Capturing Crosslinguistic Generalizations: Multilingual Metagrammars

Tatjana Scheffler

Department of Linguistics, University of Pennsylvania

Swarthmore, March 6, 2007

Goals of This Talk

- 1. Give a brief overview of some aspects of computational linguistics
- 2. Discuss some recurring properties of languages
- 3. Present an approach that captures cross-linguistic generalizations

Outline

Linguistic Resources in Computational Linguistics

What is Computational Linguistics? An Example Application of CL Multilingual Metagrammars

Two Cross-Linguistic Word Order Puzzles

Scrambling
The Verb-Second Constraint

A Multilingual Metagrammar

Implementing Scrambling Implementing Verb-Second Sample Derivations

Conclusion

Outline

Linguistic Resources in Computational Linguistics What is Computational Linguistics? An Example Application of CL

Multilingual Metagrammars

Two Cross-Linguistic Word Order PuzzlesScramblingThe Verb-Second Constraint

A Multilingual Metagrammar Implementing Scrambling Implementing Verb-Second Sample Derivations

Conclusion

What is Computational Linguistics?

Theoretical Computational Linguistics

- formal theories of linguistic knowledge
- computational models of human cognition
- computational psycholinguistics

Applied Computational Linguistics

- human language technology / natural language processing
- human-machine interaction
- dealing with large corpora (internet)
- machine translation

Machine Translation (MT)

- A real-world example (German Historical Museum):
- Königin Victoria aß gerne und viel.
 Queen Victoria ate with-pleasure and lots
- (2) Queen Victoria liked to eat and she ate a lot.
- A simpler example:
- (3) She likes to eat. (English)
- (4) Gerne isst sie. (German) with-pleasure eats she
- What steps are needed to get from (3) to (4)?
- identifying words, translating them
- But looking up words is not enough!

MT – Different Methods of Transfer

MT – The Need for Grammars

Independently of the translation strategy, idiosyncrasies of the source and target language have to be respected.

Grammars in Computational Linguistics

- Grammars describe the linguistic properties of a language in a concise way.
- In most CL applications, grammars are needed
 - hand-crafted grammars
 - grammars that have been extracted from (hand-crafted) corpora
- Developing such grammars is costly and slow.

Metagrammars

- Metagrammars describe grammars
- They contain partial descriptions of syntactic structure, which are compiled into actual grammars
- ▶ Elements of the syntactic descriptions can be explicitly reused:
 - within a grammar (e.g., properties of noun phrases, argument structures)
 - across grammars (this talk)

Motivation for Multilingual Metagrammars

Traditional focus: Grammar development

guarantee consistency and coverage

Our focus: Linguistic generalizations

develop new grammars for new languages quickly

Our approach: Find cross-linguistic and framework-neutral syntactic invariants

Cross-linguistic and cross-framework syntactic invariants

- Finite number of syntactic categories (NP, PP, etc.)
- Notion of subcategorization (intransitive, transitive, etc.)
- Finite number of syntactic functions (subject, object etc.)
- Existence of valency alternations (passive, causative, etc.)
- Argument realization, word order effects (such as V2 or wh-movement)

Outline

Linguistic Resources in Computational Linguistics

What is Computational Linguistics?
An Example Application of CL
Multilingual Metagrammars

Two Cross-Linguistic Word Order Puzzles

Scrambling

The Verb-Second Constraint

A Multilingual Metagrammar

Implementing Scrambling
Implementing Verb-Second
Sample Derivations

Conclusion

Scrambling in Korean

- Korean is a verb-final language with relatively free word order.
- Noun Phrases exhibit scrambling.
- Scrambling is the permutation of constituents (arguments, adjuncts).

[hyeongi_gongjangi], [samchonege], [gagureul],

- a_local_company $_{nom}$ the_uncle $_{dat}$ furniture $_{acc}$ [samiljeone] $_4$ baedakhaessda. three_days_ago delivered_has.

 'A local company has delivered the furniture to the uncle three days ago'
- ▶ 4! = 24 word orders are acceptable for this sentence in Korean.

(5)

Scrambling in German

(6)

- German is another SOV language with scrambling.
- [vor drei Tagen]₄ zugestellt hat.
 ...(dass) [vor drei Tagen]₄ [dem Onkel]₂ [eine hiesige Firma]₁ [die Möbel]₃ zugestellt hat.
 ...(dass) [die Möbel]₃ [dem Onkel]₂ [vor drei Tagen]₄ [eine hiesige Firma]₁ zugestellt hat.
 ...(dass) [dem Onkel]₂ [vor drei Tagen]₄ [eine hiesige

... (dass) [eine hiesige Firma]₁ [dem Onkel]₂ [die Möbel]₃

:

Firma]₁ [die Möbel]₃ zugestellt hat.

...that a local company₁ has delivered the furniture₃ to the uncle₂ three days ago₄.

The Verb-Second Phenomenon (V2)

- (7) a. [Auf dem Weg] sieht [der Junge] [eine Ente]. on the path sees the boy a duck 'On the path, the boy sees a duck.'
 - b. * [Auf dem Weg] [der Junge] sieht [eine Ente].
 on the path the boy sees a duck
 Int.: 'On the path, the boy sees a duck.'
- Finite verb is required to be located in "second position"
- V2 languages include German, Dutch, Yiddish, Frisian, Icelandic, Mainland Scandinavian, and Kashmiri
- Small-scale linguistic variation: Behavior in embedded clauses differs

V2 in German

- (8) a. Der Junge sieht eine Ente auf dem Weg. the boy sees a duck on the path 'On the path, the boy sees a duck.'
 - b. ..., dass der Junge auf dem Weg eine Ente sieht.
 ..., that the boy on the path a duck sees
 '..., that the boy sees a duck on the path.'
- Main clauses exhibit V2 in German
- Embedded clauses with complementizers are verb-final

	Main Clauses	Embedded Clauses
German	V2	V-Final

A First Explanation of German Word Order

- German is a verb-final language.
- ▶ In main clauses, the verb moves to the complementizer position, and some constituent *topicalizes* (moves) to its specifier.

A First Explanation of German Word Order - cont.

In embedded clauses, the overt complementizer blocks this.

V2 in Yiddish

- (9) a. Oyfn veg zet dos yingl a katshke. on-the path sees the boy a duck.'On the path, the boy sees a duck.'
 - b. ..., az dos yingl zet a katshke oyfn veg ..., that the boy sees a duck on-the path '..., that the boy sees a duck on the path.'
- As a verb-second language, Yiddish main clauses exhibit V2
- Yiddish embedded clauses must also be V2

	Main Clauses	Embedded Clauses
German	V2	V-Final
Yiddish	V2	V2

Summary: Two Puzzles

- 1. Scrambling
- free reordering of constituents in Korean, German, . . .

- Verb-Second Constraint
 - finite verb in second position in main clauses
 - but in embedded clauses, the behavior differs
- What is the cross-linguistic core of this phenomenon?

Outline

Linguistic Resources in Computational Linguistics
What is Computational Linguistics?
An Example Application of CL
Multilingual Metagrammars

Two Cross-Linguistic Word Order PuzzlesScramblingThe Verb-Second Constraint

A Multilingual Metagrammar
Implementing Scrambling
Implementing Verb-Second
Sample Derivations

Conclusion

Some Assumptions

- We are working with Tree-Adjoining Grammar (not introduced here).
- All verbal phrasal nodes are called VP, they will be distinguished by certain features.
 - This is necessary to capture freer word order.
 - Continuation of the distinction between V', VP, I', IP, C', CP, etc.
- ▶ Modifiers are not currently part of the (meta)grammar.

Scrambling in the Metagrammar

Free order through underspecification

Metagrammar:

(Compiled) Grammar:

V2 – Methodology

Idea Basic V2 phenomenon is the same in all V2 languages: Topicalization

Our Approach Crosslinguistic generalizations are captured in one Metagrammar using different heads (verbs) (see Rambow and Santorini, 1995)

Major New Issue When Going Multilingual: Heads

- One language: relative position of verb and arguments determine word order
- Two languages: want language-independent generalizations about syntax; prototypical example: adverbs in English and French (Pollock):
 - E: Charles (often) eats (*often) beans
 - F: Charles (souvent) mange (souvent) des haricots
- Solution: verbal heads are in different positions on the projection in E and F, but adverb is always adjoined to the left of VP
- ▶ In some languages (like German and Yiddish), it is clear that verbs can be in different positions on the projection, anyway
- For some languages (Korean), there is very little evidence for this notion

Dealing With Word Order Variation in a Metagrammar Verbal trees are determined by:

- 1. A subcategorization frame (e.g., intransitive/transitive)
- 2. Valency alternations (e.g., active/passive)
- 3. Argument realizations (e.g., wh-movement)
- 4. A topology, which encodes the position and characteristics of the verbal head

Topology

A topology is a combination of the projection and any compatible head(s).

projection

- Empty verbal head plus its maximal projection
- Different types of clauses defined by features:
 - ▶ non-finite clauses: [I:—]
 - root V2 clauses: [Top:+]
 - ▶ finite clauses [M:+, I:+]

heads

- Introduce categorial features
- The list of possible heads differs from language to language

A Finite Projection

The Heads Define the Topology of Clauses

Properties of the verbal heads (feature inventory) determine the positions of arguments and adjuncts:

- I (finite tense and subject-verb agreement): creates a specifier position for agreement, but allows recursion (i.e., adjunction at IP)
- Top (topic): a feature which creates a specifier position for the topic and which does not allow recursion (used for V2)
 - M (mood): a feature with semantic content (to be defined), but no specifier
 - C (complementizer): a lexical feature introduced only by complementizers

Some Simplified German Heads

finite V-final V2-Subject

Complementizer

German vs. Yiddish Heads

German:

	What	Features Introduced	Directionality
1	Verb (clause-final)	+1	head-final
2	Verb (V2, subject-inital)	+M, +Top, +I	head-initial
3	Verb (V2, non-subject-initial)	+M, +Top	head-initial
4	Complementizer	+C, +M	head-initial

Yiddish:

	What	Features Introduced	Directionality
1	Verb	+1	head-initial
2	Verb (V2, subject-inital)	+M, +Top, +I	head-initial
3	Verb (V2, non-subject-initial)	+M, +Top	head-initial
4	Complementizer	+C	head-initial

Derivation of a German sentence

a duck

that

Derived German Tree

Derivation of a Yiddish Sentence

Derived Yiddish Tree

Outline

Linguistic Resources in Computational Linguistics

What is Computational Linguistics?
An Example Application of CL
Multilingual Metagrammars

Two Cross-Linguistic Word Order Puzzles

Scrambling
The Verb-Second Constraint

A Multilingual Metagrammar

Implementing Scrambling
Implementing Verb-Second
Sample Derivations

Conclusion

Conclusion

- Grammars are needed in virtually all CL applications
- Metagrammar captures common elements in and among grammars
- Ideal for representing cross-linguistic generalizations
- Korean, German and Yiddish look a lot alike in a metagrammar
- Very fast development of grammars for new languages is possible

Thank You!

Universal Grammar components

- ➤ A clausal tree is defined by a projection, a subcategorization frame, and a set of heads
- Category of the arguments, for example, is underspecified in the UG
- Head and its sister are not ordered in UG (double arrow)

Generic elements of Universal Grammar: projection, head, argument (from left to right)

UG components (2)

- Spec heads, non-spec heads
- specifier arguments, non-specifier arguments
- universal diathesis alternations: passive, causative