerList[[getLayer("output")]]) <- c("output","layer") # set output layer as output class

33/77

R Code: hidden layer layerList[[2]]

$name
[1] "hidden"

$num
[1] 2

$unitn
[1] 2

$inputlayer
[1] 1

$inunitn
[1] 3

$weights
NULL

$input
NULL

$netinput
NULL

$output
NULL

$targcopy

34/77

R Code: Forward pass function (backpropLib.R)

forwardPassOne.layer <- function(lay){

 # spread input activation through weights (dot/inner product %*%)
 lay$netinput <-lay$input %*% lay$weights

 # input activation at each unit passed through output function (tanh)
 lay$output <- tanhActivationFunction(lay$netinput)

 layerList[[lay$num]] <<- lay

}

errorFunc.output <- function(lay){

 if (!is.null(lay$targcopy)){

 # some layers get targets from other layers, so copy the targets in those cases
 lay$target = layerList[[lay$targcopy]]$output

 }

 # compute error
 lay$error = lay$target-lay$output

 # zero error radius sets any error that is close enough to the target to be 0
 # this helps to reduce extreme weights and keeps values within sensitive region of activation functio
n
lay$error[abs(lay$error) < lay$zeroErrorRadius] = 0
 layerList[[lay$num]] <<- lay

}

35/77

R Code: Backward pass function (backpropLib.R)

backPropOne.layer <- function(lay){

 lay$deriv <- derivativeFunction(lay) # compute derivative
 lay$gradient <- lay$error * lay$deriv # gradient is error * derivative

 deltaWeights <- t(lay$input) %*% lay$gradient # compute weight change matrix
 deltaWeights <- deltaWeights * lay$lrate # modulate with lrate

 weights <- lay$weights + deltaWeights # steepest descent
 weights <- weights + lay$momentum * lay$prevDW # momentum descent:

 lay$prevDW<-deltaWeights # save delta weights with learning rate adjustment
 lay$weights <- as.matrix(weights) # save new weights

 # error is back-propagated and saved in backerror
 W = as.matrix(weights[1:(dim(weights)[1]-1),]) # remove bias weight
 lay$backerror = lay$gradient %*% t(W) # backprop gradient
 ind = 1

 for (j in lay$inputlayer){

 nind = ind+layerList[[j]]$unitn # copy to all input layers
 layerList[[j]]$error <<- lay$backerror[,ind:(nind-1)]

 ind = nind

 }

}

36/77

R Code: Training code

numEpochs<-1000 # number of training cycles thru whole batch
setParamAll("lrate",0.01) # learning rate: speed of learning
setParamAll("momentum",0.9) # amount of previous weight changes that are added
setParamAll("patn",4) # four patterns
resetNetworkWeights() # randomize network weights
layerList[[getLayer("input")]]$output <- Inputs # set inputs
layerList[[getLayer("output")]]$target <- Targets # set target

Train model 1000 times
############
history=data.frame() # stores evaluation data during training
for (epoch in 1:numEpochs){

 forwardPass() # spread activation forward for all patterns in training set
 backpropagateError() # back propagate error and update weights

 slice = evaluateModelFit(epoch) # save model parameters for figures
 slice$Hidden1 = layerList[[length(layerList)]]$weights[1]

 slice$Hidden2 = layerList[[length(layerList)]]$weights[2]

 slice$Bias = layerList[[length(layerList)]]$weights[3]

 history = rbind(history,slice)

}

37/77

R Code: Evaluating the model

meanCE plot

costPlot = ggplot(history,aes(x=time,y=Cost))+geom_line()+ylab("Cross-entropy")
print(costPlot)

MSDelta plot

deltaPlot = ggplot(subset(history, time > 5),aes(x=time,y=MSDelta,colour=Layer))+geom_line()
deltaPlot = deltaPlot + theme(legend.position="top",legend.direction ="horizontal")
print(deltaPlot)

Network Diagram

modelout = addModel("output")
arr=createWeightArrows(modelout)
plotModel(modelout,xlabel=c("Input","", "Hidden","", "Output","Target"),arr=arr,col=1)

Heatmaps

weight12fig = mapOutWeightSpace("Hidden1","Hidden2","output",history)
weight13fig = mapOutWeightSpace("Hidden1","Bias","output",history)
layout <- matrix(c(1,2,3,4),ncol = 2, nrow = 2)
print(multiplot(costPlot,deltaPlot,weight12fig,weight13fig , layout=layout))

38/77

Lab Setup

Decompress neural.zip file and save neural folder on desktop

Start Rstudio and Open File and click on xor.R

Set working directory so that program can find files

Try to run program

·

·

·

Session menu, Set Working Directory, To Source File location

setwd("~/Desktop/neural/")

-

-

·

Select all of the text in xor.R (control-A, apple-A)

Run the text (control-R, apple-enter)

-

-

39/77

XOR Lab Exercises

Run the whole script several times

Search for the line that says setParamAll("momentum",0.9)

Change number of hidden units

·

The results change depending on the random initial weights

Look at nnpred output in xor2.df. Did the model learn XOR?

-

-

·

change momentum to 0 as in setParamAll("momentum",0)

Run model

The steps in the heat map should be smaller

-

-

-

·

NumHidden = 2 -> NumHidden = 1

One heat map won't work, but the other will show up

Look at nnpred output in xor2.df. What logical function did the model learn?

Try three units, can the model learn XOR?

-

-

-

-

40/77

Language sequence learning

Many sequences in language (sentences are sequences of words, words are sequences of
sounds)

Simple recurrent network (Elman, 1990; Rohde & Plaut, 1999).

Simple language with eight sentences

·

·

·

Four animate entities (i.e. girl,boy,cat,dog)

Two inanimate food entities (i.e. apple, cake).

verb chase can only go with animate agents and patients

verb eats has an animate agent and inanimate patient

-

-

-

-

41/77

Next word is training signal for model

Previous word in a sentence to predict the next word in the sequence·

Next word that is heard is the training signal (target)-

42/77

Localist Coding of Words

Each word is represented by a single unit as 1 and the rest as 0·

43/77

Feed-forward Architecture

5 layers: input -> ccompress -> hidden -> compress -> output

compress layers reduce the distinctions that can be represented -> syntactic categories

·

·

44/77

Soft-max activation function

 = exp()/

 = /

 = (16)

In sentence production, we want to bias towards producing one word·

Soft-max is an activation function with this bias-

45/77

Bounded Descent

Steepest descent takes a big step when the slope is steep

Bounded descent restricts the length of the step if length > 1 (Rohde, 2002)

·

·

46/77

Testing the model

Test sentence the boy eats the cake

Model does not learn non-adjacent regularities: eats followed by foods

·

·

47/77

Simple recurrent network

Context layer holds a copy of the previous hidden layer representations

Hysteresis: How much of previous hidden activation to keep in context?

·

·

48/77

Summary Simple Recurrent Network

Model learns sequencing constraints

Model generalizes because of positional learning

·

Compress layer creates syntactic categories

Context allows model to remember past

-

-

·

Novel test: the dog eats the man

Related input: the woman chases the man

Local constraint: the -> man

Harder to learn the constraint of eat on argument

-

-

-

-

49/77

SRN R Code: Creating the Input

sentences =c("the boy eats the cake .", "the boy chases the girl .", "the dog eats the apple .", "the d

og chases the cat .", "the cat chases the dog .", "the cat eats the cake .", "the girl eats the apple .

", "the girl chases the boy .")

wordseqlabels = unlist(str_split(sentences, " "))

input = data.frame(prevword=c(".",wordseqlabels), nextword = c(wordseqlabels,"."))

vocabulary = c(".","the","girl","boy","dog","cat","cake","apple", "chases","eats")

input$prevword = factor(input$prevword,levels = vocabulary)

input$nextword = factor(input$nextword,levels = vocabulary)

vocabulary = levels(input$nextword)

InputOutput = t(mapply(convertWordVector,input$prevword,input$nextword))

periodList = InputOutput[,1] # tells us where to reset the context
Inputs = InputOutput[,1:NumInputs]

Targets = InputOutput[,(NumInputs+1):(dim(InputOutput)[2])]

Targets[1:6,] # the(2) boy(4) eats(10) the(2) cake(7) .(1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 1 0 0 0 0 0 0 0 0

[2,] 0 0 0 1 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 1

[4,] 0 1 0 0 0 0 0 0 0 0

[5,] 0 0 0 0 0 0 1 0 0 0

[6,] 1 0 0 0 0 0 0 0 0 0

50/77

SRN R Code: Creating the Network

layerList <<- list()
 makeLayer("input", NumInputs)
 makeLayer("ccompress", NumCompress)
 makeContextLayer("context", NumHidden, Inputs[,1])
 makeLayer("hidden", NumHidden)
 makeLayer("compress", NumCompress)
 makeLayer("output", NumOutputs)

 makeLink("input","ccompress")
 makeLink("ccompress","hidden")
 makeLink("hidden","context")
 makeLink("context","hidden")
 makeLink("hidden","compress")
 makeLink("compress","output")

51/77

SRN R Code: Changing input

setInputs <- function(inp,tar,perlist){
 # set number of patterns in network
 setParamAll("patn",dim(tar)[1])

 layerList[[getLayer("input")]]$output <<- inp # set input

 # we need to tell the network when the reset the context to 0.5
 # perlist is a list with a 1 if the previous word was a period, 0 otherwise.
 layerList[[getLayer("context")]]$reset <<- perlist
 # Since the context is copied from the hidden layer,
 # it also needs to be reset
 hidlay = layerList[[getLayer("hidden")]]
 hidlay$output <- matrix(0.5,hidlay$patn,hidlay$unitn)
 layerList[[getLayer("hidden")]] <<- hidlay

 layerList[[getLayer("output")]]$target <<- tar
 # this makes the final layer a softmax layer
 class(layerList[[getLayer("output")]]) <<- c("softmax","output","layer")
}

52/77

SRN R Code: Setting Training Parameters

numEpochs<-10000
create and setup model
createSRN()
setParamAll("lrate",0.1) # learning rate: speed of learning
setParamAll("momentum",0.9) # amount of previous weight changes that are added
setParamAll("boundedDescent",TRUE) # bounded descent algorithm is used
setParamAll("hysteresis",0.5) # use half of previous context activation
setParamAll("zeroErrorRadius",0.1) # error < 0.2 is set to zero
setInputs(Inputs,Targets,periodList)
resetNetworkWeights()

53/77

SRN R Code: Training and testing

history=data.frame()
for (epoch in 1:numEpochs){
 forwardPass() # spread activation forward for all patterns in training set
 backpropagateError() # back propagate error and update weights

 if (epoch %% 1000==0){ # every 1000 epochs, test the model and plot MSDelta graph
 slice = evaluateModelFit(epoch) # save model parameters for figures
 history = rbind(history,slice)
 # plot delta during training to see how layers are changing
 deltaPlot = ggplot(history,aes(x=time,y=MSDelta,colour=Layer))+geom_line()
 print(deltaPlot)
 }
}

54/77

SRN R Code: Plotting the model

plot the model output for the first 6 patterns
layerList[[getLayer("compress")]]$verticalPos = 3.5
layerList[[getLayer("ccompress")]]$verticalPos = 3.5
layerList[[getLayer("hidden")]]$verticalPos = 1
input$prevword = factor(input$prevword,levels = vocabulary)
input$nextword = factor(input$nextword,levels = vocabulary)
sentseq = paste(input$prevword ,input$nextword,sep="->")
modelout = addModel("output",restrict=TRUE,labels=sentseq)
dd = subset(modelout, pattern %in% 1:12)
plotModel(dd,ylabel=vocabulary,axisfontsize=10)

55/77

SRN Lab

Run the whole script several times (select all, run)

Change the language regularities

Add a new construction

·

Does the model learn syntactic categories?

Sequencing constraints?

-

-

·

Replace the sentence "the boy eats the cake ." with "the apple eats the cake ."

Does the model acquire this constraints?

Change other parts of the language and see if the model acquires them

-

-

-

·

Add passive structures like "the cake is eats by the boy ."

You will need to add "by" and "is" to the vocabulary

vocabulary = c(".","the","girl","boy","dog","cat","cake","apple", "chases","eats")

-

Verb should be eaten, but we leave it as eats for simplicity-

-

-

56/77

Sentence Production: Using meaning to guide production

Language is used to convey meaning

Models of sentence production (Chang, 2002)

·

ACTION=CHASE AGENT=CAT PATIENT=DOG

the cat chased the dog

the dog was chased by the cat

SRNs can process these sentences, but it can't pick a particular sentence to convey a
particular meaning

-

-

-

-

·

Prod-SRN model

Dual-path model

-

-

57/77

Japanese Training Language

100 Message-sentence pairs

animals chase animals, animals eat foods

Japanese canonical utterances (e.g., cat ga dog o chased)

Japanese scrambled utterances (e.g., dog o cat ga chased)

·

·

·

·

58/77

Prod-SRN

M =

Simplest production model is to just add a message to SRN model

Binding-by-space message

ACTION=CHASE AGENT=CAT PATIENT=DOG

·

·

Slots for ACTION (2 units), AGENT (7 units), PATIENT (7 units)-

·

Unit 1 is activated for chase

unit 6 is activated for cat (cat is 4th noun, agent slot starts at 2)

unit 12 for dog (dog is 3rd noun, patient slot starts at 9).

In the actual message, the 0 values are changed into -1, to center the values around 0.

-

-

-

-

59/77

Prod-SRN Architecture

Model is mostly correct in predicting sentences that it was trained on·

60/77

Generalization

Prod-SRN does not generalize well (unusual meaning girl o cat ga eats)·

61/77

Summary Prod-SRN

Lack of variable-like processing in connectionist models (Fodor & Pylyshyn, 1988; Marcus,
2003)

Binding-by-space message: AGENT-cat, PATIENT-cat are different concepts and must be
learned independently

Prod-SRN does not have compress units, so no syntactic categories

·

·

Can't generalize from AGENT-cat PATIENT-dog to AGENT-dog PATIENT-cat

Many models use this representation (Mayberry, Crocker, & Knoeferle, 2009; Rohde, 2002;
St. John & McClelland, 1990)

-

-

·

62/77

Dual-path model

M=

Variables to represent binding of roles and concepts (AGENT=cat)·

Message is instantiated in weights-

Activation of role causes concept to be activated·

63/77

Dual-path architecture

Message and syntactic networks are in separate pathways

Event semantics provides information about number of roles

girl o cat ga eats is scrambled and semantically unusual

·

·

·

64/77

Dual-path architecture

girl o cat ga eats is scrambled and semantically unusual

Reverse cconcept->croles message tells hidden layer the role of previous word

cconcept gets training signal from concept (learn by prediction)

·

·

·

65/77

Dual-path Model

Overall can react to the input better than Prod-SRN·

66/77

Summary

Feedforward XOR model

Simple recurrent networks (Elman, 1990)

Dual-path model

·

Non-linear regression

Recodes the input

-

-

·

Previous word predicts next word

Non-adjacent regularities eat -> food

-

-

·

Meaning, Novel verb-structure regularities (Chang, 2002)

Aphasic double dissociations (Chang, 2002, see also Gordon & Dell, 2003).

Structural priming (Chang, Dell, & Bock, 2006; German: Chang, Baumann, Pappert, & Fitz,
in press)

Heavy NP shift/Accessibility in English/Japanese (Chang, 2009)

Learning verb bias (Twomey et al., 2014)

Syntactic bootstrapping (Chang et al., 2006)

-

-

-

-

-

-

67/77

Dual-path R Code: Creating input

npat = 100
actors = c("boy","girl","dog","cat")
foods = c("apple","cake")
constrsent.df = data.frame(str=ifelse(runif(npat) < 0.3,"P","A"),act=ifelse(runif(npat) < 0.5,"eats","c
hases"))
constrsent.df$agent = actors[sample(1:4,npat,replace=TRUE)]
constrsent.df$patient = actors[sample(1:4,npat,replace=TRUE)]
constrsent.df$patient[constrsent.df$act == "eats"] = foods[sample(1:2,length(constrsent.df$patient[cons
trsent.df$act == "eats"]),replace=TRUE)]
constrsent.df$mess = paste("action=",constrsent.df$act," agent=",constrsent.df$agent," patient=",constr
sent.df$patient,sep="")
head(constrsent.df)

str act agent patient mess
1 P eats cat apple action=eats agent=cat patient=apple
2 P chases cat dog action=chases agent=cat patient=dog
3 P chases cat cat action=chases agent=cat patient=cat
4 P eats cat apple action=eats agent=cat patient=apple
5 A eats dog apple action=eats agent=dog patient=apple
6 P chases girl boy action=chases agent=girl patient=boy

68/77

Dual-path R Code: Creating input

constrsent.df$sent = paste(constrsent.df$agent,"ga",constrsent.df$patient,"o",constrsent.df$act,".")
constrsent.df$psent = paste(constrsent.df$patient,"o",constrsent.df$agent,"ga",constrsent.df$act,".")
constrsent.df$sent[constrsent.df$str == "P"] = constrsent.df$psent[constrsent.df$str == "P"]
constrsent.df$agent = NULL
constrsent.df$patient = NULL
constrsent.df$act = NULL
constrsent.df$psent = NULL
head(constrsent.df)

str mess sent
1 P action=eats agent=cat patient=apple apple o cat ga eats .
2 P action=chases agent=cat patient=dog dog o cat ga chases .
3 P action=chases agent=cat patient=cat cat o cat ga chases .
4 P action=eats agent=cat patient=apple apple o cat ga eats .
5 A action=eats agent=dog patient=apple dog ga apple o eats .
6 P action=chases agent=girl patient=boy boy o girl ga chases .

69/77

Dual-path R Code: Convert message into numbers

convertMessageCodes <- function(mess){
 allMesList = list()
 for (m in mess){
 # print(m)
 mesList = ""
 if (m != ""){
 pairs = str_split(m, " ")
 for (p in pairs[[1]]){
 rc=str_split_fixed(p,"=",2)
 pairList = paste(which(roles == rc[1]), which(vocabulary == rc[2]),sep=",")
 # print(pairList)
 mesList = paste(mesList, pairList, sep=",")
 }
 }
 allMesList = append(allMesList,mesList)
 }
 unlist(allMesList)
}
convertMessageCodes("action=eats agent=dog patient=apple")

[1] ",1,11,2,6,3,9"

70/77

Dual-path R Code: Create weight matrix from message

makeMessages <- function(m,r,c,rc){
 ml = str_split(m[[1]],",")
 ml2 = as.numeric(ml[[1]])
 wts = matrix(0,r,c)
 wts[r,] = -2
 if (length(ml2)>2){
 for (i in seq(2,length(ml2),2)){
 if (rc == TRUE){
 wts[ml2[i],ml2[i+1]] <- 4
 }else{
 wts[ml2[i+1],ml2[i]] <- 4
 }
 }
 }
 wts
}
m = convertMessageCodes("action=eats agent=boy patient=cake")
makeMessages(m ,4,11 ,TRUE)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 0 0 0 0 0 0 0 0 0 0 4
[2,] 0 0 0 4 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 4 0 0 0
[4,] -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

71/77

Dual-path R Code: Event semantics

makeEventSem <- function(mes, inp,slen){
 rolelist = str_extract_all(mes,"(agent|patient)")
 mlist=NULL
 for (rl in 1:length(rolelist)){
 if (!is.na(slen[rl])){
 mat = matrix(-0.9,slen[rl],NumRoles)
 for (r in rolelist[rl][[1]]){
 for (i in 1:length(roles)){
 if (roles[i]==r){ mat[,i]=0.9 }
 }
 }
 mlist = rbind(mlist,mat)
 }
 }
 rbind(mlist , mlist[dim(mlist)[1],])
}
makeEventSem("action=eats agent=boy patient=cake",0,1)

[,1] [,2] [,3]
[1,] -0.9 0.9 0.9
[2,] -0.9 0.9 0.9

72/77

Dual-path R Code: Network

 makeLayer("input", NumInputs)
 makeLayer("cconcepts", NumOutputs)
 makeLayer("croles", NumRoles)
 makeLayer("eventsem", NumRoles)
 makeContextLayer("context", NumHidden, periodList)
 makeLayer("hidden", NumHidden)
 makeLayer("compress", NumCompress)
 makeLayer("roles", NumRoles)
 makeLayer("concepts", NumOutputs)
 makeLayer("output", NumOutputs)
 makeLink("input","hidden")
 makeLink("input","cconcepts")
 makeLink("cconcepts","croles")
 makeLink("croles","hidden")
 makeLink("hidden","context")
 makeLink("context","hidden")
 makeLink("eventsem","hidden")
 makeLink("hidden","roles")
 makeLink("roles","concepts")
 makeLink("concepts","output")
 makeLink("hidden","compress")
 makeLink("compress","output")

 # cconcepts gets target from concepts
 makeCopyTargetLink("concepts","cconcepts")

73/77

Dual-path R Code: Inputs

setInputs <- function(inp,tar,mes, slen, perlist){
 evsem = makeEventSem(mes,inp,slen) # set the event semantics
 layerList[[getLayer("eventsem")]]$output <<- evsem
 class(layerList[[getLayer("eventsem")]]) <<- c("input","layer")

 mlist = convertMessageCodes(mes) # put message codes into concept layer
 rc = getLayer("concepts")
 lay = layerList[[rc]]
 lay$messages <- lapply(mlist,function(m) makeMessages(m,NumRoles+1,NumConcepts,TRUE))
 lay$sentlen = slen
 class(lay) <- c("message","layer")
 layerList[[rc]] <<- lay

 cr = getLayer("croles") # put reverse messages in croles layer
 lay = layerList[[cr]]
 lay$messages <- lapply(mlist,function(m) makeMessages(m,NumConcepts+1,NumRoles,FALSE))
 lay$sentlen = slen
 class(lay) <- c("message","layer")
 layerList[[cr]] <<- lay
 class(layerList[[getLayer("cconcepts")]]) <<- c("output","layer")
}

74/77

Dual-path R Code: Training

sample from full language
 sentsample = sort(sample(1:max(sentnum),max(sentnum)/3))
 sset = which(sentnum %in% sentsample)
 setInputs(Inputs[sset,],Targets[sset,],messages[sentsample],sentlen[sentsample],periodList[sset])
 forwardPass() # spread activation forward for all patterns in training set
 backpropagateError() # back propagate error and update weights

 if (epoch %% 1000==0){ # print delta plot every 1000 epochs
 # plot MSDelta
 deltaPlot <- ggplot(history,aes(x=time,y=MSDelta, shape=Layer, colour=Layer))+geom_line()+geom_p
oint()

 if (epoch %% 2000==0){ # test model on novel sentences every 2000 epochs
 setInputs(tInputs,tTargets,tmessages,c(6,6),tPeriodList)
 modelout = addModel("output",restrict=TRUE,labels=tsentseq)
 slice$test = computeMeanCrossEntropyLoss()
 history = rbind(history,slice)
 dd = subset(modelout, pattern %in% 1:12)
 print(plotModel(dd,ylabel=vocabulary))
 }
 }

75/77

Dual-path R Code: Training

 forwardPassOne.message <- function(lay){

 tlay = lay

 lay$netinput = NULL

 lay$output = NULL

 ind = 1

 # each message is separately forward passed
 for (m in 1:length(lay$messages)){

 nind = ind + lay$sentlen[m]-1 # sentlen specifices the length
 if (nind > dim(lay$input)[1]){

 nind = dim(lay$input)[1]

 }

 tlay$input = lay$input[ind:nind,]

 tlay$weights = lay$messages[[m]]

 lay2 <- forwardPassOne.layer(tlay)

 # combine results in lay
 lay$output = rbind(lay$output,lay2$output)

 lay$netinput = rbind(lay$netinput,lay2$netinput)

 lay$weights = tlay$weights

 ind = nind+1

 }

 layerList[[lay$num]] <<- lay

}

76/77

Dual-Path Lab

Change the test set

Chang the language

·

tmessagesSentences =c("cake ga apple o eats .","action=eats agent=cake patient=apple")

setInputs(tInputs,tTargets,tmessages,c(6,6),tPeriodList)

dd = subset(modelout, pattern %in% 1:12)

print(plotModel(dd,ylabel=vocabulary))

-

-

-

-

·

Translate the input into another language

Verb-initial?

Free verb position?

-

-

-

77/77

