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Introduction
Linear mixed models, or hierarchical/multilevel linear

models, have become the main workhorse of experimen-

tal research in psychology, linguistics, and cognitive sci-

ence, where repeated measures designs are the norm.

Within the programming environment R (R Development

Core Team, 2006), the nlme package (Pinheiro & Bates,
2000) and its successor, lme4 (Douglas M Bates, Mächler,
Bolker, & Walker, 2015) have revolutionized the use of

linear mixed models (LMMs) due to their simplicity and

speed: one can fit fairly complicated models relatively

quickly, often with a single line of code. A great advan-

tage of LMMs over traditional approaches such as repeated

measures ANOVA and paired t-tests is that there is no need

to aggregate over subjects and items to compute two sets

of F-scores (or several t-scores) separately; a single model

can take all sources of variance into account simultane-

ously. Furthermore, comparisons between conditions can

easily be implemented in a single model through appropri-

ate contrast coding.

Other important developments related to LMMs have

been unfolding in computational statistics. Specifically,

probabilistic programming languages like WinBUGS (D.J.

Lunn, Thomas, Best, & Spiegelhalter, 2000), JAGS (Plum-

mer, 2012) and Stan (Stan Development Team, 2014),

among others, have made it possible to fit Bayesian LMMs

quite easily. However, one prerequisite for using these

programming languages is that some background statisti-

cal knowledge is needed before one can define the model.

This difficulty is well-known; for example, Spiegelhalter,

Abrams, and Myles (2004, p. 4) write: “Bayesian statistics

has a (largely deserved) reputation for being mathemati-

cally challenging and difficult to put into practice. . . ”.

The purpose of this paper is to facilitate a first en-

counter with model specification in one of these program-

ming languages, Stan. The tutorial is aimed primarily at

psychologists, linguists, and cognitive scientists who have

used lme4 to fit models to their data, but who may have
only a basic knowledge of the underlying LMM machin-

ery. By “basic knowledge” we mean that they may not be

able to answer some or all of these questions: what is a de-

sign matrix; what is contrast coding; what is a random ef-

fects variance-covariance matrix in a linear mixed model;

what is the Cholesky decomposition? Our tutorial is not

intended for statisticians or psychology researchers who

could, for example, write their own Markov Chain Monte

Carlo (MCMC) samplers in R or C++ or the like; for them,

the Stan manual is the optimal starting point. The present

tutorial attempts to ease the beginner into their first steps
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towards fitting Bayesian linear mixed models. More de-

tailed presentations about linear mixed models are avail-

able in several textbooks; references are provided at the

end of this tutorial. For the complete newcomer to statisti-

cal methods, the articles by Vasishth and Nicenboim (2016)

and Nicenboim and Vasishth (2016) should be read first, as

they provide a grounds-up preparation for the present ar-

ticle.

We have chosen Stan as the programming language of

choice (over JAGS and WinBUGS) because it is possible to

fit arbitrarily complex models with Stan. For example, it

is possible (if time consuming) to fit a model with 14 fixed
effects predictors and two crossed random effects by sub-

ject and item, each involving a 14×14 variance-covariance
matrix (Douglas M. Bates, Kliegl, Vasishth, & Baayen, 2015);

as far as we are aware, such models cannot be fit in JAGS

or WinBUGS.
1

In this tutorial, we take it as a given that the reader

is interested in learning how to fit Bayesian linear mixed

models. The tutorial is structured as follows. After a short

introduction to Bayesian modeling, we begin by succes-

sively building up increasingly complex LMMs using the

data-set reported by Gibson and Wu (2013), which has a

simple two-condition design. At each step, we explain the

structure of the model. The next section takes up inference

for this two-condition design.

This paper was written using a literate programming

tool, knitr (Xie, 2015); this integrates documentation for
the accompanying code with the paper. The knitr file
that generated this paper, as well as all the code and data

used in this tutorial, can be downloaded from our website:

https://www.ling.uni-potsdam.de/~vasishth/statistics/

BayesLMMs.html

In addition, the source code for the paper, all R code, and

data are available on github at:

https://github.com/vasishth/BayesLMMTutorial

We start with the two-condition repeated measures

data-set (Gibson & Wu, 2013) as a concrete running exam-

ple. This simple example serves as a starter kit for fitting

commonly used LMMs in the Bayesian setting. We assume

that the reader has the relevant software installed; specifi-

cally, the RStan interface to Stan in R. For detailed instruc-

tions, see

https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

Bayesian statistics
Bayesian modeling has two major advantages over fre-

quentist analysis with linear mixedmodels. First, informa-

tion based on pre-existing knowledge can be incorporated

into the analysis using different priors. Second, complex

models with a large number of random variance compo-

nents can be fit. In the following, we will provide a short

introduction to Bayesian statistics which highlights these

two advantages of the Bayesian approach to data analysis.

The first advantage of the Bayesian approach is a con-

sequence of Bayes’ Theorem, the fundamental rule of

Bayesian statistics. It can be seen as a way of understand-

ing how the probability that a hypothesis is true is affected

by new data. In mathematical notation, Bayes’ Theorem

states

P (H | D) =
P (D | H)P (H)

P (D)
,

whereH is the hypothesis we are interested in andD rep-
resents new data. SinceD is fixed for a given data-set, the
theorem can be rephrased as

P (H | D) ∝ P (D | H)P (H).

The posterior probability that the hypothesis is true given

new data, P (H | D), is proportional to the product of the
likelihood of the new data given the hypothesis, P (D | H),
and the prior probability of the hypothesis, P (H).
For the purposes of this paper, the goal of a Bayesian

analysis is simply to derive the posterior distribution of

each parameter of interest, given some data and prior

knowledge about the distributions of the parameters. The

following example illustrates how the posterior depends

on the likelihood and prior. Before collecting data, a re-

searcher has some hypothesis concerning the distribution

of the response variable X in an experiment. The re-

seacher expresses his or her belief in a prior distribution,

say, a normal distribution with amean value of µ = 60 and
variance σ2 = 1000 (solid density in left-hand panel of Fig-
ure 1). The large variance reflects the researcher’s uncer-

tainty concerning the true mean of the distribution. Alter-

natively, if the researcher were very certain that µ = 60,
then he or she might choose the much lower variance

σ2 = 100 (solid density in right-hand panel of the right-
hand panel of Figure 1).

The researcher starts to collect data. In our example,

there are n = 20 values with a sample mean x̄ = 100
and sample standard deviation s = 40. The correspond-
ing likelihood distribution is displayed in Figure 1 (dashed

line). The resulting posterior distribution (dash-dot line)

combines the prior and likelihood. Given the prior with the

larger variance (left-hand panel), the posterior is largely

influenced by the data. Given the prior with the smaller

variance (right-hand panel), its influence on the posterior

is much stronger, resulting in a smaller shift towards the

data mean.

1
Whether it makes sense in general to fit such a complex model is a different issue; see Gelman et al. (2014), and Douglas M. Bates et al. (2015) for

recent discussion.
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Figure 1 Prior, likelihood, and posterior normal distributions. The likelihood is based on n = 20 observations with sam-
ple mean µ = 100 and standard deviation σ = 40. The prior (identical in both panels) has mean µ0 = 60 and variance
σ2
0 = 1000 (left-hand panel) or σ2

0 = 100 (right-hand panel), respectively.
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This toy example illustrates the central idea of Bayesian

modeling. The prior reflects our knowledge of past re-

sults. In most cases, we will use so-called vague flat pri-

ors such that the posterior distribution is mainly affected

by the data. The resulting posterior distribution allows for

making inferences about model parameters.

The second advantage of Bayesian modeling concerns

variance components (random effects). Fitting a large

number of random effects in non-Bayesian settings re-

quires a large amount of data. Often, the data-set is too

small to reliably estimate variance component parameters

(Douglas M. Bates et al., 2015; Matuschek, Kliegl, Vasishth,

Baayen, & Bates, 2016). However, if a researcher is inter-

ested in differences between individual subjects or items

(random intercepts and random slopes) or relationships

between differences (correlations between variance com-

ponents), Bayesian modeling can be used even if there is

not enough data for inferential statistics. The resulting pos-

terior distributions might have high variance but they still

allow for calculating probabilities of true parameter val-

ues of variance components. Note that we do not intend

to criticize classical LMMs, but rather to highlight the pos-

sibilities of Bayesian modeling concerning random effects.

For further explanation of the advantages this approach af-

fords beyond the classical frequentist approach, the reader

is directed to the rich literature relating to a comparison

between Bayesian versus frequentist statistics (such as the

provocatively titled paper by Lavine, 1999, and the highly

accessible textbooks by McElreath, 2016b and Kruschke,

2014).

Example: A two-condition repeated measures design
This section motivates the LMM with the self-paced read-

ing data-set of Gibson and Wu (2013). We introduce

the data-set, state our modeling goals here, and proceed

to build up increasingly complex LMMs, starting with a

fixed effects linearmodel before adding varying intercepts,

adding varying slopes, and finallymodeling the correlation

between the varying intercepts and slopes (the “maximal

model” of Barr, Levy, Scheepers, and Tily, 2013). We ex-

plain these new model parameters as we introduce them.

Models of varying complexity such as these three can be

generalized as described in Appendix . The result of our

modeling is a probability model that expresses how the de-

pendent variable, the reading time labeled rt, was gen-
erated in the experiment of Gibson and Wu (2013). The
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model allows us to derive the posterior probability distri-

bution of the model parameters from a prior probability

distribution and a likelihood function. Stan makes it easy

to compute this posterior distribution for each model pa-

rameter of interest. The resulting posterior distribution

reflects what we should believe about the value of that pa-

rameter, given the experimental data.

The scientific question. Subject and object relative

clauses have been widely used in reading studies to inves-

tigate sentence comprehension processes. A subject rel-

ative is a sentence like The senator who interrogated the

journalist resigned where a noun (senator) is modified by

a relative clause (who interrogated the journalist), and the

modified noun is the grammatical subject of the relative

clause. In an object relative, the noun modified by the rel-

ative clause is the grammatical object of the relative clause

(e.g., The senator who the journalist interrogated resigned).

In both cases, the noun that is modified (senator) is called

the head noun.

A typical finding for English is that subject relatives

are easier to process than object relatives (Just & Car-

penter, 1992). Natural languages generally have relative

clauses, and the subject relative advantage has until re-

cently been considered to be true cross-linguistically. How-

ever, Chinese relative clauses apparently represent an in-

teresting counter-example to this generalization; recent

work by Hsiao and Gibson (2003) has suggested that in Chi-

nese, object relatives are easier to process than subject rel-

atives at a particular point in the sentence (the head noun

of the relative clause). We now present an analysis of a

subsequently published data-set (Gibson & Wu, 2013) that

evaluates this claim.

The data. The dependent variable of the experiment
of Gibson and Wu (2013) was the reading time rt in mil-
liseconds of the head noun of the relative clause. This was

recorded in two conditions (subject relative and object rel-

ative), with 37 subjects and 15 items, presented in a stan-
dard Latin square design. There were originally 16 items,
but one item was removed, resulting in 37 × 15 = 555
data points. However, eight data points from one subject

(id 27) were missing. As a consequence, we have a total of

555−8 = 547 data points. The first few lines from the data
frame are shown in Table 1; “o” refers to object relative and

“s” to subject relative.

Fixed Effects Model

We begin by making the working assumption that the de-

pendent variable of reading time rt on the head noun is
approximately log-normally distributed (Jeffrey N. Rouder,

2005). This assumes that the logarithm of rt is approx-
imately normally distributed. The logarithm of the read-

ing times, log rt, has some unknown grand mean β0. The

mean of the log-normal distribution of rt is the sum of β0
and an adjustment β1sowhose magnitude depends on the
categorical predictor so, which has the value−1when rt
is from the subject relative condition, and 1 when rt is
from the object relative condition. One way to write the

model in terms of the logarithm of the reading times is as

follows:

log rti = β0 + β1soi + εi (1)

This is a fixed effects model. The index i represents the
i-th row in the data-frame (in this case, i ∈ {1, . . . , 547});
the term εi represents the error in the i-th row. With the
above ±1 contrast coding, β0 represents the grand mean
of log rt, regardless of relative clause type. It can be es-
timated by simply taking the grand mean of log rt. The
parameter β1 is an adjustment to β0 so that the mean of
log rt is β0 + 1β1 when log rt is from the object relative
condition, and β0−1β1 when log rt is from the subject rel-
ative condition. Notice that 2β1will be the difference in the
means between the object and subject relative clause con-

ditions. Together, β0 and β1 make up the part of the model
which characterizes the effect of the experimentalmanipu-

lation, relative clause type (so), on the dependent variable
rt. We call this a fixed effects model because we estimate
the parameters β0 and β1, which do not vary from subject
to subject or from item to item. In R, this would correspond

to fitting a simple linear model using the lm function, with
so as predictor and log rt as dependent variable.
The error εi is positive when log rti is greater than

the expected value µi = β0 + β1soi and negative when
log rti is less than the expected value µi. Thus, the error
is the amount by which the expected value differs from ac-

tually observed value. We assume that the εi are indepen-
dently and identically distributed as a normal distribution

with mean zero and unknown standard deviation σe. Stan
parameterizes the normal distribution by the mean and

standard deviation, and we follow that convention here

by writing the distribution of ε as N (0, σe). (This is dif-
ferent from the standard notation in statistics, where the

normal distribution is defined in terms of mean and vari-

ance.) A consequence of the assumption that the errors are

identically distributed is that the distribution of ε should,
at least approximately, have the same shape as the normal

distribution. Independence implies that there should be

no correlation between the errors—this is not the case in

the data, since we have multiple measurements from each

subject and multiple measurements from each item. This

introduces correlation between errors.

Setting up the data. We now fit the fixed effects model.
For the following discussion, refer to the code in Listings 1

(R code) and 2 (Stan code). First, we read the Gibson and

Wu (2013) data into a data frame rDat in R, and then sub-
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Table 1 First six rows, and the last row, of the data-set of Gibson and Wu (2013), as they appear in the data frame.

row subj item so rt

1 1 13 o 1561

2 1 6 s 959

3 1 5 o 582

4 1 9 o 294

5 1 14 s 438

6 1 4 s 286

.

.

.

.

.

.

.

.

.

.

.

.

547 9 11 o 350

set the critical region (Listing 1, lines 2 and 4). Next, we cre-

ate a data list stanDat for Stan, which contains the data
(line 13). Stan requires the data to be of type list; this is

different from the lm and lmer functions, which assume
that the data are of type data-frame.

Defining the model. The next step is to write the Stan
model in a text file with extension .stan. A Stan model
consists of several blocks. A block is a set of statements

surrounded by brackets and preceded by the block name.

We open up a file fixEf.stan in a text editor and write
down the first block, the data block, which contains the

declaration of the variables in the data object stanDat
(Listing 2, lines 1–5). The strings real and int specify the
data type for each variable. A real variable is a real num-
ber, and an int variable is an integer. For instance, N is
the integer number of data points. The variables so and
rt are arrays of length Nwhose entries are real. We con-
strain a variable to take only a subset of the values allowed

by its type (e.g., int or real) by specifying in brackets
lower and upper bounds (e.g. <lower=-1,upper=1>).
The variables in the data block, N, rt, and so, correspond
to the values of the list stanDat in R. The list stanDat
must match the variables of the data block in case, but the

order of variable declarations in the data block does not

necessarily have to match the order of values in the list

stanDat.
Next, we turn to the parameters block, where the pa-

rameters are defined (Listing 2, lines 6–9). These are the

model parameters, for which posterior distributions are of

interest. The fixed effects model has three parameters: the

fixed intercept β0, the fixed slope β1, and the standard de-
viation σe of the error. We store the fixed effects β0 and
β1 in a vector, which contains variables of type real. Al-
though we called our parameters β0 and β1 in the fixed
effects model, in Stan, these are contained in the vector

beta with indices 1 and 2. Thus, β0 is in beta[1] and
β1 in beta[2]. The third parameter, the standard devia-
tion σe of the error (sigma_e), is also defined here, and is
constrained to have lower bound zero (Listing 2, line 8).

Finally, the model block specifies the prior distribution

and the likelihood (Listing 2, lines 10–16). To understand

the Stan syntax, compare the Stan code above to the spec-

ification of the fixed effects model. The Stan code literally

writes out this model. The block begins with a local vari-

able declaration for mu, which is the mean of rt condi-
tional on whether so is −1 for the subject relative condi-
tion or 1 for the object relative condition.
The for-loop assigns to mu the mean for the log-normal

distribution of rt[i], conditional on the value of the
predictor so[i] for relative clause type. The state-

ment rt[i] ~ lognormal(mu, sigma_e) in a for-
loop means that the logarithm of each value in the vector

rt is normally distributed with mean mu and standard de-
viation sigma_e.2

The prior distributions on the parameters beta and
sigma_e would ordinarily be declared in the model
block. If we don’t declare any prior, it is assumed that

they have a uniform prior distribution. Note that the

distribution of sigma_e is truncated at zero because
sigma_e is constrained to be positive (see the declaration
real<lower=0> sigma_e; in the parameters block).
This means that the error has a uniform prior with lower

bound zero.
3

Running themodel. We save the filefixEf.stanwhich
contains the Stan code and fit the model in R with the func-

tion stan from the package rstan (Listing 1, lines 15–16).
This call to the function stan will compile a C++ program
which produces samples from the joint posterior distribu-

tion of the fixed intercept β0, the fixed slope β1, and the
standard deviation σe of the error.

2
One could have equally well log-transformed the reading time and assumed a normal distribution instead of the lognormal.

3
This is an example of an improper prior, which is not a probability distribution. Although all the improper priors used in this tutorial produce

posteriors which are probability distributions, this is not true in general, and care should be taken in using improper priors (Gelman, 2006). In the

present case, a Cauchy prior truncated to have a lower bound of 0 could alternatively be defined for the standard deviation. For example code using

such a prior, see the KBStan vignette in the RePsychLing package (Baayen, Bates, Kliegl, & Vasishth, 2015).
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Listing 1 R code for the fixed effects model.

# read in data:
rDat <- read.table("gibsonwu2012data.txt", header = TRUE)
# subset critical region:
rDat <- subset(rDat, region == "headnoun")

# convert subjects and items to factors
rDat$subj <- factor(rDat$subj)
rDat$item <- factor(rDat$item)
# contrast coding of type (-1 vs. 1)
rDat$so <- ifelse(rDat$type == "subj-ext", -1, 1)

# create data as list for Stan, and fit model:
stanDat <- list(rt = rDat$rt, so = rDat$so, N = nrow(rDat))
library(rstan)
fixEfFit <- stan(file = "fixEf.stan", data = stanDat,

iter = 2000, chains = 4)

# plot traceplot, excluding warm-up:
traceplot(fixEfFit, pars = c("beta", "sigma_e"),

inc_warmup = FALSE)

# examine quantiles of posterior distributions:
print(fixEfFit, pars = c("beta", "sigma_e"),

probs = c(0.025, 0.5, 0.975))

# examine quantiles of parameter of interest:
beta1 <- unlist(extract(fixEfFit, pars = "beta[2]"))
print(quantile(beta1, probs = c(0.025, 0.5, 0.975)))

Listing 2 Stan code for the fixed effects model.

data {
int<lower=1> N; //number of data points
real rt[N]; //reading time
real<lower=-1,upper=1> so[N]; //predictor

}
parameters {

vector[2] beta; //intercept and slope
real<lower=0> sigma_e; //error sd

}
model {

real mu;
for (i in 1:N){ // likelihood

mu = beta[1] + beta[2] * so[i];
rt[i] ~ lognormal(mu, sigma_e);

}
}
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The function generates four chains of samples. A

Markov chain is a stochastic process, in which random val-

ues are sequentially generated. Each sample depends on

the previous one. Different chains are independent of each

other such that running a Stan model with four chains

is equivalent to running four (identically specified) Stan

models with one chain each. For themodel used here, each

of the four chains contains 2000 samples of each parame-
ter.

Samples 1 to 1000 are part of the warmup, where the
chains settle into the posterior distribution. We analyze

samples 1001 to 2000. The result is saved to an object
fixEfFit of class stanFit.
The warmup samples, also known as the burn-in pe-

riod, are intended to allow the MCMC sampling process to

converge to the posterior distribution. Once a chain has

converged, the samples remain quite stable.
4
Before the

MCMC sampling process, the number of interations neces-

sary for convergence is unknown. Therefore, all warmup

samples are discarded. This is necessary since the initial

values of the parameters might have low posterior proba-

bility and might therefore bias the result.

Besides the number of samples, we specified sampling

in four different chains. Each chain is independent from

the others and starts with different random initial values.

Running multiple chains has two advantages over a sin-

gle chain. First, the independent chains are helpful for

diagnostics. If all chains have converged to the same re-

gion of the parameter space, it is more likely that they

converged to the posterior distribution. Second, running

multiple chains allows for parallel simulations on multiple

cores.

Evaluating model convergence. The number of itera-
tions necessary for convergence to the posterior distribu-

tion depends on the number of parameters. The proba-

bility to reach convergence increases with the number of

iterations. Hence, we generally recommend using a large

number of iterations although the process might converge

after a smaller number of iterations. In the examples in

the present paper, we use 1000 iterations for warmup and
another 1000 iterations for analyzing the posterior distri-
bution. For more complex models, more iterations might

be necessary before theMCMC sampling process converges

to the posterior distribution. Although there are ways to

determine how long the simulation needs to be run and

the number of warmup iterations given the type of poste-

rior distribution (Raftery & Lewis, 1992), we illustrate be-

low practical convergence diagnostics for the evaluation of

convergence in the samples.

The first step after running the function stan should
be to look at the trace plot of each chain after warmup,

using the command shown in Listing 1, lines 13 and 14

(function traceplot). We choose the parameters βi and
σe (pars = c("beta", "sigma_e")) and omit the
warmup samples (inc_warmup = FALSE). A trace plot
has the chains plotted against the sample number. In Fig-

ure 2, we see three different chains plotted against sample

number going from 1001 to 2000. If the trace plot looks like
a “fat, hairy caterpillar” (David Lunn, Jackson, Spiegelhal-

ter, Best, & Thomas, 2012) which does not bend, this sug-

gests that the chains have converged to the posterior dis-

tribution.

The second diagnostic which we use to assess whether

the chains have converged to the posterior distribution is

the statistic Rhat. Each parameter has the Rhat statistic
associated with it (Gelman & Rubin, 1992); this is essen-

tially the ratio of between-chain variance to within-chain

variance (analogous to ANOVA). The Rhat statistic should
be approximately 1 ± 0.1 if the chain has converged. This
is shown in the rightmost column of the model summary,

printed in Table 2. The information can be otained with

print(fixEfFit), where fixEfFit is the object of
type stan.model returned by the function stan. For ex-
ample, see Listing 1, lines 23–24.

Having satisfied ourselves that the chains have con-

verged, next we turn to examine this posterior distribu-

tion. If there is an indication that convergence has not

happened, then, assuming that the model has no errors in

it, increasing the number of samples usually resolves the

issue.

Summarizing the result. The result of fitting the fixed
effects model is the joint posterior probability distribu-

tion of the parameters β0, β1, and σe. The distri-

bution is joint because each of the 4000 (4 chains ×
1000 post-warmup iterations) posterior samples which the
call to stan generates is a vector θ = (β0, β1, σe)

ᵀ
of three

model parameters. Thus, the object fixEfFit contains
4000 parameter vectors θ which occupy a three dimen-
sional space. Already in three dimensions, the posterior

distribution becomes difficult to view in one graph. Fig-

ure 3 displays the joint posterior probability distribution

of the elements of θ by projecting it down onto planes. In
each of the three planes (lower triangular scattergrams)we

see how one parameter varies with respect to the other. In

the diagonal histograms, we visualize the marginal prob-

ability distribution of each parameter separately from the

other parameters.

Of immediate interest is the marginal distribution of

the slope β1. Figure 3 suggests that most of the posterior
probability density of β1 is located below zero. One quan-
titative way to assess the posterior probability distribution

is to examine its quantiles; see Table 2. Here, it is useful to

4
See, Gelman et al., 2014 for a precise discussion of convergence.
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Figure 2 Trace plots of the fixed intercept β0 (beta[1]), the fixed slope β1 (beta[2]), and the standard deviation σe
(sigma_e) of the error for the fixed effects model. Different colours denote different chains.
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Table 2 Credible intervals and R-hat statistic in the Gibson and Wu data.

parameter mean 2.5% 97.5% R̂

β̂0 6.06 6.01 6.12 1

β̂1 −0.04 −0.09 0.02 1

σ̂e 0.60 0.56 0.64 1

define the concept of the credible interval. The (1 − α)%
credible interval contains (1−α)% of the posterior proba-
bility density. Unlike the (1−α)% confidence interval from
the frequentist setting, the (1−α)%credible interval repre-
sents the range within which we are (1− α)% certain that
the true value of the parameter lies, given the prior and the

data (see Morey, Hoekstra, Rouder, Lee, and Wagenmak-

ers, 2015 for further discussion on confidence intervals vs

credible intervals). A common convention is to use the in-

terval ranging from the 2.5th to 97.5th percentiles. We fol-
low this convention to obtain 95% credible intervals in Ta-

ble 2. Lines 27–28 of Listing 1 illustrate how these quantiles

of the posterior distribution of β1 (beta[2]) can be com-
puted.

The sample distribution of β1 indicates that approxi-
mately 94% of the posterior probability density is below

zero, suggesting that there is some evidence that object rel-

atives are easier to process than subject relatives in Chi-

nese, given the Gibson and Wu data. However, since the

95% credible interval includes zero, we may be reluctant

to draw this conclusion. We will say more about the evalu-

ation of research hypotheses further on, but it is important

to note here that the fixed effects model presented above

is in any case not appropriate for the present data. The in-

dependence assumption is violated for the errors because

we have repeated measures from each subject and from

each item. Linear mixed models extend the linear model

to solve precisely this problem.

Varying Intercepts Mixed Effects Model

The fixed effects model is inappropriate for the Gibson and

Wu data because it does not take into account the fact that

we havemultiple measurements for each subject and item.

As mentioned above, these multiple measurements lead
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to a violation of the independence of errors assumption.

Moreover, the fixed effects coefficients β0 and β1 represent
means over all subjects and items, ignoring the fact that

some subjects will be faster and some slower than aver-

age; similarly, some items will be read faster than average,

and some slower.

In linear mixed models, we take this by-subject and by-

item variability into account by adding adjustment terms

u0j and w0k , which adjust β0 for subject j and item k. This
partially decomposes εi into a sum of the terms u0j and
w0k , which are adjustments to the intercept β0 for the sub-
ject j and item k associated with rti. If subject j is slower
than the average of all the subjects, uj would be some pos-
itive number, and if item k is read faster than the average
reading time of all the items, then wk would be some neg-
ative number. Each subject j has their own adjustment
u0j , and each item its own w0k. These adjustments u0j
andw0k are called random intercepts by Pinheiro and Bates

(2000) and varying intercepts by Gelman and Hill (2007),

and by adjusting β0 by these we account for the variability
by speaker and by item.

We assume that these adjustments are normally dis-

tributed around zero with unknown standard deviation:

u0 ∼ N (0, σu) and w0 ∼ N (0, σw). We now have three
sources of variance in this model: the standard deviation

of the errors σe, the standard deviation of the by-subject
random intercepts σu, and the standard deviation of the
by-item varying intercepts σw. We will refer to these as
variance components.

We now express the logarithm of reading time, which

was produced by subjects j ∈ {1, . . . , 37} reading items
k ∈ {1, . . . , 15}, in conditions i ∈ {1, 2} (1 refers to sub-
ject relatives, 2 to object relatives), as the following sum.

Notice that we are now using a slightly different way to de-

scribe the model, compared to the fixed effects model. We

are using indices for subject, item, and condition to iden-

tify unique rows. Also, instead of writing β1soi, we index
β1 by the condition i. This follows the notation used in the
textbook on linear mixedmodels, written by the authors of

nlme (Pinheiro & Bates, 2000), the precursor to lme4.

log rtijk = β0 + β1i︸︷︷︸
β1soi

+u0j + w0k + εijk (2)

This is an LMM, and more specifically a varying inter-

cepts model. The coefficient β1i is the one of primary inter-
est; it will have some mean value−β1 for subject relatives
and β1 for object relatives due to the contrast coding. So,
if our posterior mean for β1 is negative, this would suggest
that object relatives are read faster than subject relatives.

We fit the varying intercepts model in Stan in much the

same way as the fixed effects model. For the following dis-

cussion, consult Listing 3 for the R code used to run the

model, and Listing 4 for the Stan code.

Setting up the data. The data which we prepare for pass-
ing on to the function stan now includes subject and item
information (Listing 3, lines 2–8). The data block in the

Stan code accordingly includes the number J, K of subjects
and items, respectively, as well as subject and item identi-

fiers subj and item (Listing 4, lines 5–8).

Defining the model. The random intercepts model,

shown in Listing 4, still has the fixed intercept β0, the fixed
slope β1, and the standard deviation σe of the error, and
we specify these in the same way as we did for the fixed ef-

fects model. In addition, the varying intercepts model has

by-subject varying intercepts u0j for j ∈ {1, . . . , J} and
by-item varying intercepts w0k for k ∈ {1, . . . ,K}. The
standard deviation of u0 is σu and the standard deviation
of w0 is σw. We again constrain the standard deviations to
be positive.

The model block places normal distribution priors on

the varying intercepts u0 and w0. We implicitly place uni-

form priors on sigma_u, sigma_w, and sigma_e by
omitting them from themodel block. As pointed out earlier

for sigma_e, these prior distributions have lower bound
zero because of the constraint <lower=0> in the variable
declarations.

The statement about how each row in the data is gen-

erated is shown in Listing 4, lines 26–29; here, both the

fixed effects and the varying intercepts for subjects and

items determine the expected value mu. The vector u has
varying intercepts for subjects. Likewise, the vector w
has varying intercepts for items. The for-loop in lines 26–

29 now adds u[subj[i]] + w[item[i]] to the mean
beta[1] of the distribution of rt[i]. These are subject-
and item-specific adjustments to the fixed-effects intercept

beta[1]. The term u[subj[i]] is the identifier of the
subject for row i in the data-frame; thus, if i = 1, then
subj[1] = 1, and item[1] = 13 (see Table 1).

Running the model. In R, we pass the list stanDat of
data to stan, which compiles a C++ program to sample
from the posterior distribution of the random intercepts

model. Stan samples from the posterior distribution of

the model parameters, including the varying intercepts

u0j and w0k for each subject j ∈ {1, . . . , J} and item
k ∈ {1, . . . ,K}.
It may be helpful to rewrite the model in mathematical

form following the Stan syntax (Gelman and Hill, 2007 use

a similar notation); the Stan statements are slightly differ-

ent from the way that we expressed the random intercepts

model. Defining i as the row number in the data frame,
i.e., i ∈ {1, . . . , 547}, we can write:
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Listing 3 R code for running the random intercepts model, the varying intercepts model. Note that lines 1–10 and 14 of

Listing 1 must be run first.

# format data for Stan:
stanDat <- list(subj = as.integer(rDat$subj),

item = as.integer(rDat$item),
rt = rDat$rt,
so = rDat$so,
N = nrow(rDat),
J = nlevels(rDat$subj),
K = nlevels(rDat$item))

# Sample from posterior distribution:
ranIntFit <- stan(file = "ranInt.stan", data = stanDat,

iter = 2000, chains = 4)
# Summarize results:
print(ranIntFit, pars = c("beta", "sigma_e", "sigma_u", "sigma_w"),

probs = c(0.025, 0.5, 0.975))

beta1 <- unlist(extract(ranIntFit, pars = "beta[2]"))
print(quantile(beta1, probs = c(0.025, 0.5, 0.975)))

# Posterior probability of beta1 being less than 0:
mean(beta1 < 0)

Likelihood :

µi = β0 + u[subj[i]] + w[item[i]] + β1 · soi
rti ∼ LogNormal(µi, σe)
Priors :

u ∼ Normal(0, σu) w ∼ Normal(0, σw)

σe, σu, σw ∼ Uniform(0,∞)

β ∼ Uniform(−∞,∞)

(3)

Here, notice that the i-th row in the statement for µ
identifies the subject identifier (j) ranging from 1 to 37, and
the item identifier (k) ranging from 1 to 15.

Summarizing the results. The posterior distributions of
each of the parameters is summarized in Table 3. The

R̂ values suggest that model has converged because they
equal one. Note also that compared to Model 1, the esti-

mate of σe is smaller; this is because the other two variance
components are now being estimated as well. Note that

the 95% credible interval for the estimate β̂1 includes zero;
thus, there is some evidence that object relatives are easier

than subject relatives, but we cannot exclude the possibil-

ity that there is no difference in the reading times between

the two relative clause types.

Varying Intercepts, Varying SlopesMixed Effects Model

The varying intercepts model accounted for having multi-

ple measurements from each subject and item by introduc-

ing random intercepts by subject and by item. This reflects

that some subjects will be faster and some slower than av-

erage, and that some itemswill be read faster than average,

and some slower. Consider now that not only does reading

speed differ by subject and by item, but also the slowdown

in the object relative condition may differ in magnitude by

subject and item. This amounts to a different effect size

for so by subject and item. Although such individual-level
variability was not of interest in the original paper by Gib-

son and Wu, it could be of theoretical interest (see, for ex-

ample, Kliegl, Wei, Dambacher, Yan, and Zhou, 2010). Fur-

thermore, as Barr et al. (2013) point out, it is in principle

desirable to include a fixed effect factor in the random ef-

fects as a varying slope if the experiment design is such

that subjects see both levels of the factor (cf. Baayen, Va-

sishth, Bates, and Kliegl; Douglas M. Bates et al.; Matuschek

et al., 2016, 2015, 2016).

Adding varying slopes. In order to express this structure
in the LMM, we must introduce varying slopes. The first

change is to let the size of the effect for so vary by sub-
ject and by item. The goal here is to express that some

subjects exhibit greater slowdowns in the object relative

condition than others. We let effect size vary by subject
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Listing 4 Stan code for running the random intercepts model, the varying intercepts model.

data {
int<lower=1> N; //number of data points
real rt[N]; //reading time
real<lower=-1, upper=1> so[N]; //predictor
int<lower=1> J; //number of subjects
int<lower=1> K; //number of items
int<lower=1, upper=J> subj[N]; //subject id
int<lower=1, upper=K> item[N]; //item id

}

parameters {
vector[2] beta; //fixed intercept and slope
vector[J] u; //subject intercepts
vector[K] w; //item intercepts
real<lower=0> sigma_e; //error sd
real<lower=0> sigma_u; //subj sd
real<lower=0> sigma_w; //item sd

}

model {
real mu;
//priors
u ~ normal(0, sigma_u); //subj random effects
w ~ normal(0, sigma_w); //item random effects
// likelihood
for (i in 1:N){

mu = beta[1] + u[subj[i]] + w[item[i]] + beta[2] * so[i];
rt[i] ~ lognormal(mu, sigma_e);

}
}

and by item by including in the model by-subject and by-

item varying slopes which adjust the fixed slope β1 in the
same way that the by-subject and by-item varying inter-

cepts adjust the fixed intercept β0. This adjustment of the
slope by subject and by item is expressed by adjusting β1 by
adding two terms u1j and w1k. These are random or vary-

ing slopes, and by adding them we account for how the ef-

fect of relative clause type varies by subject j and by item
k. We now express the logarithm of reading time, which
was produced by subject j reading item k, as the following
sum. The subscript i indexes the conditions.

log rtijk = β0 + u0j + w0k︸ ︷︷ ︸
varying intercepts

+β1i + u1ij + w1ik︸ ︷︷ ︸
varying slopes

+εijk

(4)

This is a varying intercepts, varying slopes model.Setting up the data. Listing 5 contains the R code for fit-
ting the varying intercepts, varying slopes model. The data

which we pass to the function stan is the same as for the
varying intercepts model. This contains subject and item

information (Listing 3, lines 2–8).

Defining the model. Listing 6 contains the Stan code for
the varying intercepts, varying slopes model. The data

block is the same as in the varying intercepts model, but

the parameters block contains several new parameters.

This time we have the vector sigma_u, which contains
the standard deviations (σu0, σu1)ᵀ of the by-subject ran-
dom intercepts and slopes. The by-subject random inter-

cepts are in the first row of the 2×J matrix u, and the by-
subject random slopes are in the second row of u. Sim-
ilarly, the vector sigma_w contains the standard devia-
tions (σw0, σw1)ᵀ of the by-item random intercepts and

slopes. The by-item random intercepts are in the first row

of the 2×Kmatrix w, and the by-item random slopes are in
the second row of w.
In the model block, we place priors on the pa-

rameters declared in the parameters block (Listing 6,
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Table 3 The quantiles and the R̂ statistic in the Gibson and Wu data, the varying intercepts model.

parameter mean 2.5% 97.5% R̂

β̂0 6.06 5.92 6.20 1

β̂1 −0.04 −0.08 0.01 1

σ̂e 0.52 0.49 0.56 1

σ̂u 0.26 0.19 0.34 1

σ̂w 0.20 0.12 0.33 1

Listing 5 R code for running the varying intercepts, varying slopes model. Note that lines 1-10 and 14 of Listing 1 and

lines 2–8 of Listing 3 must be run first.

# 1. Compile and fit model
ranIntSlpNoCorFit <- stan(file="ranIntSlpNoCor.stan", data = stanDat,

iter = 2000, chains = 4)

# posterior probability of beta 1 being less than 0:
beta1 <- unlist(extract(ranIntSlpNoCorFit, pars = "beta[2]"))
print(quantile(beta1, probs = c(0.025, 0.5, 0.975)))
mean(beta1 < 0)

lines 23–26), and define how these parameters gen-

erate log rt (Listing 6, lines 28–32). The state-

ment u[1] ~ normal(0,sigma_u[1]); specifies

a normal prior for the by-subject random intercepts

in the first row of u, and the statement u[2] ~
normal(0,sigma_u[2]); does the same for the by-
subject random slopes in the second row of u. The same
goes for the by-item random intercepts and slopes. Thus,

there is a prior normal distribution for each of the random

effects. These distributions are centered on zero and have

different standard deviations.

Running the model. We can now fit the varying inter-

cepts, varying slopes model in R (see Listing 5). We see

in the model summary of Table 4, obtained as before us-

ing print(ranIntSlpNoCorFit), that the model has
converged, and that the credible interval of the parame-

ter of interest, β1, still includes zero. In fact, the posterior
probability of the parameter being less than zero is now

90%.

Correlated Varying Intercepts, Varying Slopes Mixed
Effects Model

Consider now that subjects who are faster than average

(i.e., who have a negative varying intercept) may exhibit

greater slowdowns when they read object relatives com-

pared to subject relatives. Similarly, it is in principle pos-

sible that items which are read faster (i.e., which have a

large negative varying intercept) may show a greater slow-

down in the object relative condition than in the subject

relative condition. The opposite situation could also hold:

faster subjects may show smaller SR-OR effects, or items

read faster may show smaller SR-OR effects. This suggests

the possibility of correlations between random intercepts

and random slopes.

In order to express this structure in the LMM, we

must model correlation between the varying intercepts

and varying slopes. The model equation, repeated below,

is the same as before.

log rtijk = β0 + u0j + w0k︸ ︷︷ ︸
varying intercepts

+β1 + u1ij + w1ik︸ ︷︷ ︸
varying slopes

+εijk

Introducing correlation between the varying intercepts

and varying slopes makes this a correlated varying inter-

cepts, varying slopes model.Defining a variance-covariance matrix for the random
effects. Modeling the correlation between varying inter-
cepts and slopes means defining a covariance relation-

ship between by-subject varying intercepts and slopes,

and between by-items varying intercepts and slopes. This

amounts to adding an assumption that the by-subject

slopes u1 could in principle have some correlation with
the by-subject intercepts u0; and by-item slopes w1 with

by-item intercept w0. We explain this in detail below.

Let us assume that the adjustments u0 and u1 are nor-
mally distributed with mean zero and some variances σ2

u0

and σ2
u1, respectively; also assume that u0 and u1 have cor-

relation ρu. It is standard to express this situation by defin-
ing a variance-covariance matrix Σu, sometimes called
simply a variance matrix. This matrix has the variances

of u0 and u1 respectively along the diagonal, and the co-
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Listing 6 Stan code for the varying intercepts, varying slopes model.

data {
int<lower=1> N; //number of data points
real rt[N]; //reading time
real<lower=-1,upper=1> so[N]; //predictor
int<lower=1> J; //number of subjects
int<lower=1> K; //number of items
int<lower=1, upper=J> subj[N]; //subject id
int<lower=1, upper=K> item[N]; //item id

}

parameters {
vector[2] beta; //intercept and slope
real<lower=0> sigma_e; //error sd
matrix[2,J] u; //subj intercepts, slopes
vector<lower=0>[2] sigma_u; //subj sd
matrix[2,K] w; //item intercepts, slopes
vector<lower=0>[2] sigma_w; //item sd

}

model {
real mu;
//priors
u[1] ~ normal(0,sigma_u[1]); //subj intercepts
u[2] ~ normal(0,sigma_u[2]); //subj slopes
w[1] ~ normal(0,sigma_w[1]); //item intercepts
w[2] ~ normal(0,sigma_w[2]); //item slopes
//likelihood
for (i in 1:N){

mu = beta[1] + u[1,subj[i]] + w[1,item[i]]
+ (beta[2] + u[2,subj[i]] + w[2,item[i]])*so[i];

rt[i] ~ lognormal(mu,sigma_e);
}

}

variances on the off-diagonal. The covariance Cov(X,Y )
between two variables X and Y is defined as the product
of their correlation ρ and their standard deviations σX and
σY : Cov(X,Y ) = ρσXσY .

Σu =

(
σ2
u0 ρuσu0σu1

ρuσu0σu1 σ2
u1

)
(5)

Similarly, we can define a variance-covariance matrix Σw
for items, using the standard deviations σw0, σw1, and the

correlation ρw.

Σw =

(
σ2
w0 ρwσw0σw1

ρwσw0σw1 σ2
w1

)
(6)

The standard way to express this relationship between the

subject intercepts u0 and slopes u1, and the item intercepts

w0 and slopes w1, is to define a bivariate normal distribu-

tion as follows:(
u0
u1

)
∼ N

((
0
0

)
,Σu

)
,

(
w0

w1

)
∼ N

((
0
0

)
,Σw

)
(7)

An important point to notice here is that any n × n
variance-covariance matrix has associated with it an n×n
correlation matrix. In the subject variance-covariance ma-

trix Σu, the correlation matrix is(
1 ρ01
ρ01 1

)
(8)

In a correlation matrix, the diagonal elements will always

be 1, because a variable always has a correlation of 1
with itself. The off-diagonal entries will have the correla-
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Table 4 The quantiles and the R̂ statistic in the Gibson and Wu data, the varying intercepts, varying slopes model.

parameter mean 2.5% 97.5% R̂

β̂0 6.06 5.92 6.20 1

β̂1 −0.04 −0.09 0.02 1

σ̂e 0.52 0.48 0.55 1

σ̂u0 0.25 0.18 0.34 1

σ̂u1 0.06 0.01 0.13 1

σ̂w0 0.20 0.12 0.32 1

σ̂w1 0.04 0.01 0.11 1

tions between the variables. Note also that, given the vari-

ances σ2
u0 and σ

2
u1, we can always recover the variance-

covariance matrix, if we know the correlation matrix. This

is because of the above-mentioned definition of covari-

ance.

A correlation matrix can be factored into a matrix

square root. Given a correlation matrix C , we can obtain
its square root matrix L. The square root of a matrix is
such that we can square L to get the correlation matrix
C back. In the next section, we see that the matrix square
root is important for generating the random intercepts and

slopes because of its role in generating correlated random

variables. Appendix describes one method for obtaining

L, namely, the Cholesky factorization.

Defining themodel. With this background, implementing
the varying intercepts, varying slopes model is straightfor-

ward; see Listing 7 for the R code and Listing 8 for the Stan

code. The R liststanDat is identical to the one of the vary-
ing intercepts, varying slopes model, and therefore we will

focus on the Stan code. The data block is the same as be-

fore. The parameters block contains several new parame-

ters. As before, we have vectors sigma_u and sigma_w,
which are (σu0, σu1)ᵀ and (σw0, σw1)ᵀ. The variables L_u,
L_w, z_u, and z_w, which have been declared in the pa-
rameters block, play a role in the transformed parameters

block, a block which we did not use in the earlier mod-

els. The transformed parameters block generates the by-

subject and by-item varying intercepts and slopes using

the parameters sigma_u, L_u, z_u, sigma_w, L_w, and
z_w. The J pairs of by-subject varying intercepts and
slopes are in the rows of the J × 2 matrix u, and the K
pairs of by-item varying intercepts and slopes are in the

rows of theK × 2matrix w.
These varying intercepts and slopes are obtained

through the statementsdiag_pre_multiply(sigma_u,
L_u) * z_u and diag_pre_multiply(sigma_w,
L_w) * z_w. This statement generates varying inter-

cepts and slopes from the joint probability distribution

of Equation 7. The parameters L_u, L_w are the ma-
trix square roots (Cholesky factor) of the subject and item

correlation matrices, respectively, and z_u, and z_w are
N (0, 1) random variables. Appendix has details on how
this generates correlated random intercepts and slopes.

In the model block, we place priors on the parameters

declared in the parameters block, and define how these

parameters generate log rt (Listing 8, lines 30–43). The
statement L_u ~ lkj_corr_cholesky(2.0) speci-
fies a prior for the square root L_u (Cholesky fac-

tor) of the correlation matrix. This prior is best in-

terpreted with respect to the square of L_u, that is,
with respect to the correlation matrix. The statement

L_u ~ lkj_corr_cholesky(2.0) implicitly places
the lkj prior so-called because it was first described by

Lewandowski, Kurowicka, and Joe, 2009 with shape pa-

rameter ν = 2.0 on the correlation matrices(
1 ρu
ρu 1

)
and

(
1 ρw
ρw 1

)
, (9)

where ρu is the correlation between the by-subject varying
intercept σu0 and slope σu1 (cf. the covariance matrix of
Equation 5) and ρw is the correlation between the by-item
varying intercept σw0 and slope σw1. The lkj distribution

is a probability distribution over correlation matrices. The

lkj distribution has one shape parameter ν, which controls
the prior correlation. If ν > 1, then the probability den-
sity becomes concentrated about the 2×2 identity matrix.5

This expresses the prior belief that the correlations are not

large. If ν = 1, then the probability density function is uni-
form over all 2 × 2 correlation matrices. If 0 < ν < 1,
then the probability density has a trough at the 2× 2 iden-
tity matrix. In our model, we choose ν = 2.0. This choice
implies that the correlations on the off-diagonal are near

zero, reflecting the fact that we have no prior information

about the correlation between intercepts and slopes.

The statementto_vector(z_u) ~ normal(0,1)
5
The lkj prior can scale up to correlation matrices larger than 2× 2.
6
The function to_vector means that we rearrange the matrix z_u as a vector in order to place the normal distribution on a vector. This makes

the code run faster.
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Listing 7 R code for running the correlated varying intercepts, varying slopes model. Note that lines 1–10 and 14 of

Listing 1 and lines 2–8 of Listing 3 must be run first.

ranIntSlpFit <- stan(file = "ranIntSlp.stan", data = stanDat,
iter = 2000, chains = 4)

# posterior probability of beta 1 being less than 0:
beta1 <- unlist(extract(ranIntSlpFit, pars = "beta[2]"))
print(quantile(beta1, probs = c(0.025, 0.5, 0.975)))
mean(beta1 < 0)

## Use the L matrices to compute the correlation matrices
# L matrices
L_u <- extract(ranIntSlpFit, pars = "L_u")$L_u
L_w <- extract(ranIntSlpFit, pars = "L_w")$L_w

# correlation parameters
cor_u <- apply(L_u, 1, function(x) tcrossprod(x)[1, 2])
cor_w <- apply(L_w, 1, function(x) tcrossprod(x)[1, 2])

print(signif(quantile(cor_u, probs = c(0.025, 0.5, 0.975)), 2))
print(mean(cor_u))
print(signif(quantile(cor_w, probs = c(0.025, 0.5, 0.975)), 2))
print(mean(cor_w))

places a normal distribution with mean zero and standard

deviation one on z_u.6 The same goes for z_w. The for-
loop assigns to mu the mean of the log-normal distribution
from which we draw rt[i], conditional on the value of
the predictor so[i] for relative clause type and the sub-
ject and item identity.

Running the model. We can now fit the varying inter-

cepts, varying slopes model; see Listing 7 for the code. We

see in the model summary in Table 5 that the model has

converged,
7
and that the credible intervals of the parame-

ter of interest, β1, still includes zero. In fact, the posterior
probability of the parameter being less than zero is now

90%. This information can be extracted as shown in List-
ing 7, lines 6–8.

Figure 4 plots the varying slope’s posterior distribution

against the varying intercept’s posterior distribution for

each subject. The correlation between u0 and u1 is neg-
ative, as captured by the marginal posterior distributions

of the correlation ρu between u0 and u1. Thus, Figure 4
suggests that the slower a subject’s reading time is on av-

erage, the slower they read object relatives. In contrast,

Figure 4 shows no clear pattern for the by-item varying in-

tercepts and slopes. The broader distribution of the corre-

lation parameter for items compared to slopes illustrates

the greater uncertainty concerning the true value of the

parameter. We briefly discuss inference next.

Random effects in a non-Bayesian LMM. We fit the same
model also as a classical non-Bayesian LMMwith the lmer
function from the lme4 package. This allows us to com-
pare the lme4 results with the Stan results. Here, we focus
on random effects. As illustrated in Figure 5, the estimates

of the random-effect standard deviations of the classical

LMM are in agreement with the modes of the posterior

distributions. The lmer function does not show any con-
vergence error, but the correlations between the random

intercepts and slopes shows the boundary values −1 and
+1,: the variance-covariance matrices for the subject and
item random effects are degenerate. By contrast, Stan can

still estimate posterior distributions for parameters in such

an overly complex model (Figure 4). Of course, one may

want to simplify the model for reasons of parsimony, or

easier interpretability. Model selection can be carried out

by evaluating predictive performance of the model, with

methods such as Leave One Out (LOO) Cross-validation,

or by using information criteria like the Watanabe Akaike

(or Widely Available) Information Criterion (WAIC). See

Nicenboim and Vasishth (2016) for discussion and example

code.

7
We do not report the R-hat statistic for parameters ρu, ρw because these parameters converge when R̂ equals one for each entry of the matrices

Lu, Lw . This was the case.
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Listing 8 The Stan code for the correlated varying intercepts, varying slopes model.

data {
int<lower=1> N; //number of data points
real rt[N]; //reading time
real<lower=-1, upper=1> so[N]; //predictor
int<lower=1> J; //number of subjects
int<lower=1> K; //number of items
int<lower=1, upper=J> subj[N]; //subject id
int<lower=1, upper=K> item[N]; //item id

}

parameters {
vector[2] beta; //intercept and slope
real<lower=0> sigma_e; //error sd
vector<lower=0>[2] sigma_u; //subj sd
cholesky_factor_corr[2] L_u;
matrix[2,J] z_u;
vector<lower=0>[2] sigma_w; //item sd
cholesky_factor_corr[2] L_w;
matrix[2,K] z_w;

}

transformed parameters{
matrix[2,J] u;
matrix[2,K] w;

u = diag_pre_multiply(sigma_u, L_u) * z_u; //subj random effects
w = diag_pre_multiply(sigma_w, L_w) * z_w; //item random effects

}

model {
real mu;

//priors
L_u ~ lkj_corr_cholesky(2.0);
L_w ~ lkj_corr_cholesky(2.0);
to_vector(z_u) ~ normal(0,1);
to_vector(z_w) ~ normal(0,1);
//likelihood
for (i in 1:N){

mu = beta[1] + u[1,subj[i]] + w[1,item[i]]
+ (beta[2] + u[2,subj[i]] + w[2,item[i]]) * so[i];

rt[i] ~ lognormal(mu, sigma_e);
}

}
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Table 5 The quantiles and the R̂ statistic in the Gibson and Wu data, the varying intercepts, varying slopes model.

parameter mean 2.5% 97.5% R̂

β̂0 6.06 5.92 6.20 1

β̂1 −0.04 −0.09 0.02 1

σ̂e 0.52 0.48 0.55 1

σ̂u0 0.25 0.18 0.34 1

σ̂u1 0.07 0.01 0.13 1

σ̂w0 0.20 0.12 0.32 1

σ̂w1 0.04 0.0 0.11 1

ρ̂u −0.44 −0.91 0.36

ρ̂w −0.01 −0.76 0.76

Inference
Having fit a correlated varying intercepts, varying slopes

model, we now explain one way to carry out statistical in-

ference, using credible intervals. We have used this ap-

proach to draw inferences from data in previously pub-

lished work (e.g., Frank, Trompenaars, and Vasishth, 2015,

Hofmeister and Vasishth, 2014, Safavi, Husain, and Va-

sishth, 2016, 403). There are of course other approaches

possible for carrying out inference. Bayes Factors are an

example; see Lee and Wagenmakers (2013) and Jeffrey N

Rouder and Morey (2012). Another is to define a Region

of Practical Equivalence (Kruschke, 2014). The reader can

choose the approach they find the most appealing. For fur-

ther discussion of Bayes Factors, with example code, see

Nicenboim and Vasishth (2016).

The result of fitting the varying intercepts, varying

slopes model is the posterior distribution of the model pa-

rameters. Direct inference from the posterior distributions

is possible. For instance, we can find the posterior prob-

ability with which the fixed intercept β1 or the correla-
tion ρu between by-subject varying intercepts and slopes
take on any given value by consulting the marginal poste-

rior distributions whose histograms are shown in Figure 6.

The information conveyed by such graphs can be sharp-

ened by using the 95%credible interval, mentioned earlier.
Approximately 95% of the posterior density of β1 lies be-
tween the 2.5th percentile−0.09 and the 97.5th percentile
0.02. This leads us to conclude that the slope β1 for rela-
tive clause type so is less than zero with probability 90%
(see Listing 7, line 8). Since zero is included in the credible

interval, it is difficult to draw the inference that object rel-

ative clauses are read faster than subject relative clauses.

However, one could perhaps still make a weak claim that

object relatives are easier to process, especially if a lot of

evidence has accumulated in other experiments that sup-

ports such a conclusion (see Vasishth, Chen, Li, and Guo,

2013 for a more detailed discussion). Meta-analysis of ex-

isting studies can help in obtaining a better estimate of the

posterior distribution of a parameter; for psycholinguistic

examples, see Engelmann, Jäger, and Vasishth (2016), Ma-

howald, James, Futrell, and Gibson (2016), Vasishth (2015).

What about the correlations between varying inter-

cepts and varying slopes for subject and for item? What

can we infer from the analysis about these relationships?

The 95% credible interval for ρu is (−1, 0.1). Our belief
that ρu is less than zero is rather uncertain, although we
can conclude that ρu is less than zero with probability
90%. There is only weak evidence that subjects who read

faster than average exhibit greater slowdowns at the head

noun of object relative clauses than subjects who read

slower than average. For the by-item varying intercepts

and slopes, it is pretty clear that we do not have enough

data (15 items) to draw any conclusions. For these data, it

probably makes sense to fit a simpler model (Douglas M.

Bates et al., 2015), with only varying intercepts and slopes

for subject, and only varying intercepts for items; although

there is no harm done in this particular example if we fit a

model with a full variance-covariance matrix for both sub-

jects and items.

In sum, regarding ourmain research question, our con-

clusion here is that we cannot say that object relatives are

harder to process than subject relatives, because the cred-

ible interval for β1 includes zero. However, one could ar-
gue that there is some weak evidence in favor of the hy-

pothesis, since the posterior probability of the parameter

being negative is approximately 90%.

Further reading
We hope that this tutorial has given the reader a flavor of

what it would be like to fit Bayesian linear mixed models.

There is of course much more to say on the topic, and we

hope that the interested reader will take a look at some

of the excellent books that have recently come out. We

suggest below a sequence of reading that we found help-

ful. A good first general textbook is by Gelman and Hill

(2007); it begins with the frequentist approach and only
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later transitions to Bayesian models. The book by McEl-

reath (2016a) is also excellent. For those looking for a

psychology-specific introduction, the books by Kruschke

(2014) and Lee and Wagenmakers (2013) are to be recom-

mended, although for the latter the going might be eas-

ier if the reader has already looked at Gelman and Hill

(2007). As a second book, David Lunn et al. (2012) is rec-

ommended; it provides many interesting and useful ex-

amples using the BUGS language, which are discussed in

exceptionally clear language. Many of these books use

the BUGS syntax (D.J. Lunn et al., 2000), which the proba-

bilistic programming language JAGS (Plummer, 2012) also

adopts; however, Stan code for these books is slowly be-

coming available on the Stan home page (https://github.

com/stan-dev/example-models/wiki). For those with intro-

ductory calculus, a slightly more technical introduction to

Bayesian methods by Lynch (2007) is an excellent choice.

Finally, the textbook by Gelman et al. (2014) is the defini-

tive modern guide, and provides a more advanced treat-

ment.
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Appendix A: Cholesky factorization
A correlation matrix can be factored into a square root of the matrix; one method is the Cholesky factorization. Given a

correlation matrix C , we can obtain its square root L. The square root of a matrix is such that we can square L to get the
correlation matrix C back. We illustrate the matrix square root with a simple example. Suppose we have a correlation
matrix:

C =

(
1 −0.5
−0.5 1

)
(10)

We can use the Cholesky factorization function in R, chol, to derive the lower triangular square rootL of this matrix.
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This gives us:

L =

(
1 0
−0.5 0.8660254

)
(11)

We confirm that this is a square root by multiplying L with itself to get the correlation matrix back (squaring a matrix is

done by multiplying the matrix by its transpose):

LLᵀ =

(
1 0
−0.5 0.8660254

)(
1 −0.5
0 0.8660254

)
=

(
1 −0.5
−0.5 1

)
(12)

The reason that the Cholesky factorization is useful for LMMs is that we use it to generate the by-subject and by-item

random intercepts and slopes.Generating correlated random variables using the Cholesky factor. The by-subject and by-item adjustments are gen-
erated using the following standard procedure for generating correlated random variables x = (x1, x2):
1. Given a vector of standard deviations (e.g., σu0, σu1), create a diagonal matrix:

τ =

(
σu0 0
0 σu0

)
(13)

2. Premultiply the diagonalized matrix τ with the Cholesky factor L of the correlation matrix C to get a matrix Λ.
3. Generate values from a random variable z = (z1, z2)ᵀ, where z1 and z2 each have independentN (0, 1) distributions
(left panel of Figure 7).

4. Multiply Λ with z; this generates the correlated random variables x (right panel of Figure 7).
It is helpful to walk through steps 1 to 4 of the procedure described above for generating correlated random intercepts

and random slopes. These are carried out in lines 26 and 36 of Listing 8. The statementdiag_pre_multiply(sigma_u,
L_u) in line 26 computes the transposematrix product (steps 1 and 2). The statementto_vector(z_u) ~ normal(0,1);
in line 36 generates z_u as samples from the unit normal distribution (step 3). In line 26, the right multiplication of
diag_pre_multiply(sigma_u, L_u) by z_u, a matrix of normally distributed random variables, yields the vary-
ing intercepts and slopes (step 4).


u01 u11
u02 u12
.
.
.

.

.

.

u0J u1J

 =
(
diag(σu0, σu1)Luzu

)ᵀ

=

((
σu0 0
0 σ01

)(
`11 0
`21 `22

)(
z11 z12 . . . z1J
z21 z22 . . . z2J

))ᵀ

(14)

Appendix B: Matrix formulation of the linear mixed model
In the body of the text, we fit four models of increasing complexity to the data-set of Gibson and Wu (2013). In all

specifications, there was an explicit vector so for the predictor variable in Stan. However, if we want to fit more complex
models with many categorical and continuous predictors and interactions, this approach requires increasingly complex

specifications in Stan code. Alternatively, we can use the matrix formulation of the linear mixed model that allows for

using the same code for models of different complexity. In the following, we will apply this approach for an alternative

version of the correlated varying intercepts, varying slopes model, which includes random intercepts and slopes for

subjects and items.

We build up the model specification by first noting that, for each subject, the by-subject varying intercept u0 and slope
u1 have a multivariate normal prior distribution with mean zero and covariance matrix Σu. Similarly, for each item, the
by-item varying intercept w0 and slope w1 have a multivariate normal prior distribution with mean zero and covariance

matrix Σw. The error ε is assumed to have a normal distribution with mean zero and standard deviation σe.
We proceed to implement the model in Stan. Instead of passing the predictor so to stan as vector, as we did earlier,

we make so into a design matrix X using the function model.matrix available in R (see Listing 9, line 2).8 The com-
mand model.matrix(~ 1 + so, rDat) creates a model matrix with two fixed effects, the intercept (1) and a factor (so),

8
Here, we would like to acknowledge the contribution of Douglas Bates in specifying the model in this general matrix form.
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Listing 9 Matrix formulation code for running the varying intercepts, varying slopes model.

# Make design matrix
X <- unname(model.matrix(~ 1 + so, rDat))
attr(X, "assign") <- NULL
# Make Stan data
stanDat <- list(N = nrow(X),

P = ncol(X),
n_u = ncol(X),
n_w = ncol(X),
X = X,
Z_u = X,
Z_w = X,
J = nlevels(rDat$subj),
K = nlevels(rDat$item),
rt = rDat$rt,
subj = as.integer(rDat$subj),
item = as.integer(rDat$item))

# Fit the model
matrixFit <- stan(file = "matrixModel.stan", data = stanDat,

iter = 2000, chains = 4)

based on the data frame rDat. The first column of the design matrix X consists of all ones; this column represents the
intercept. The second column is the predictor so and consists of values in {−1, 1}. The model matrix thus consists of a
two-level factorial design, with blocks of this design repeated for each subject. For the full data-set, we could write it very

compactly in matrix form as follows:

log rt = Xβ + Zuu + Zww + ε (15)

Here, X is the N × P model matrix (with N = 547, since we have 547 data points; and P = 2 since we have
the intercept plus another fixed effect), β is a vector of length P including fixed effects parameters, Zu and Zw are
the subject and item model matrices (N × P ), and u and w are the by-subject and by-item adjustments to the fixed

effects estimates; these are identical to the design matrix X in the model with varying intercepts and varying slopes

included. For more examples of similar model specifications in Stan, see the R package RePsychLing on github (https:
//github.com/dmbates/RePsychLing).

Note that we remove the column names and the attributes of the model matrix X in order to use it for Stan; refer
to Listing 9. Having defined the model, we proceed to assemble the list stanDat of data, relying on the above matrix
formulation. The number N of observations, the number J of subjects and K of items, the reading times rt, and the
subject and item indicator variables subj and item are familiar from the previous models presented. The integer P is
the number of fixed effects (two including the intercept). Model 4 includes a varying intercept u0 and a varying slope
u1 for each subject, and so the number n_u of by-subject random effects equals P. Likewise, Model 4 includes a varying
intercept w0 and a varying slope w1 for each item, and so the number n_w of by-item random effects also equals P.
We also have to adapt the Stan code to themodel formulation (see Listing 10). The data block contains the correspond-

ing variables. Using the command row_vector[P] X[N], we declare the fixed effects design matrix X as an array of N row
vectors of length P whose components are the predictors associated with the N reading times. Likewise for the subject
and item random effects design matrices Z_u and Z_w, which correspond toZu andZw respectively in Equation 15. The
vector beta contains the fixed effects β0 and β1. The matrices L_u, L_w and the arrays z_u, z_w of vectors (not to be
confused with the design matrices Z_u and Z_w) will generate the varying intercepts and slopes u0, u1 andw0, w1, using

the procedure described for the varying intercepts, varying slopes model. For example, the command vector[n_u] u[J]
specifies u as an array of J vectors of length n_u; hence, there is one vector per subject. The vector sigma_u contains
the standard deviations of the by-subject varying intercepts and slopes u0, u1, and the vector sigma_w contains the stan-
dard deviations of the by-item varying intercepts and slopes w0, w1. The variable sigma_e is the standard deviation σe
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of the error ε. The transformed parameters block generates the by-subject intercepts and slopes u0, u1 and the by-item
intercepts and slopes w0, w1.

We place lkj priors on the random effects correlation matrices through the lkj_corr_cholesky(2.0) priors
on their Cholesky factors L_u and L_w. We implicitly place uniform priors on the fixed effects β0, β1, the random ef-
fects standard deviations σu0, σu1, and σw0, σw1 and the error standard deviation σe by omitting any prior specifications
for them in the model block. We specify the likelihood with the probability statement that rt[i] is distributed log-
normally with mean X[i] * beta + Z_u[i] * u[subj[i]] + Z_w[i] * w[item[i]] and standard devi-
ation sigma_e. The next step towards model-fitting is to pass the list stanDat to stan, which compiles a C++ program
to sample from the posterior distribution of the model parameters.

A major advantage of the above matrix formulation is that we do not need to write a new Stan model for a future

repeated measures design. All we have to do now is define the design matrixX appropriately, and include it (along with
appropriately definedZu andZw for the subjects and items random effects) as part of the data specification that is passed
to Stan.
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More figures and Listing 10 follows.
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Figure 3 Samples and level curves of the bivariate joint posterior probability distribution of each element of θ with
each other element (lower triangular) and marginal posterior probability distribution of each element of θ separately
(diagonal). All parameters are on the log scale, but note the difference in length scale between β1 on the one hand and
β0 and σe on the other.
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Figure 4 The top row shows the relationship between the posterior mean of the varying slopes (y-axis) and intercepts

(x-axis) for each subject (left panel) and item (right panel). The bottom row shows the posterior distribution of the pa-

rameter of correlation between the varying slopes and intercepts for each subject (left panel) and item (right panel).

Figure 5 The curves show the density of the posterior distributions of the random-effect standard deviations. The verti-

cal bars indicate the corresponding lmer estimates. The top row shows the random effects for subjects, the bottom row
shows the random effects for items. Left-hand panels correspond to random intercepts, right-hand panels correspond to

random slopes.
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Figure 6 Upper and lower bounds on the highest posterior density credible intervals (dashed lines) plotted over the

marginal posterior distribution of the fixed slope β1 (left) and of the correlation ρu between the by-subject varying inter-
cepts and varying slopes (right).
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Figure 7 Uncorrelated random variables z = (z1, z2)ᵀ (panel a) and correlated random variables x = (x1, x2)ᵀ (panel
b).
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Listing 10 Stan code for the matrix formulation of the varying intercepts, varying slopes model.

data {
int<lower=0> N; //n trials
int<lower=1> P; //n fixefs
int<lower=0> J; //n subjects
int<lower=1> n_u; //n subj ranefs
int<lower=0> K; //n items
int<lower=1> n_w; //n item ranefs
int<lower=1,upper=J> subj[N]; //subject indicator
int<lower=1,upper=K> item[N]; //item indicator
row_vector[P] X[N]; //fixed effects design matrix
row_vector[n_u] Z_u[N]; //subj ranef design matrix
row_vector[n_w] Z_w[N]; //item ranef design matrix
vector[N] rt; //reading time

}
parameters {

vector[P] beta; //fixed effects coefs
cholesky_factor_corr[n_u] L_u; //cholesky factor of subj ranef corr matrix
cholesky_factor_corr[n_w] L_w; //cholesky factor of item ranef corr matrix
vector<lower=0>[n_u] sigma_u; //subj ranef std
vector<lower=0>[n_w] sigma_w; //item ranef std
real<lower=0> sigma_e; //residual std
vector[n_u] z_u[J]; //subj ranef
vector[n_w] z_w[K]; //item ranef

}
transformed parameters {

vector[n_u] u[J]; //subj ranefs
vector[n_w] w[K]; //item ranefs
{

matrix[n_u,n_u] Sigma_u; //subj ranef cov matrix
matrix[n_w,n_w] Sigma_w; //item ranef cov matrix
Sigma_u = diag_pre_multiply(sigma_u, L_u);
Sigma_w = diag_pre_multiply(sigma_w, L_w);
for(j in 1:J)

u[j] = Sigma_u * z_u[j];
for(k in 1:K)

w[k] = Sigma_w * z_w[k];
}

}
model {

//priors
L_u ~ lkj_corr_cholesky(2.0);
L_w ~ lkj_corr_cholesky(2.0);
for (j in 1:J)

z_u[j] ~ normal(0,1);
for (k in 1:K)

z_w[k] ~ normal(0,1);
//likelihood
for (i in 1:N)

rt[i] ~ lognormal(X[i] * beta + Z_u[i] * u[subj[i]] + Z_w[i] * w[item[i]],
sigma_e);

}
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