FR 4.7 Allgemeine Linguistik
Universitat des Saarlandes

Generation With TAG — A Semantics
Interface and Syntactic Realizer

Diplomarbeit

Angefertigt unter der Leitung von
Dr. Tilman Becker
und
Prof. Dr. Wolfgang Wahlster

Tatjana Scheffler

tasc@coli.uni-sb.de

25. August 2003

Hiermit erklére ich, dass ich die Diplomarbeit selbststindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Saarbriicken, den 25. August 2003

Tatjana SchefHer.

Abstract

Tree Adjoining Grammars have long been claimed to be particularly useful
for natural language generation, and they have been widely used in natural
language processing systems for generation. However, the solutions provided so
far are tailored specifically for their tasks or for one natural language processing
system. This approach involves at least one of the following idiosyncrasies:

e A huge set of hand-written rules that capture the generation decisions.
(e.g., in Verbmobil)

e System-specific and domain-specific input that was traversed and used in
a hand-tailored fashion not easily transferrable to other generation tasks.
(Verbmobil, SPUD)

e A TAG grammar specifically designed to fit the tasks at hand. (SPUD)

These facts make the solutions to specific generation problems basically non-
transferrable to other systems.

This thesis proposes a more modular, reusable approach to natural language
generation with FB-LTAG. 1 consider ongoing work on the syntax-semantics
interface for TAG to define a compositional semantics interface for standard
TAG grammars.

One major subtask of natural language generation, syntactic realization,
deals with the construction of a syntactic structure that realizes a given semantic
representation. I will make use of the semantics-syntax interface to provide a
canonical algorithm for syntactic realization from flat semantics. Special care is
taken in order not to pose arbitrary restrictions on the kind of semantic input
that the algorithm can handle. In particular, decisions that are in fact syntactic,
such as which parts of the semantics will end up as the head of the sentence,
which one of a set of synonymous words is chosen, and as what part of speech a
semantic literal will be realized, will not be expected to be already represented
in the semantic input.

The approach presented in this thesis will therefore provide a syntactic re-
alizer that is modular in several senses:

Independence from sentence planning The syntactic realizer module can
be used in different systems that include natural language generation
tasks.

Independence from algorithm Different realizing algorithms can be imple-
mented using the explicitly defined TAG semantics-syntax interface. 1
show the implementation of one algorithm in the second part of this the-
sis.

Generation as constraint solving The representation of the generation task
as a constraint problem makes it tractable for further improvements.

Deutsche Zusammenfassung

Baumadjunktionsgrammatiken (TAG) eignen sich besonders fiir die Gene-
rierung natiirlicher Sprache. Daher wurden sie in der Vergangenheit mehrfach in
Generatorsystemen eingesetzt. Die fritheren Ansétze zur Generierung mit TAG
waren aber spezifisch auf ihre Aufgabe eingestellt, oder sie nutzten die speziellen
Eigenschaften des jeweiligen Gesamtsystems, in den der Generator eingebettet
war. Solche Ansitze haben daher zumindest einen der folgenden Nachteile:

e Eine sehr grofe Regelmenge, die zum Treffen der Generierungsentschei-
dungen herangezogen wird. (z.B. in Verbmobil)

e Systemspezifische oder aufgabenspezifische Eingaben, die in einer
mafgeschneiderten Weise verarbeitet werden; so dafs dies nicht leicht auf
andere Generierungsaufgaben iibertragbar ist. (Verbmobil, SPUD)

e Eine TAG-Grammatik, die speziell auf die Aufgaben abgestimmt ist.
(SPUD)

Durch diese Fakten sind die fritheren Losungen fiir das Generierungsproblem im
Grunde nicht iibertragbar auf neue Systeme.

Diese Diplomarbeit stellt einen neuen, modulareren und wiederverwend-
baren Ansatz zur Generierung mit FB-LTAG vor. Ich betrachte zunichst ak-
tuelle Forschung an der Semantik-Schnittstelle fiir TAG, um dann ein Semantik-
Syntax-Interface fiir iibliche Baumadjunktionsgrammatiken zu definieren.

Ein wichtiges Unterproblem der Generierung, die syntaktische Realisierung,
behandelt die Erzeugung einer grammatischen Struktur, die eine gegebene se-
mantische Struktur ausdriickt. Ich benutze die Semantik-Syntax-Schnittstelle,
um einen Algorithmus fiir die syntaktische Realisierung von flacher Semantik
anzugeben. Es wird besonders darauf geachtet, dafs die semantischen Eingaben,
die der Algorithmus bearbeiten kann, nicht zu stark eingeschrinkt sind. Ins-
besondere wird von Entscheidungen, die von Natur aus syntaktisch sind, wie
welcher semantische Teil der syntaktische Kopf wird, welches Wort aus einer
Menge von Synonymen gewéhlt wird, oder als welche Wortart ein Semantikteil
realisiert wird, nicht erwartet, dafs ihre Lésung schon in der Eingabe angegeben
ist.

Der in dieser Arbeit prisentierte Ansatz zeigt daher einen modularen syn-
taktischen Realisierer:

Unabhiingigkeit von der Satzplanung Der Realisierer kann in verschiede-
nen Systemen, die Generierungsaufgaben enthalten, verwendet werden.

Unabhiingigkeit vom Algorithmus Verschiedene Realisierungsalgorithmen
kénnen angegeben werden, die die explizit definierte Semantik-Syntax-
Schnittstelle benutzen. Ich habe einen solchen Algorithmus implementiert
und stelle ihn in Kapitel 6 vor.

Generierung als Constraint-Problem Die Représentierung der Generie-
rungsaufgabe als Constraint-Problem macht weitere Verbesserungen leicht
moglich.

Acknowledgements

I would like to thank Prof. Dr. Wolfgang Wahlster for providing a great
research environment in Saarbriicken and for reviewing this thesis. The most
gratitude I owe to Dr. Tilman Becker, who got me interested in Tree Adjoining
Grammar and natural language generation, and who supervised this thesis. I
am grateful for the many discussions we had during the almost three years I
worked as his research assistant at DFKI. Christian Pietsch helped me greatly
and improved the quality of this thesis by reading drafts of it.

Many thanks go to my friends in Saarbriicken who have motivated and
helped me, especially during the last year.

Finally, all this would have been impossible without the constant encour-
agement and support by my parents, Petra and Uwe Scheffler. T want to thank
them for making me enthusiastic about science.

Contents

Introduction

1.1 Motivation
1.1.1 Natural Language Generation
1.1.2 Grammar formalisms
1.1.3 Previous Work on Generation with TAG
1.1.4 The SMARTKOM project

1.2 Goals of thisthesis,

1.3 Structuring of the following chapters

Generation with Tree Adjoining Grammars

2.1 Feature-based Lexicalized Tree Adjoining
Grammar e
2.1.1 Lexicalization L.
2.1.2 Adding features
2.1.3 Multiple adjunctionso
2.14 Large-scale grammars in the TAG formalism

2.2 Formal advantages of TAG for generation

A Semantics Interface for TAG

3.1 Previous Work
3.1.1 Kallmeyer & Joshi 1999
3.1.2 Joshi & Vijay-Shanker 1999
3.1.3 Kallmeyer 2002
3.1.4 Gardent & Kallmeyer 2003
315 GlueTag o

3.2 Minimal Recursion Semantics
3.2.1 MRS structureo
3.2.2 Compositional semantics

3.3 A lexical semantics interface for TAG
3.3 1 Premises.
332 Lexical Entry oo

3.4 Compositionality
3.4.1 Substitution
34.2 Adjunction
3.4.3 Underspecification and scope

11
13
15
16
17

4 Related Work in TAG Generation

4.1 Koller & Striegnitz o o
4.1.1 Description
4.1.2 Discussiono i e e e e e e

4.2 Sentence Planning Using Descriptions (SPUD)
421 Descriptiono
422 Discussion oL oo e e e e

4.3 Integrated Discourse Generation (InDiGen)
4.3.1 Description Lo o
43.2 Discussion

4.4 Verbmobil
441 Descriptiono
442 Discussiono Lo e e e e e

45 SmartKom

4.6 Other Approaches

A Syntactic Realizer

5.1 Motivationo e
5.1.1 Context of the realization task

5.2 Realization as a constraint satisfaction problem
5.2.1 Constraint systems
5.22 Task L
5.2.3 Requirements L o oo

5.3 Algorithm
5.3.1 Semantic graphs L o oo
5.3.2 Variables and Constraints,
5.3.3 Depth-first search 0 oL
5.3.4 Ordering of adjunctions

Implementation

6.1 Preliminaries
6.1.1 Grammar organization
6.1.2 Technicalities
6.1.3 Existingpackages L

6.2 TAG semantics interface L.
6.2.1 Computation of the semantic content of phrases.

6.3 Realizer architectureo
6.3.1 Datastructures oL
6.3.2 Depth-first algorithm

6.4 Examples
6.41 Usage e
6.42 PeterlovesMary. oL
6.4.3 SMARTKOM system example

i

33
34
34
35
36
36
37
39
39
39
40
40
40
41
43

45
45
46
48
48
49
49
49
20
o1
93
95

7

5 O aQ @ »

Conclusion

7.1 Contribution of this thesis

7.2 Extensions
7.2.1 More efficient algorithms
7.2.2 Quantifier Scope
7.2.3 More complex expressions
7.2.4 Non-semantic information,

List of trees in the toy grammar
Grammar format

RealizeTest class

Java API Class Index

Semantics Class Documentation
E.1 Package de.dfki.smartkom.generator.semantics
E.2 Function Class Reference
E.2.1 Detailed Description
E.2.2 Member Function Documentation
E.3 Proposition Class Reference
E.3.1 Detailed Description
E.3.2 Constructor & Destructor Documentation
E.3.3 Member Function Documentation
E.4 PropositionSet Class Reference
E.4.1 Detailed Description
E.4.2 Constructor & Destructor Documentation
E.4.3 Member Function Documentation
E.5 SemTagGrammar Class Reference
E.5.1 Detailed Description
E.5.2 Constructor & Destructor Documentation
E.5.3 Member Function Documentation
E.6 SemTagNode Class Reference
E.6.1 Detailed Description
E.6.2 Constructor & Destructor Documentation
E.6.3 Member Function Documentation
E.7 SemTagTree Class Reference
E.7.1 Detailed Description
E.7.2 Constructor & Destructor Documentation
E.7.3 Member Function Documentation
E.8 SemTagTreeFamily Class Reference
E.8.1 Detailed Description
E.8.2 Constructor & Destructor Documentation
E.8.3 Member Function Documentation

iii

73
73
74
74
74
74
75

77

79

85

87

F Realizer Class Documentation 115

F.1 Package de.dfki.smartkom.generator.realizer 115
F.2 DFRealizer Class Reference 116
F.2.1 Detailed Description 116
F.2.2 Constructor & Destructor Documentation 116
F.2.3 Member Function Documentation 116

F.3 Edge Class Reference 118
F.3.1 Detailed Description 118
F.3.2 Constructor & Destructor Documentation 118
F.3.3 Member Function Documentation 118

F.4 Executor Class Reference 120
F.4.1 Detailed Description 120
F.4.2 Constructor & Destructor Documentation 120
F.4.3 Member Function Documentation 120

F.5 Graph Class Reference 122
F.5.1 Detailed Description 123
F.5.2 Member Function Documentation 123

F.6 TreeHandle Class Reference 126
F.6.1 Detailed Description 126
F.6.2 Constructor & Destructor Documentation 126
F.6.3 Member Function Documentation 127

F.7 Variable Class Reference 128
F.7.1 Detailed Description 128
F.7.2 Constructor & Destructor Documentation 128
F.7.3 Member Function Documentation 129

F.8 Vertex Class Reference 131
F.8.1 Detailed Description 131
F.8.2 Constructor & Destructor Documentation 131
F.8.3 Member Function Documentation 132
Bibliography 135

v

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3

5.1
0.2
5.3
0.4
5.5
0.6
5.7
5.8
2.9

6.1

Grammar formalisms. L o Lo
SMARTKOM generator abstract presentation goal.

Schematic representation of TAG operations
Example TAG trees.
TAG derivation.o
Analysis of sentence (2.1).
Multi-anchored elementary tree.
Example elementary tree with feature structures.
Feature structure unifications during TAG operations.
Lexical entry with obligatory adjoining node.
Multiple adjunctions vs. embedded adjunctions.

Intermediate tree and associated semantics.
Conventional and e-derivation structure for “Every dog barks.”

Derived tree for “Every dog barks.”
Derivation of “John loves Mary.”
A lexical entry for “liebt”.
Different types of auxiliary trees in TAG.
Substitution of “Peter” into “liebt.”
Adjunction of “schwarze” into “Katze”.
Adjunction of “immer” into “liebt.”

TDG parse tree for “Peter likes Mary.”
SPUD elementary trees.
Example SMARTKOM template.

SMARTKOM screen shot.
Old generator architecture.
Intended generator architecture.
An example of a semantic graph.
Derivation tree as spanning tree of a semantic graph.
Semantic graph with undetermined head.
Ambiguous semantic graph and realizations.
The realization algorithm.
Finding an assignment for a variable.

Example grammar entry for “ich” (I).

6.2
6.3
6.4
6.5
6.6
6.7
6.8

Example grammar entry for “zeige” (show).
UML class diagram of the most important classes.
Derivation trees for “Peter liebt Maria immer.”
Semantic graph for “Nachrichten kommen gerade im Ersten.”

Example derivation scripts.
Derivation trees for “Nachrichten kommen gerade im Ersten.”

Derived trees for “Nachrichten kommen gerade im Ersten.”

vi

List of Tables

4.1

6.1
6.2
6.3
6.4

TDG toy grammar

Classes of the de
Classes of the de
Classes of the de
Classes of the de

.dfki.
.dfki.
.dfki.
.dfki.

smartkom
smartkom
smartkom
smartkom

vii

.generator.
.generator.
.generator.
.generator.

tag package.
unifier package. .
semantics package.
realizer package.

61
61

viii

Chapter 1

Introduction

1.1 Motivation

Natural language generation is the process of deliberately construct-
ing a natural language text in order to meet specified communicative
goals. [McDonald, 1992]

1.1.1 Natural Language Generation

This thesis deals with natural language generation, i.e. the task of producing
a grammatical sentence, given some specification of what to say. Generation
is a central part of many applications using natural language. It is for exam-
ple needed in machine translation systems, question-answering systems, spoken
dialogue systems, in systems that produce automatic text summaries etc.

Depending on the specific application the generator is situated in, input
specifications (also called text plans) can be quite different. They range from
intentional goals (such as in a dialogue system, the intention for the dialogue
partner to perform some act or come to some belief) to very specific content de-
scriptions of the sentences that are to be realized. Output of generators can be
just text strings, but some applications require more structured output. Struc-
tured output ranges from formatted text (e.g., HTML) to syntactic structures
expressed in a grammar formalism, for example for the use in Concept-to-Speech
synthesis (see section 1.1.4 for more on this topic).

Generators typically use descriptive grammar formalisms as a resource to
determine the grammaticality of outputs. Thus, a specific generation module
depends on the kind of input it gets, the output it is required to produce, and the
grammar (formalism) it can use for this purpose. These factors make it highly
specialized for the given task, drawing on domain knowledge as well as specific
linguistic knowledge, as it is represented in the given grammar formalism.

It is worthwile to explore the possibility of using modular generators or at
least developing modules within such generation systems that can be reused
across applications, and across languages.

1.1.2 Grammar formalisms

Grammar formalisms are formal devices that allow the description of (at least)
the syntax of a natural language. As such, a grammar formalism can be used to
judge the grammaticality or ungrammaticality of a given sentence of the natu-
ral language. Well-known grammar formalisms used in computational linguistics
are Head-Driven Phrase Structure Grammar (HPSG), Lexical-Functional Gram-
mar (LFG), Combinatory Categorial Grammar (CCG), Dependency Grammars
(DG), Systemic-Functional Grammars (SFG) and Tree Adjoining Grammar

(TAG).
A

Phonology

o

Parsing Generation

Semantics

)
)
)

o

') ') ') ') ')
<
=}
=
Q
x

Pragmatics] \/

Figure 1.1: Grammar formalisms.

In theoretical linguistics, a natural language utterance has representations on
several levels, reaching from phonology (the sound structure of the utterance) to
semantics (the structure of meaning) and pragmatics (the structure of actions,
intentions and inferences of language users associated with the utterance). The
levels of linguistic representation are depicted in figure 1.1, along with two major
language processing tasks performed on them.

A grammar formalism covers minimally the syntactic level of representation,
but quite often, formalisms also integrate morphology and semantics, or at least
well-defined interfaces to some special formalism dealing with morphology or
semantics. The grammar formalism is therefore the natural connection between
semantics and morphology. If the interfaces are descriptively defined within
the grammar formalism, then the mapping of semantics to morphology happens
entirely within the grammar. All that is left for the NLP system is traversing
the search space and finding morphological representations that are linked to
the given semantic representations via the grammar formalism.

However, the term generation describes a larger task than just the “trans-
formation” of semantic descriptions into morphological descriptions: it includes
also the choice of what is said. In this thesis, I will consider the subpart of
natural language generation that is sometimes called syntactic realization; and
I will understand by this the mapping of flat semantic content representations
to syntactic structures. The following sections give a short motivation why this
subproblem is especially interesting.

1.1.3 Previous Work on Generation with TAG

Tree Adjoining Grammars have long been claimed to be particularly useful for
natural language generation, and they have been widely used in natural language
processing (NLP) systems for generation. However, the solutions provided so
far are tailored specifically for their tasks or for one natural language processing
system. This approach involves at least one of the following idiosyncrasies:

e A huge set of hand-written rules that capture the generation decisions.
(e.g., in Verbmobil)

e System-specific and domain-specific input that was traversed and used in
a hand-tailored fashion not easily transferrable to other generation tasks.
(Verbmobil, SPUD)

e A TAG grammar specifically designed to fit the tasks at hand. (SPUD)

These facts make the solutions to specific generation problems basically non-
transferrable to other systems. Especially the last problem yields unnecessary
extra work, as large-scale standard Feature-based, Lexicalized Tree Adjoining
(FB-LTAG) Grammars have become available at least for English (XTAG, see
XTAG Research Group, 2001), French (Abeillé and Candito, 2000), and German
(a grammar developed in Verbmobil, that is based on the CDL-TAG variant).

1.1.4 The SMARTKOM project

This thesis was developed in the context of the SMARTKOM system, a multi-
modal human-machine interaction system. SMARTKOM is a typical state-of-the-
art NLP system with some interesting new features.

SMARTKOM has three basic scenarios: a public scenario corresponding to
an information kiosk, a home scenario much like a computer terminal that is
an interface to other electronic devices at home, and a mobile scenario where
the system is integrated into a PDA handheld or into a car. For the respective
scenarios, interaction with several different applications from different domains
is possible, for example:

public: cinema programme information, reservations, document transfer
home: tv programme information, tv/ver programming, user authentification

mobile: car/pedestrian navigation, sightseeing information

Setting for the generator In the SMARTKOM system, speech is only one
output modality, others are graphical presentations and gestures by an animated
agent on the screen. The generator input is determined by a modality fission
module that specifies which information should be presented by which modality.
The input is an abstract presentation goal encoded in an XML file conforming
to the M3L (multi-modal markup language) standard developed in SMARTKOM.
The beginning of an example input is shown in figure 1.2. It includes informa-
tion on the type of speech act (inform), on the style of the output (comment

<speechGenerationTask goalKey="6">
<speechPresentationGoal id="mf480">
<inform id="mf481">
<comment id="mf482">
<informFocus id="mf483">
<graphicalRealizationType id="mf484">
list
</graphicalRealizationType>
<deepFocus id="mf485" idReference="mf478"/>
<content id="mf486" idReference="mf479"/>
</informFocus>
</comment>
</inform>
<abstractPresentationContent id="mf487">

“Hier sehen Sie eine Ubersicht iiber das Programm der Heidelberger Kinos.”

(Here is an overview of the movie theater programme in Heidelberg.)

Figure 1.2: SMARTKOM generator abstract presentation goal.

instructs the generator to comment on a graphical presentation rather than real-
ize all given information linguistically), on focus location (deepFocus, referring
to some domain object through its identifier), on what the user requested from
the system (taskSpecification), and on what the actual result of the user
request in the system was (in this case, the system retrieved a list of movie
performances for the cinemas in Heidelberg).

The output of the SMARTKOM generator is used in a Concept-to-Speech
synthesis module (see Schweitzer et al., 2002). Such synthesis uses structural
information from the syntax and information structure of an utterance in order
to determine for example prosody. Thus, the generator is required to produce
complex syntactic representations, and not just strings. This motivates the
use of developed grammar formalisms in the generator instead of a shallow
generation module.

Modularization Going from the abstract input goals in just one step to com-
plex syntactic structures has some obvious disadvantages. Most prominently, it
makes the generator heavily dependent not only on the grammar formalism, but
also on the domain, especially on the type of ontology objects.! Furthermore,
the task is very complex, and basically requires a large rule base to be solved.
The idea underlying this thesis is, therefore, to modularize the architecture
and to assume a first process that computes flat semantic representations of
what should be realized from the abstract input goals. In contrast to the input

!Note that in SMARTKOM, an ontology defines what items can occur in the generator’s
input specifications.

data, these semantic specifications should not be domain dependent, but rather
use general semantic predicates. In this thesis, I will not consider this first step
in more detail, but assume that it exists and produces the correct outputs.

Instead, I will be interested in the second step during generation: finding
appropriate syntactic structures (utterances) for a given flat semantic represen-
tation, given a grammar with a semantics interface. This step is called syntactic
realization. It is no longer dependent on the specific domain or the kind of input
representation of the generator as a whole.

The direct advantage of modularization is the potential reusability of the
syntactic realizer. Once a system develops a first processing module that pro-
duces flat semantic representations of the intended utterances, the same syntac-
tic realizer can be used independently of the domain.

Descriptive semantics interface Modularization can be taken a step fur-
ther by specifying a descriptive semantics interface for the grammar formalism
that is to be used in the realizer. This well-defined interface will make it possible
to develop and compare several algorithms for syntactic realization that use the
same grammar.

To achieve this goal, I will not only define a semantics-syntax interface for the
chosen grammar formalism (TAG) in chapter 3, but also restate the realization
problem as a constraint satisfaction task to make it accessible for a range of
standard constraint solving algorithms. I have developed and implemented a
relatively simple depth-first search strategy that solves the realization problem
as a feasibility study (see chapters 5 and 6). Efficiency (in terms of run-time)
could be increased in the realizer by adapting other constraint solvers for the
task, but this is left for further work.

1.2 Goals of this thesis

This thesis proposes a more modular, reusable approach to natural language
generation with FB-LTAG. I consider ongoing work on the syntax-semantics
interface for TAG to define a compositional semantics interface for standard
TAG grammars.

One major subtask of natural language generation, syntactic realization,
deals with the construction of a syntactic structure that realizes a given semantic
representation. I will make use of the semantics-syntax interface to provide a
canonical algorithm for syntactic realization from flat semantics. Special care is
taken in order not to pose arbitrary restrictions on the kind of semantic input
that the algorithm can handle. In particular, decisions that are in fact syntactic,
such as which parts of the semantics will end up as the head of the sentence,
which one of a set of synonymous words is chosen, and as what part of speech a
semantic literal will be realized, will not be expected to be already represented
in the semantic input.

The approach presented in this thesis will therefore provide a syntactic re-
alizer that is modular in several senses:

Independence from sentence planning The syntactic realizer module can
be used in different systems that include natural language generation
tasks. As long as the tactic generator (sentence planner) provides a flat
semantics output, our module can be employed as the appropriate realizer.
This makes it independent of transfers to new domains or tasks.

Independence from algorithm Different realizing algorithms can be imple-
mented using the explicitly defined TAG semantics-syntax interface. Thus,
generation performance can actually be improved (e.g. in terms of runtime)
without the need to change anything in other parts of the generator. This
makes also the direct comparison of different realization algorithms possi-
ble. T have implemented one such algorithm, and present it in the second
part of this thesis.

Generation as constraint solving The representation of the generation task
as a constraint problem makes it tractable for further improvements.
One important point that my approach aims at is the usability of extra-
semantic information in the generation decisions. 1 am confident that
pragmatic constraints can be naturally integrated in the constraint prob-
lem which syntactic realization is conceived of as.

1.3 Structuring of the following chapters

The remainder of this thesis is organized as follows:

Chapter 2 provides an overview of the Tree Adjoining Grammar (TAG) for-
malism. It describes the concept of lexicalization and the usage of feature struc-
tures in TAG. Ongoing work in grammar development in the TAG framework is
mentioned. Finally, the chapter considers the special properties that make TAG
interesting for the use in natural language generation systems. TAG’s extended
domain of locality and its factoring of recursion will be noted as important
advantages of the formalism.

Chapter 3 dedicates a large section to previous attempts on finding a suitable
semantics-syntax interface for TAG. It goes on to define requirements for such
an interface, finding that Minimal Recursion Semantics (MRS) is an adequate
semantic representation. The last part of the chapter presents the semantics
interface for TAG to be used in natural language generation that is one of the
contributions of this thesis. It provides definitions of lexical entries of such
semantics-enabled TAG and the composition operations.

Chapter 4 discusses related work on syntactic realization with TAG.

Chapter 5 contains the second main contribution of this thesis. After a
motivation of the task, it shows how the syntactic realization task is formalized
as a constraint satisfaction problem. The chapter also presents the generic
depth-first search algorithm proposed for its solution.

Chapter 6 describes the implemenation of the TAG semantics interface and
the syntactic realizer in Java. It additionally includes a short presentation of
the TAG grammar used in the realizer. The appendix contains the specification
schema for grammar files; as well as a condensed version of the Java API for the

semantics interface and syntactic realizer that were implemented in the practical
part of this thesis.

Finally, chapter 7 concludes with a discussion of what has been contributed
by this thesis. It also discusses possible extensions which remain for further
work.

Chapter 2

Generation with Tree Adjoining
Grammars

It has been noted quite early in the development of Tree Adjoining Grammars
(see (Joshi, 1987) for a discussion), that they are especially well-suited for sen-
tence generation. In the meantime, several systems that use a natural language
generation module have employed TAG as their grammar formalism (and I will
discuss some of them in chapter 4). This thesis explores a new attempt at using
TAG for generation (see chapters 5 and 6).

In this chapter, I will therefore shortly recapitulate the foundations of Tree
Adjoining Grammars. Section 2.1 describes the version of TAGs used in this
thesis. The following section 2.2 reconsiders the particular suitability of TAG
for natural language generation.

2.1 Feature-based Lexicalized Tree Adjoining
Grammar

An in-depth definition of Tree Adjoining Grammars (TAG) can be found in
(Joshi and Schabes, 1997). An introduction to the application of the formalism
to linguistic analyses is presented in (Kroch and Joshi, 1985). Here, I will only
concentrate on those aspects of the TAG framework that are directly relevant
for this thesis.

A TAG consists of a finite set of elementary structures, called the elemen-
tary trees, and two operations on elementary trees: substitution and adjunc-
tion.! Intuitively, substitution replaces a leaf node in a tree with another tree;
while adjunction inserts a tree into another by replacing an internal node. The
operations are depicted schematically in figure 2.1.

The tree in which the substitution or adjunction is carried out is called the
outer tree of the operation, while the substituting or adjoining tree is called the
inner tree.

Elementary trees that can be adjoined into other trees (such as /5 in figure

!Technically, substitution is just a convenient extension, and only adjunction (or adjoining)
is the central operation for this grammar formalism, after which it was named.

) Substitution.

A

(b) Adjunction.

A N
)
\
\
N L]
. %

Figure 2.1: Schematic representation of TAG operations

2.2) are called auziliary trees. They contain exactly one foot node, which is
marked with a “*”. All other elementary trees are called initial trees, and can
only take part in substitution (as an inner tree). Nodes reserved for substitution
are marked with a “}”.

A TAG analysis of a sentence, then, is usually not only represented by the
sentence’s derived tree, i.e. the phrase structure tree that results by composing
all relevant elementary trees. In addition, the derivation tree is used to show
how the elementary trees are composed. The derivation tree consists of one
node for each used elementary tree. An edge connects each pair of elementary
trees that take part in a substitution or adjunction operation. The edges are
labelled with the address? in the outer tree, at which the operation is carried
out.

Figure 2.2 shows some examples of lexical entries in a Tree Adjoining Gram-
mar for German.? The derivation of the example sentence (2.1) can be seen in
figure 2.3 below.

(2.1) Peter liebt Maria immer.
Peter loves Mary always.

Peter always loves Mary.

Figure 2.4 shows the derivation? and derived trees for the sentence, using the

2The Gorn address, which is in this thesis assumed to be the identifier of nodes in elemen-
tary trees (Gorn, 1967).

*Note that I do not assume a specific S category for sentences, as sentences are seen as the
maximal projections of verbs.

“In the derivation tree, the nodes name elementary TAG trees. A full edge stands for an
adjunction, a dashed edge for a substitution. The goal node of the operation is given as an
edge label by its Gorn path.

10

Q. 1\I|P Qa9: VP [ORE NP ﬁli VP
N NPJ VP N Adv Vp*
|

Peter Vv VP Maria immer

Peter | /\ Mary always
liebt NP} VP
loves |

VTrace

€

Figure 2.2: Example TAG trees.

lexicon from figure 2.2.

. VP
// \\\\ /\
| ~<
NP T~.o NP VP
| L \\\\ } /\
N TN~ ~~___7 Vv VP
| NIP \\\ | /\
Peter | N ~o llebt NPJ/ VP
Peter N AN - loves / ///7' |
| \\~~_:1/,/’:/VTrace
Maria /V{_ _________ -7 |
Mary Adv ypk—— - -7 €
|
mmmer
always

Figure 2.3: TAG derivation.

2.1.1 Lexicalization

Here, I presuppose a fully lexicalized TAG. In a fully lexicalized TAG, each ele-
mentary tree is anchored by at least one word. Therefore, elementary trees rep-
resent maximal projections of their anchor. Typically, all syntactic arguments
of the lexical item are encapsulated in the elementary tree as substitution nodes.
Adjunction is then used for syntactic modification.’

In fact, an elementary tree can be anchored by more than one word. This is
especially obvious for the German verbs with separable prefixes (as in examples
(2.2)-(2.3)).

SHowever, the footnotes of auxiliary trees may sometimes stand for semantic arguments of
the anchor. See the right part of figure 3.6 for an example.

11

NP VP
| /\
2 N \% VP
1,%21! ¥22 | | T~
/ | Peter liebt NP VP
1 a3 h Peter loves | /\
N Adv VP
| | |
Maria immer €

Mary always

Derivation tree. Derived tree.

Figure 2.4: Analysis of sentence (2.1).

(2.2) ..., daff solche Fehler oft auftreten.
that such errors often occur.

-y

(2.3) Solche Fehler treten oft auf.
Such errors occur often PART.

Figure 2.5 shows an elementary TAG tree for the separate prefix verb “treten
auf” (occur).

VP
/\
NP| VP
/\
A% VP

| N

treten 'V VP

auf VTrace

3

Figure 2.5: Multi-anchored elementary tree.

Multi-word expressions and idiomatic phrases are also candidates for the
multiple anchoring of one and the same elementary tree.® The formalism does
not pose restrictions on the size of the elementary trees. In fact, it is a special
property of TAG that elementary trees can be minimal in the sense that initial

5The more so, as they can even be seen as one lezical item.

12

trees do not contain recursion; and all recursion is factored into minimal recur-
sive units, the auxiliary trees. Frank (1992) defines a Condition on Elementary
Tree Minimality (CETM). See his dissertation for more on this topic.

I will later argue that for a better integration of lexical semantics into the
grammar, even other multi-anchored lexical entries (templates) might be needed
(see chapter 3).

2.1.2 Adding features

Furthermore, following Vijayashanker (1987) and Vijay-Shanker and Joshi
(1988), I suppose that each node is enriched with top and bottom feature struc-
tures carrying additional linguistic information. Note, though, that these feature
structures are not recursive (as for example in HPSG) and only carry local in-
formation. However, conindexation between feature structures in an elementary
tree uses TAG’s extended domain of locality to express feature interdependen-
cies. Such feature equations can become non-local during a derivation by the
adjunction operation.

Typically, e.g. agreement is controlled by appropriate features. Figure 2.6
shows an example elementary tree with feature structures from the lexicon pro-
duced for this thesis.

DET +
NP bottom: | AGR
CASE
|

CASE nom
N bottom: PER 1
AGR lNUM sg]
|
ich

Figure 2.6: Example elementary tree with feature structures.

Upon substitution and adjunction, the feature structures of replacing and re-
placed nodes must be unified (a unification failure means that the operation can
not be carried out). Figure 2.7 shows the necessary unifications for substitution
and adjunction, respectively.

Finally, in the complete derived tree the top and bottom feature structure
must be unified at each node.

Adjunction constraints Feature structures do also, in a large part, take over
the tasks that adjunction constraints had in previous TAG versions. Nodes in
the elementary tree can specify whether they demand or allow adjunction and
which trees can adjoin into them. (E.g., adjunction into substitution nodes
is commonly disallowed, while for German, verbal lexical entries like the one

13

(a) Substitution.

X T U oot
Broot
) X oot Uth
AN o x root /'\ Broot
/\ Broot =

t .
n \\ -

n N tf bf LU b

X* oot oot n

beO'[

Figure 2.7: Feature structure unifications during TAG operations.

in figure 2.8 require the adjunction of a sentential modifier at the top-most VP
node (VPy) to yield a correct declarative sentence with verb-second word order.)

Specifying a list of possible trees for adjunction is quite complex, though,
and does not allow for easy extendability of the grammar. Thus, features guide
adjunctions in a more elegant way: In the lexical entry of figure 2.8, the top
feature structure at VP specifies a feature DECL(arative) as [DECL +|, while the

:[DECL +]
VPOb:[DECL -]
A% VP
| /\
liebt NP| VP
loves N
NP| VP
|
VTrace

Figure 2.8: Lexical entry with obligatory adjoining node.

bottom feature structure at VP includes [DECL —|. This inhibits unification of
the top and bottom feature structures during finalization, unless a modifier had
been adjoined that does not specify this feature (or whose specification unifies)
— because in the case of adjunction the top and bottom feature structures in

14

question would land in different nodes of the derived tree.

2.1.3 Multiple adjunctions

In the standard definition of derivation, multiple adjunctions into the same
node are not allowed, as this would lead to ambiguities in the derivation tree.
Technically, this restriction does not constrain the derivable trees. This can
easily be seen from the example in figure 2.9: if two auxiliary trees 51 and fs
should be adjoined into the same node in elementary tree a, the same effect can
be achieved if 1 is adjoined into the root of By first, and then the adjunction
of the resulting tree into « is carried out.

TAG elementary trees.

a: NP B : N B : N
| N N
N ADJ N* ADJ N*
| | |
pepper spicy red

Embedded adjoining.

Q (1) N (2) NP
5o ADJ N N
| | RN T

51 spicy ADJ N* ADJ N

| | N

red spicy ADJ N
|
red pepper

Multiple adjunctions.

a (1) NP (2) NP
N | |
B B2 N N
/\ /\
ADJ N ADJ N
| | | N
red pepper spicy ADJ N
|
red pepper

Figure 2.9: Multiple adjunctions vs. embedded adjunctions.

However, allowing multiple adjunctions into the same node makes more sense
linguistically, as modifiers can usually be adjoined independently at the node
in question, and should continue to do so if other modifiers are also adjoined.
This also reflects the (semantically) monotonic addition of modifiers during

15

generation much better.

Schabes and Shieber (1994) showed that, equivalently to the “standard defi-
nition of derivation” above, multiple adjunctions can be allowed, if on the other
hand the derivation tree contains a partial order, such that for each pair of
adjunctions into the same outer node, one of them is specified to be carried
out before the other. We will adopt their analysis here, and think of multiple
adjunctions on the same node as allowed and ordered.

2.1.4 Large-scale grammars in the TAG formalism

Building wide-coverage grammars has also been an issue in the TAG community.
Large, centrally maintained grammars are particularly useful for the develop-
ment of natural language processing systems, such as generators.

For TAG, the main project concerned with grammar development is the
XTAG project at the University of Pennsylvania. XTAG started in 1987 with an
English grammar that is still maintained and constantly extended. The XTAG
grammar for English now has a quite large coverage including the most inter-
esting phenomena in English, such as auxiliaries, control and raising, ergatives,
inversion, particle movement, punctuation, etc. A detailed technical report
shows one “frozen” status of the grammar: (XTAG Research Group, 2001).

Grammar organization The XTAG English grammar currently contains al-
most 900 trees. Trees are grouped into tree families. These tree families rep-
resent subcategorization frames, and contain all the trees realizing the same
frame. A lexical entry in a TAG lexicon selects a number of tree families or
trees.

TAG grammar maintenance and extension Maintaining such a large
grammar is not an easy task, as the grammar developer needs to ensure that the
addition of new analyses does not produce any new errors. The hand-crafted
XTAG grammar is furthermore prone to inconsistencies, as it was developed
distributedly over time, and by several grammar writers.

Therefore, tools have been introduced” that enable automatic changes in the
grammar. One is the metarules approach: each tree family designates a base
tree, from which all the other trees in the family can be automatically generated
using metarules. This decreases the size of the grammar, and makes changes
to existing tree structures easier, as they need to be introduced in much fewer
places in the grammar (each affected tree had to be touched before).

Another approach is to define smaller blocks from which the elementary trees
are composed.

These automatic tools are currently also used to re-construct the XTAG
grammar or induce new grammars from a few base trees or blocks. See (Prolo,
2002) for a discussion. This helps detecting inconsistencies in the linguistic anal-
yses and missing structures. It also helps the grammar developers to explicitly
state and examine the linguistic assumptions behind the analyses.

"See (Doran et al., 2000) for more on this topic and on the evolution of the XTAG project
in general.

16

Other grammars The XTAG project also constructed smaller grammars for
Chinese, Hindi and Korean. Furthermore, a large-coverage French grammar has
been developed at the University of Paris 7. This called is the FTAG grammar
under maintenance of Anne Abeillé and others (see Abeillé and Candito, 2000).

A large TAG grammar for German (as well as a Japanese fragment) has been
compiled from existing HPSG grammars for use in the Verbmobil speech trans-
lation project. Furthermore, quite large hand-crafted grammars for English and
German were developed in the Context-Dependent Linearization TAG (CDL-
TAG) (see Kilger and Finkler, 1995) variant.

A smaller German grammar is currently being hand-crafted (partly with the
use of previously built larger templates) in the SMARTKOM project at DFKI
Saarbriicken (see section 4.5).

2.2 Formal advantages of TAG for generation

Joshi (1987) and McDonald and Pustejovsky (1985) discuss the special proper-
ties of TAG that make it interesting for generation, and I will present some of
them here as a motivation.

Extended domain of locality In contrast to CFG and similar formalisms,
semantic predicate-argument relationships are local in TAG. This comes from
the fact that TAG has a special kind of locality: the domains of locality are the
elementary trees. In CFG, we cannot locally state that a transitive verb is a
function which takes two NPs as arguments, because this fact comes from the
interaciton of two rules, i.e. two local domains: S — NP VP and VP — V NP.
In TAG, however, both NPs are locally realized in the elementary tree of the
verb, which makes them directly available for such statements (see figure 2.8).

The domain of locality also makes the feature checking (in principle) local in
TAG. For example, agreement features between the subject and the verb, which
have to be percolated up and down the syntax tree in other formalisms, can be
stated locally in the verb’s elementary tree in TAG, as the subject is present
there.

Factoring of Recursion Initial trees in a TAG grammar are non-recursive.
All the recursion is neatly factored into the auxiliary trees, and introduced into
syntactic analyses by the operation of adjunction.

For generation, this implies that complete sentences or phrases can first be
built by filling all argument positions of an element. Then, recursion comes into
play to successively extend the structure by adjunctions and substitutions.

Monotonicity The operation of adjunction preserves syntactic dependencies
(which may become long-distance dependencies), as well as predicate-argument
relationships. A strictly monotonic derivation of structures results, i.e. no trans-
formations or deletions change a tree once it is selected during generation. This
directly reflects the monotonic “adding” of semantic content to an utterance.

17

Incrementality The incremental construction of syntactic structures through
adjunction corresponds to the incremental construction of semantic structures
in a sentence planner. These two properties of TAG, the extended domain of
locality and strict monotonicity of derivations, therefore induce the possibility
of incremental generation, interleaved with the planning process.

Correspondence of syntax and semantics (McDonald and Pustejovsky,
1985) even put forward two hypotheses on the correspondence between realiza-
tion specifications (i.e. sentence plans, or some conceptual representations) and
TAG grammar:

1. Each semantic unit corresponds to (exactly) one of a set of possible ele-
mentary trees of a suitable TAG grammar. I.e., linguistic considerations
should drive the modularization of planner decisions. This also means
that a one-to-one mapping of conceptual (or semantic) units to syntactic
units is possible.

2. For all possible combinations of two conceptual elements, there is a corre-
sponding TAG operation that combines the appropriate TAG elementary
trees. This (together with the first hypthesis) implies that all possible
realization specifications can in fact be realized.

Although these hypotheses make in fact very strong claims about both the
input specification for a syntactic realizer, as well as the TAG grammar that is
suitable for such a task, the implications are quite appealing. Therefore, it is
worthwile exploring these conjectures further by exploring the usability of TAGs
in different natural language generation systems.

18

Chapter 3

A Semantics Interface for TAG

This chapter develops a semantics interface for Tree Adjoining Grammar to be
used in a syntactic realizer.

A semantic interface for TAG then consists in defining the semantic repre-
sentations that each of the lexical entries are assigned, the mapping of syntactic
elements to semantic arguments (or vice versa) and the redefinition of the op-
erations substitution and adjunction, to receive parallel semantics construction
during the construction of syntactic structures.

For the semantic representations, generation poses special requirements:

e A flat semantic representation is highly desirable. Semantic embeddings
do not always correspond to syntactic embeddings. E.g., the treatment
of control predicates in TAG as auxiliary trees turns the direction of the
syntactic embedding with respect to the semantic embedding.

e The semantic representation must be able to distinguish scope.

e Semantic composition should be monotonic. This follows directly from
the fact that syntactic composition in TAG also consists of only adding
elements to the structure.

e Underspecifiability of the semantics is desirable. Underspecification
would allow generation from partial semantic representations.

First, I will discuss some previous attempts on developing a semantics in-
terface for TAG in section 3.1. Section 3.2 then proceeds to present Minimal
Recursion Semantics (MRS), a formalism for the representation of flat, under-
specified semantics.

Sections 3.3 and 3.4 contain one contribution of this thesis: they show how
MRS can be used as the semantic representation in a semantics interface appro-
priate for generation with TAG. Chapters 5 and 6 will then present a realization
algorithm and its implementation based on this definition.

3.1 Previous Work

Finding an appropriate semantics interface for TAG has been in the center of
research on Tree Adjoining Grammars for the last few years. In this section,

19

some existing approaches will be presented.

As in TAG arguments are localized in the elementary trees that constitute
the lexical entries, argument composition and also modification happens through
the composition operations substitution and adjunction. These operations are
directly represented in the derivation tree of a TAG analysis. Thus, the locus of
semantics construction is commonly seen to be the derivation tree (as opposed
to the derived phrase-structure tree).!

3.1.1 Kallmeyer & Joshi 1999

Kallmeyer and Joshi (1999) propose a flat semantic representation associated
with elementary trees. They make use of Multi-Component Lexicalized Tree
Adjoining Grammar (MC-TAG) in order to capture quantifier scope ambigui-
ties and to allow underspecified representations. In their analysis, the semantic
contribution of a quantifier is split into a predicate-argument part and a sco-
pal part. The syntactic analysis of quantifiers they assume is one where the
quantifiers first adjoin into the verbal tree and then take the NP-tree as a (sub-
stitution) argument — in contrast to standard TAG analyses of quantifiers as
adjoining into the NP node (see XTAG Research Group, 2001; Abeillé and Can-
dito, 2000, for English and French, resp.). They also give analyses of adjunct
scope and island restrictions.

One central point of the approach is the use of multi-component lexical en-
tries. However, the use of multi-component lexical entries in combination with
the unrestricted possibility of multiple adjunctions at the same node yields a
grammar that would be much more powerful than LTAG. As such an increase in
the generative capacity of the grammar should be avoided, multiple adjunctions
have to be restricted in Kallmeyer & Joshi’s approach (they are still necessary
for the multiple adjunctions of the scopal parts of quantifiers at the “S” node).
This necessary restriction constitutes a possible flaw for grammars like the one
assumed in this thesis where multiple adjunctions are considered otherwise lin-
guistically motivated.

3.1.2 Joshi & Vijay-Shanker 1999

Joshi and Vijay-Shanker (1999) argue that using underspecified semantic rep-
resentations contradicts the essential spirit of TAG: intermediate trees without
open substitution nodes are seen not as partial trees, but as complete analyses
that can be further extended by subsequent adjunctions. For example, the in-
termediate tree received by adjunction of the auxiliary tree for “said” into a tree
for “likes” is shown with its associated semantics in figure 3.1. In the standard
TAG interpretation, it should be understood that this tree represents the “act of
saying that z likes y”, rather than “an act of saying something that will somehow
involve z likes " ? — which would be the underspecified interpretation, allowing
for subsequent adjunction of, e.g., “seems” to yield say(z, seem (like(x,y))).

'But see section 3.1.4 below and (Frank and van Genabith, 2001) for attempts to construct
the semantics on the derived tree instead.
%(Joshi and Vijay-Shanker, 1999, p. 137)

20

NP| VP say(z, like(z,y))

/\

A% S
| N

said NPJ| VP
V NP
|
likes

Figure 3.1: Intermediate tree and associated semantics.

Instead of underspecification, they suggest to order the adjunctions into the
trunk of an elementary tree in order to monotonically build up the semantics
“inside-out.” As an ordering in the derivation tree is independently needed in
the case of multiple adjunctions at the same node, this suggestion does not
impose too strong changes on the formalism. In the semantics interface used in
this thesis, I will therefore incorporate this proposal.

In a second part of the paper, Joshi and Vijay-Shanker hint at the possibility
for using of MC-TAG for the modelling of scope ambiguities in TAG, without
the need for underspecification.

3.1.3 Kallmeyer 2002

Kallmeyer (2002a,b) notes that although the derivation tree seems to be the
right place for semantics construction in TAG, it sometimes does not provide
the (semantic) links that are needed in order to identify semantic arguments.
As noted above, the analysis of quantifier scope depends on the analysis of
quantifiers as multi-component TAG trees that take the noun they determine as
a (substitution) argument. However, in standard TAG grammars determiners
are rather analysed as auxiliary trees adjoining into NP trees.

Thus, the derivation tree does not exhibit the semantic link between the
quantifier and the verb, which is needed to determine that the verbal semantics
lies in the body of the quantifier. An example derivation tree for the sentence
“Every dog barks.” can be seen in the left part of figure 3.2. Its derived tree is
shown in figure 3.3.

Kallmeyer therefore suggests to enrich the derivation tree in a regular way
by adding “semantic” edges between nodes that are also “semantically linked.”
The resulting enriched derivation structure (or e-derivation structure) contains
all the edges of the conventional derivation tree, plus additional edges between a
mother node v and any lower nodes S that are adjoined into the root of children
of v or any such ;. The e-derivation structure for the sentence “Every dog

21

a(barks) a(barks) ~

1| i

o(dog) a(dog) |

I

£ € /
B(every) B(every) -7

Figure 3.2: Conventional and e-derivation structure for “Every dog barks.”

VP

N

NP VP

SN

Det NP v

Every N barks

dog
Figure 3.3: Derived tree for “Every dog barks.”

barks.” is shown in the right part of figure 3.2.3

The e-derivation structure is claimed to also capture multiple modifications
and unbounded dependencies in embedded interrogatives correctly.

In this thesis, I will not adopt Kallmeyer’s proposal to enrich the derivation
structure, because I will not explicitly deal with quantifier scope. However, I feel
that enriching the derivation structure should not be necessary, if the composi-
tion operations for the semantics construction are adequately defined. This can
be seen intuitively, as the e-derivation structure makes links between elementary
(or derived) trees explicit, that are already there: for example, unification of
the feature structures of the involved nodes is carried out.

3.1.4 Gardent & Kallmeyer 2003

In contrast to the approaches mentioned above, (Gardent and Kallmeyer, 2003)
abandon the idea of constructing the semantics based on the derivation tree,
and claim to process semantics on the derived tree.

Approach. In their model, each node is associated with a semantic index and
a semantic label variable in the top and/or bottom feature structures. When two
TAG trees are combined, the flat semantic representations associated with them

3In that figure, I follow the notation in (Kallmeyer, 2002a), where substitution and adjunc-
tion edges are not distinguished in the derivation tree. Instead, full lines are edges that were
taken over from the conventional derivation tree, while dashed lines signify edges that have
been introduced in the e-derivation structure.

22

are conjoined, and an appropriately extended feature unification machinery en-
sures the unification of semantic variables. A simple example of a derivation in
their formalism is given in figure 3.4.%

< 27
NP, T~~o# SN .* NP,
| YooONpy o0
John | (o Mary
loves
name(j, john) lo : love(x1,x2) name(m, mary)

Figure 3.4: Derivation of “John loves Mary.”®

Gardent and Kallmeyer sketch how, using their approach, they can correctly
model the behavior of intersective adjectives, adverbials, control verbs, and wh-
questions.

Derived tree-based analysis? The method of semantics construction is not
very different from the derivation tree-based approaches, despite the claim that
it is constructed on the derived tree. In fact, this is as much a derivation tree-
based method as any of the others:

1. Each elementary tree is assigned some semantic structure, in a flat seman-
tic representation.

2. The composition of semantic structures consists basically of monotoni-
cally conjoining the semantic structures of the two trees connected in the
derivation tree.

3. Adjunction and substitution are appropriately extended in order to si-
multaneously build up the derived trees and manage the “unification” of
semantic argument variables.

Implementation. The authors hint at two possibilities for an implementation
of their formalism (for parsing): to also construct the semantics in the feature
structures — here the problem is that the complexity will increase — or to keep
the syntax and semantics construction completely separate and do the semantics
construction outside of the derived tree.

In the first case, the semantic structure would be constructed literally in
the derived tree, which would probably lead to an unwanted mixing of syntax
and semantics: This is because really, the tree would only serve as a container
for the semantics, Thus, nothing would be gained, while the explicit definition
of the semantics construction would be obscured. Furthermore, TAG feature
structures are currently non-recursive. A list-valued semantics feature would

4Only the semantic index variables associated with nodes are shown.
®After (Gardent and Kallmeyer, 2003)

23

necessarily be recursive, and thus the formalism would have to be extended.
This would yield serious complexity problems.

The second case is more appealing, and I will follow a similar trail in this
thesis.

3.1.5 GlueTag

For the sake of completeness, I will briefly mention another, quite different
approach to a semantics interface for TAG: Frank and van Genabith (2001)
explore the application of glue semantics (a semantic formalism commonly used
in LFG®) to LTAG. They use relatively complex node labelling rules to associate
nodes in the elementary trees with semantic variables.

This approach actually works on the derived tree: During substitutions and
adjunctions, the semantic variables are just collected, and unifications at the
end of a derivation trigger the correct variable instantiations that allow the glue
semantics construction. The semantics construction itself can only be carried
out on the complete derived tree (because only then the variables have been
correctly instantiated). This has two consequences:

1. Incremental semantics construction is not possible, the semantic contri-
bution of an utterance can only be computed on the complete derived
tree.

2. Intermediate syntactic structures during the TAG derivation do not have
a significant semantic structure associated with it.

Consequently, the approach does not seem appealing from the perspective
of generation, as it would be desirable to incrementally check the semantic
contribution of partial utterances.

In the GlueTag approach, scopal modifiers are analysed in an alternative
way to taking the order of adjunctions into account: A single derived tree is
constructed, for which the glue semantics model can construct two different
goal semantic representations by applying functors in a different order. The
ordering of adjunctions on the trunk of an elementary tree should have the
same effect, though.

3.2 Minimal Recursion Semantics

In this thesis, I use a flat semantic representation very much in the spirit of
Minimal Recursion Semantics (Copestake et al., 1999, 2001). MRS was chosen
because it is especially well-suited to the requirements noted above: It specifies
a flat semantic representation allowing for the distinction of different scopings;
the semantic composition is monotonic; and MRS was designed specifically with
underspecification in mind.

MRS allows flat semantics in two senses: First, the conventional binary op-
erator A is understood as an n-ary, non-hierarchical logical “and.” Second, it

5(see Dalrymple, 1999, 2001)

24

assumes semantic predicates in the neo-Davidsonian style where scopal embed-
dings are not expressed as actual embeddings of the semantic predicates, but
rather by the introduction of event variables and scoping over these variables
(see Barwise and Perry, 1981, 1983). Compare, for example, a predicate cal-
culus representation of the semantics of sentence (3.1) in (3.2)(a) with the flat
semantic representation in (3.2)(b).

(3.1) Every big white horse sleeps.

(3.2) (a) every(z, ((big(xz) A white(x)) A horse(z)), sleeps(x))

(b) ho : every(xz, hi,ho) A hy : big(xz) A hy : white(z) A hy :
horse(z) A hy : sleeps(e, x)

Furthermore, MRS enables the underspecified representation of scope ambi-
guities, by using handles and holes and scope constraints on these variables (see
definition 2). In MRS, each lexical entry is assumed to be assigned a conjunc-
tion (or bag) of elementary predications, of which one is picked out as the key
elementary predication of the lexical item.

3.2.1 MRS structure

Definition 1 (Elementary Predication) An elementary predication (EP) in
MRS is a tuple (h,r,V') with:

h a handle labelling the EP
r a relation

V' a list of zero or more ordinary variable arguments of the relation followed by
an arbitrary number of handles (scopal arguments)

Commonly, predications will only contain zero, one, or two scopal argument
variables: one for usual scopal modification, and two for quantifiers, where the
first corresponds to the restriction, and the second to the nuclear scope of the
quantifier. An example elementary predication (corresponding to the lexicon
entry for “every”) is shown in (3.3).

(3.3) ho : every(z, hy,hs)

An MRS structure, then, is defined as follows:
Definition 2 (MRS structure) An MRS structure is a triple (t, L, C) with
t a top handle, which is above or equal all other handles in the MRS structure,
L a bag of EPs,

C a set of outscoping constraints on the handles contained in the structure.

"The original definition can be found in (Copestake et al., 1999, p. 7f)

25

The handle constraints are needed for underspecified semantic representa-
tions: When a handle is said to outscope a label, it can eventually (in a scope-
resolved structure) be equal to that label, or (a chain of) quantifiers can intro-
duce other handles in between. Thus, the underspecified MRS structure in (3.4)
describes both possible scopings (of the general quantifier over the existential
one, and vice versa).®

(3.4) (hg; {h1 : every(z, ha, hg) A ha : cat(z) Aly : chase(e,z,y) N
hy : some(x, hs, hg) A\ hs : mouse(y)};{hs > l1,h¢ > 11})

3.2.2 Compositional semantics

The definitions of compositional semantics with MRS given in (Copestake et al.,
1999) can be applied to TAGs almost directly with an appropriate semantics
interface. 1 will briefly sketch their original definition here,’ and show how to
implement them as a TAG semantics-syntax interface in the following sections
of this chapter.

The MRS definitions assume a Context-Free Grammar (CFG)-like syntactic
composition: l.e., words or phrases are composed to bigger phrases. During
such composition, the EP bags of the involved daughters are just appended,
and all handle constraints are collected. According to the introduction of new
handle constraints, three cases are distinguished:

Intersective combination. Both key elementary predications do not contain
any scopal arguments. Then, the top handles of the daughters are equated
and become the new top handle. For example, the combination of “white”
with the MRS (hq; {h1 : white(z)}; {}) and “cat” with the MRS (ho; {hq :
cat(y)}; {}) vields: 10 (hy;{hy : white(x) A hy : cat(z)};{})

Fixed scopal combination. This is the straightforward case of fixed scopal
adjunction, where a scopal argument of one daughter has scope over the
other daugther. I do not consider more complex cases here, because in the
following sections, I will assume binary grammars and only fixed scopal
predicates with one scopal argument.

In this case, one additional handle constraint is introduced: The handle-
taking argument of the scopal daughter is said to outscope the label of the
other EP. The label of the scopal EP becomes the top handle of the phrase.
For example, the composition of “probably” with the MRS (hy;{hy :
probably (ha)}; {}) with the MRS (hg;{hs : sleeps(e,x)};{}) of “sleeps”
results in the structure (hy;{hy : probably(ha) A hs : sleeps(e,z)};{ha >

hs}).

Floating scopal combination. Floating scopal combination deals with quan-
tifiers. The quantifier’s restriction is considered the scopal argument (in

8For more details on the definitions, I refer the reader to (Copestake et al., 1999). Familiar-
ity with MRS will be assumed in the remainder of this thesis, but an intuitive understanding
will suffice for our purposes.

9modulo slight simplifications

10The details of the identification of semantic argument variables are omitted in the paper.

26

the sense of the fixed scopal combination), and the nuclear scope argu-
ment is always left unconstrained. Thus, the combination of “cat” and
“every”, with the MRS (hg;{hs : every(z, ha,hs)};{}), yields (hs;{hs :
every(x,ha, hs) A ha : cat(z)};{hs > ha}).

3.3 A lexical semantics interface for TAG

In this section, I will define the (lexical) semantics interface for TAG, that
will be assumed in the remainder of this thesis. Section 3.4 will then specify
the re-definitions of the substitution and adjunction operations necessary to
compositionally build up the semantics of more complex phrases.

3.3.1 Premises

In this thesis, semantics-enabled Lexicalized Tree Adjoining Grammar with fea-
ture structures is seen as a monotonic extension of conventional LTAG. That is,
semantics construction should happen on the derivation tree, in parallel with the
construction of syntax by the two TAG operations. Furthermore, lexical seman-
tics need to specify all the information necessary for monotonic, compositional
semantics construction.

On the other hand, the interface needed for the purpose of this thesis is
intended for the use in a natural language generation system. Most importantly
this means that the treatment of quantifier scope is not essentially needed,
because in the output sentence quantification can be underspecified.

3.3.2 Lexical Entry

Definition 3 (Semantics-enabled TAG lexical entry) A lexical entry t of
the semantics-enabled LTAG is a triple t = (1,0, ¢) with:

7 an LTAG elementary tree,
o a flat semantic expression, and

¢ a function mapping the nodes of the tree to arguments in the semantic repre-
sentation.

An example lexical entry for the verb liebt (loves) is shown in figure 3.5. For
abbreviation, the values of ¢ will in the following be shown directly in the tree
as indices on the nodes. This should not obscure the fact that ¢ is a function
separate from the syntactic structure associated with a lexical item; and that
therefore the semantics is “added upon” (or wrapped around) the syntax in this
interface. 1 assume that at least all substitution nodes, all nodes admitting
adjunction as well as the root and foot nodes of elementary trees are assigned
semantic indices by ¢.

The semantic structure o is modelled after the definitions in (Copestake
et al., 1999), but it differs from MRS in two important respects. First, the
predications consistently follow the neo-Davidsonian approach and introduce
an event variable for all verbal predicates, and also for fixed scopal predicates.

27

T VP, o: ¢:

T T hg : loves(e, z,y) n_| ¢(n)
NPq| VPy Xil e
/\ 2 €
V5 VP3 VP3 (&
/\ VP4 e
liebt NP, VP, Vs P
loves | NP, z
VTrace NP, y
|
€

Figure 3.5: A lexical entry for “liebt”.

And second, I do not consider handle constraints in the current implemen-
tation. It will be shown in the following, how scoping of fixed scopal predicates
can be treated without underspecification. Quantifier scope is omitted in the
biggest part of this thesis. In section 3.4.3, though, T will discuss a possible
extension of the semantics interface to deal with quantifier scope ambiguities.

3.4 Compositionality

The three different kinds of combination defined in MRS do not map isomorphi-
cally to TAG operations. In TAG, the substitution operation corresponds to the
provision of syntactically and semantically obligatory arguments. (Copestake
et al., 1999) does not explicitely define how predicate-argument structures are
composed. Adjunction, on the other hand, must be differentiated: The typical
case of adjunction is a (syntactically and semantically) optional modification.
But in addition to these modifier auxiliary trees, there also exist predicative
auxiliary trees, where the foot note corresponds to an argument node which is
selected by the lexical anchor. Compare the elementary TAG trees for “black”
and for “thought” in figure 3.6.

N S

/\ /\
Adj N* NP| VP

| SN
black A% S*

|
thought
Modifier auxiliary tree. Predicative auxiliary tree.

Figure 3.6: Different types of auxiliary trees in TAG.

Furthermore, according to their semantic properties as specified in MRS

28

composition, the modification cases must be distinguished into non-scopal (such
as — arguably — intersective adjectives like “black”), fixed scopal (such as adverbs
like “probably”) and floating scopal modifiers (the quantifiers).

In the remainder of this section, I will define the composition operations
for semantic construction in LTAG assumed in this thesis. While substitution
works rather straightforward, adjunction has to be differentiated into the above-
mentioned cases.

3.4.1 Substitution

Substitution corresponds to the filling of an argument slot in the outer tree of
the operation. The argument variable has to be provided by the inner tree. The
substitution operation is defined on two TAG elementary or derived trees in
which the argument variables occuring in the semantic expressions are distinct.

Definition 4 (Semantics-enabled TAG substitution) If a tree ty =
(19,09, o) with root node r (where 5 is the TAG syntaz tree, o9 is the semantics
it expresses and ¢y is the mapping of the nodes in T onto arguments in og) is
substituted at node m of tree t1 = (11,01,¢1), the result of the substitution is
defined as ts = (13,03, ¢3), with:

T3 the result of conventional TAG substitution of To into T at node n;

o3 the conjunction of (the EP bags of) o1 with a version of o9, where the ar-
gument variable ¢o(r) = x is substituted with ¢1(n) = y (the argument
variable y that the substitution node n was mapped to by ¢1) in all places
(the handles remain distinct); and

¢3 the combination of ¢p1 with ¢o, where all occurences of x have been substituted
by y.

As an example, the lexical entry for “Peter” is depicted in figure 3.7 along
with the result of its substitution into the lexical entry for “liebt”, which was
shown in figure 3.5.

3.4.2 Adjunction

Adjunction is also defined on trees whose semantic arguments have been sub-
stituted if necessary, so that the ranges of ¢1 and ¢4 are distinct.

Definition 5 (Semantics-enabled TAG adjunction) Let t; = (11,01, ¢1),
to = (79,09,¢2). The root node of 7o be labelled r, the foot node f, and the
adjunction site in tree T1 n.

The result of adjoining to into t1 at n is a tree t3 = (73,03, ¢3) with:

T3 the result of conventional adjunction of 7o into T at node n;

o3 the conjunction of o1 and oo’s EP bags, where for non-scopal adjunction, all
occurences of ¢o(r) = x have been substituted by ¢1(n) = y and the top
labels of o1 and o9 are equated; while for scopal adjunction, all x (r is

29

Lexical entry for “Peter” :

Ty, Gp NI|’:z op i (h1, {h1 : peter(2)},{})
N:z
|
Peter
Substitution result:
T, ¢ VPi:e
NP:z VPs:e
| /\
N:x Vs:e VPj:e

Peter liebt NPyl:y VPye
Peter loves
VTrace

€
o : (hg,{ho : loves(e,z,y) A hy : peter(z)},{})

Figure 3.7: Substitution of “Peter” into “liebt.”

a scopal handle variable) have been substituted by the current top handle
hy, of o1, and the new top handle of the phrase will be o3’s previous top
handle; and

@3 the combination of ¢1 and ¢a, where y resp. hy, is substituted for x in all
places.

The second handle argument of quantifiers (the nuclear scope) always stays un-
constrained.'!

Note that “conventional adjunction” (or “conventional substitution”) also in-
cludes the unification of the appropriate feature structures, as it is defined for
feature-based LTAG.

Figures 3.8 and 3.9 exemplify non-scopal and fixed scopal adjunction, re-
spectively, by showing the TAG structures involved in adjunction of “schwarze”
(black) into “Katze” (cat) and “immer” (always) into “liebt” (loves).

3.4.3 Underspecification and scope

In principle, the treatment of underspecification in MRS can be directly incor-
porated into the semantics interface given here. This would involve the use
of hole variables and the introduction of handle constraints during adjunction,
which are left empty in all the example lexical entries given above.

as is also assumed in (Copestake et al., 1999)

30

Lexical entries for “schwarze” (black) and “Katze” (cat):

Ty Ps : /Ny\ Tk > Pk NP:zx
Adj N*:y N:z
| |
schwarze Katze
black cat
os: (h1,{h1 : black(y)},{}) ok : {ho,{ho : cat(z)},{})
Adjunction result:
T, NP:z
|
N:x
/\
Adj N:z
| |
schwarze Katze
black cat

o: <h0,{h0 : bl(wk(fv) A hg : C(lt(fb)},{})

Figure 3.8: Adjunction of “schwarze” into “Katze”.

Lexical entry for “immer” (always) :

Ti, i ¢ VP:f it (hy, {h © always(f, h2)},{})
Adv VP*:f
|
immer
always
Adjunction result:
T, VP;:e
NP|:x VPj:e
V5:€ VP3 €
|
liebt NPol:y VP,:e
loves

Adv VPg:e

mmmer VTrace
always |
€

o : (h1,{ho : loves(e,x,y) A hy : always(ho)},{})

Figure 3.9: Adjunction of “immer” into “liebt.”

31

However, I do not assume generation from underspecified semantics here.
Thus, the use of scope constraints is not necessary. As shown in (Joshi and
Vijay-Shanker, 1999), different scopings can be achieved without the resort to
underspecification, by an ordering of adjunctions. As I also assume monotonicity
in the compositional semantics, I adopt their proposal here.

For quantifier scope, I follow the definitions in MRS, in that it is currently
not resolved. In the same way as in (Copestake et al., 1999, p. 13), the nuclear
scope of quantifiers always stays unrestricted in this semantics interface. See
(3.5) for an example sentence and the corresponding semantics.

(3.5) a. Every man loves a woman.
b. (ho,{hs : every(z,hi,hs) A hy : man(z) A hg : loves(e,z,y)A
hs : Some(ya h?a hﬁ) A hg : woman(?/)}ﬂ {})

Thus, scope resolution could be left to a post-processing step computing
possible domination patterns for the quantifiers. In that way, the representation
chosen here can even be considered underspecified with respect to quantifier
scope, but not concerning ordinary fixed scopal predicates.

32

Chapter 4

Related Work in TAG
Generation

In this chapter I will review several previous attempts on generation from flat
semantics with Tree Adjoining Grammars. I will point out certain restrictions
that these approaches impose on either their input, the grammar they use, or
certain formal aspects, for example of the semantic representation. In this way,
these attempts are not easily transferrable to other domains or other systems,
or simply unsatisfactory for the general task of surface realization from flat
semantics.

As TAG is considered especially well-suited for natural language generation
(see the discussion in section 2.2), there have been quite a few different attempts
on generation with Tree Adjoining Grammars. Here, I will only discuss some of
those that are more directly related to the topic of this thesis in more detail.

First, I will comment on an attempt by Koller and Striegnitz to represent
TAG surface generation as a parsing task for free word order languages. Their
approach, although interesting in the theoretical implications, has been left in
an experimental state.

Much more evolved is the work of Matthew Stone, Christine Doran and
others (Stone et al., 2001) in the natural language generation system SPUD
(sentence planning using descriptions). Their work differs from the attempt
presented here in the general setting. It is presented in section 4.2.

Following the lead of SPUD, the German InDiGen project (see Striegnitz,
2000) also deals with generation of referring expressions with TAG, but for
German instead of English. I will briefly discuss their work in section 4.3.

Section 4.4 presents the TAG generator used in the Verbmobil project for ma-
chine translation of spontaneous speech. A short section 4.5 gives an overview of
the approach to generation taken in the SMARTKOM project which is dominated
by the need for rapid prototyping.

This chapter concludes with the mentioning of other approaches to TAG
generation, that I will not consider in greater detail here. These are in partic-
ular systemic functional grammar approaches like Mumble (see McDonald and
Pustejovsky, 1985; Meteer et al., 1987) and related work.

The generator algorithm and its implementation that is the major contribu-

33

tion of this thesis is presented in the subsequent chapters 5 and 6.

4.1 Koller & Striegnitz

In an ACL paper Koller and Striegnitz (2002) suggest an algorithm for surface
realization from flat semantics for TAG. They conceive of the realization problem
as a parsing problem in a free word oder language (in this case, the flat semantic
representation). With Topological Dependency Grammar (TDG) (Debusmann,
2001; Duchier and Debusmann, 2001), quite fast parsers for the typical cases
exist.

4.1.1 Description

Koller and Striegnitz show how the realization problem can be represented as
a constraint satisfaction problem, the constraints being incoming and outgoing
edges of nodes in the derivation tree.

For an encoding of the problem, they use Topological Dependency Grammar
(TDG), a grammar formalism that separates linear precedence from dominance
constraints. A TDG parse tree consists of nodes corresponding to the words
of a sentence and edges labelled with syntactic relations between the words.
Figure 4.1 shows a simple example. A TDG grammar specifies for each lexi-

AN
subj : obj
g :

pe:ter likes mary
Figure 4.1: TDG parse tree for “Peter likes Mary.”!

cal entry which outgoing edges it requires (corresponding to its valency), and
which incoming edges it allows (its labels). For TDG, parsers employing this
constraint-based formalization of the grammar have been shown to be quite fast
on typical (“well-behaved”) inputs. A toy grammar is given in table 4.1.

word ‘ labels ‘ valency
likes 0 {subj,obj,adv*}
Peter | {subj,obj} 0

Mary | {subj,obj} 0

Table 4.1: TDG toy grammar.?

Sentence generation from a bag of ground atoms of predicate logic is then
formalized as a TDG parsing problem in the following way: TDG is used to
“parse” the input semantics and produce a TAG derivation tree as the parse
tree. This is possible because TDG can efficiently deal with completely free
word order languages (as in this case predicate logic bags).

!see (Koller and Striegnitz, 2002, Figure 3)
%see (Koller and Striegnitz, 2002, p. 3)

34

Therefore, for each elementary TAG tree 7 (represented by the semantic
atom it is associated with), a TDG lexical item is introduced whose walency
consists of exactly one outgoing substitution edge for each open substitution
node in v, and an arbitrary number of outgoing adjunction edges for each node
in y that admits adjunctions.® The labels for the lexical item admit one incoming
adjunction edge with the semantic index associated with the root node of v if
v is an auxiliary tree. If it is an initial tree, it allows an incoming substitution
edge with the appropriate semantic index.

A special start symbol is also introduced into the grammar, which picks out
the head of the derivation tree. Its lexical entry specifies only one outgoing
substitution edge with the semantic index of the head of the sentence. This
index thus needs to be given in the input semantics.

Koller and Striegnitz automatically compiled their grammar from the XTAG
grammar for English. They indicate promising runtime results on some test
inputs.

4.1.2 Discussion

However, Koller and Striegnitz impose serious restrictions on several parts of
the problem, thus leaving their results unsatisfactory for the general realization
task.

Simplified semantic representation. Their semantic representation is flat
in a very strong sense, i.e. scope relations can not be expressed in it.

Specification of head necessary. In addition to the semantic representation
to be realized, the generator requires the head index as input. Although some
ambiguities in the realization process can be circumvented by this requirement,
one would not in general want to restrict the input in this way. The following
examples, e.g., would have the same semantic representation, and differ only in
the fact which of the predicates is realized as the head of the sentence:

(4.1) Hier sehen Sie die Filme, die heute laufen.
Here see you the movies, that today run.

Here you see the movies that are running (on TV) today.

(4.2) Heute laufen die Filme, die Sie hier sehen.
Today run the movies, that you here see.
These movies are running today, which you see here.

Simplified grammar. While Koller and Striegnitz use the XTAG grammar
for English, it is first simplified: features are removed and the only accepted ad-
junction constraints are “null adjoining” constraints (thus implying that wher-
ever adjunction is possible, it is non-selectively and arbitrarily often possible).
It is obvious that such a grammar without the help of features can not pre-
vent ungrammatical output for more than trivial input specifications.* This

3Note that adjunction constraints, as well as features, are ignored in this approach.
“The authors do in fact give examples with quite complicated input semantics.

35

definitely does not cover the linguistic facts well enough.

Introducing features and feature checks into the proposed algorithm would
not be a straightforward extension. At the least, it would make the performance
much slower, eliminating the biggest advantage of the approach.

Syntax-oriented semantics interface. Finally, the semantics interface
employed by Koller and Striegnitz is automatically extracted from the XTAG
grammar, using word forms as names of semantic predicates. Obviously, this
yields a very syntax-oriented semantics interface, that presupposes a semantic
representation with very few ambiguities. For example, ambiguities that would
occur on a much smaller scale are those relating to word category, i.e. when
the same predicate can be expressed by (different) words from different part
of speech categories.® Furthermore, the issue of synonymous words should
definitely be one of syntax, not of semantics.

Thus, conceptionally, Koller and Striegnitz’s approach is quite similar to the
one presented in this thesis, as we both see the realization task as a constraint
satisfaction problem. However, many design choices restrict the applicability of
their approach. Additionally, the authors note that “the computation that takes
place in our system is very different from that in a chart generator.”® While
the algorithm proposed in this thesis is not a chart generation algorithm, the
computation that takes place in it is much more comparable to that of chart
generators.

4.2 Sentence Planning Using Descriptions (SPUD)

The SPUD system ((Stone and Doran, 1997), or see (Stone et al., 2001) for
a detailed project description) implements a microplanner realizing utterances
from a communicative goal specification. In fact, the tasks of microplanning
and surface realization are not clearly separable, and SPUD deals with both of
them. In that approach, each lexical entry is associated not only with semantic,
but also with pragmatic information, i.e. presuppositions and such information
as definiteness or the text style. During generation, the pragmatics constrains
lexical choice and guides realization decisions.

4.2.1 Description

The input to the SPUD generator is an intention such as “describe e,” together
with some semantic atoms that are also intended to be realized. Lexical entries
that are used in a sentence contribute assertions (the direct semantic content),
presuppositions (basically representing usage conditions for the words) and prag-
matics (other constraints such as definiteness or text style).

®The only exception are words like “book” that occur in the same word form for different
syntactic categories (it can either be “a book” or “to book a flight”). If these words also have
the same semantic arity, they will be both considered by Koller & Striegnitz’ algorithm.
5(Koller and Striegnitz, 2002), p. 1

36

Lexical choice, which SPUD mostly deals with, then follows some heuristics
that depend on the presuppositions and pragmatics associated with a word.
Thus, for example, always the most specific possible word is chosen, prefer-
ring “slide” over “move” in contexts where this is appropriate. The system uses
an inference procedure to subsequently chose syntactic structures that either
themselves contribute to the realization goal or that provide the necessary pre-
suppositions for other syntactic elements that were already chosen.

The SPUD system concentrates on the modelling of pragmatic contributions
to realization choices. Its grammar is specifically designed for this purpose,
simplifying other parts of the representation. E.g., adjunction is restricted in a
special way, and determiners are factored into the lexical entries of nouns.

4.2.2 Discussion

Obviously, the task for the SPUD system is in some respects quite different
from the one considered in this thesis. Its input is not a declaratively specified
flat semantics, but a communicative goal (such as “describe e”), which must be
elaborated by drawing on the system’s factual knowledge (such as what kind of
event e is, and what participants it has). But the system also produces derived
TAG trees as output, and captures therefore many of the same tasks as the
algorithm I present in this thesis. In the following, I will concentrate on the
factors of the SPUD system related to my work, and ignore other (admittedly
very important) features that are not directly relevant.”

Non-scopal semantics. In SPUD, each lexical item is assigned some seman-
tic specification (either assertions or presuppositions), using flat semantic repre-
sentations. SPUD does not use handles, though, so the representation is flat in a
strong sense similar to (Koller and Striegnitz, 2002) above. This makes it impos-
sible to express scopal relations for example among different modifiers of a verb.
Consider the following examples with their MRS-like semantic representations:

(4.3) Peter intentionally knocked twice.
hs : peter(p) A hg : intentionally(h1) A hy : knocked (e, p) A hy : twice(ha)

(4.4) Peter twice knocked intentionally.
hs : peter(p) A hg : intentionally (he) A ha : knocked (e, p) A by : twice(hg) 8

The semantic representation for these two sentences without handles would
be the same, ignoring the difference in scoping: peter(z) A intentionally(e) A
knocked(e,x) A twice(e).

Hand-tailored grammar. The SPUD system uses a specifically designed
grammar, which is not equivalent to standard TAG grammars like XTAG
(XTAG Research Group, 2001) or FTAG (Abeillé and Candito, 2000). The

treatment of deteminers is non-standard, but only mildly so. Determiners do

"In particular, I will not discuss the inference mechanisms and parts of the system concerned
with planning as such.
8 And maybe, both examples are even amgiguous between the two readings.

37

not get separate lexical entries in SPUD. Instead, they are always already part
of the nouns they determine. Thus, the authors avoid problems of definiteness,
and also certain modification issues for which special features would be needed.
Still, this is only a minor divergence from the standard XTAG grammar for
English.

More importantly, the treatment of modification in general diverts from
the standard TAG analyses in a more serious way. For each elementary tree,
all possible modifiers that can adjoin into the tree have to be determined, and
separate nodes are introduced that allow adjunction of only one kind of modifier.
An example elementary tree and one appropriate modifier can be seen in figure
4.2. These lexical entries are necessary because of the heavy use of semantic

S VP ,ain

/\ /K
NP VP purp VP pain * PP

[AN

VP qur P NPJ|
| |

% onto

Vv NP|
|
slide

Figure 4.2: SPUD elementary trees.

indices and in order to achieve the particular kind of semantic and pragmatic
updates that the SPUD system attempts. Thus it is impossible to use the
existing large TAG grammars for English (XTAG) or French (FTAG) in the
SPUD system, and new grammars have to be compiled instead.

Linguistically, this treatment of modification directly contradicts the notion
of localization in TAG, which says that all and only the required arguments of
a lexical anchor are introduced in the elementary tree of that lexical element.
Furthermore, the grammar gets hardly extendable. The introduction of a new
(type of) modifier would require changes in all the elementary trees that the
modifier can possibly adjoin into.

Finally, lexical entries like the ones shown above may be defendable for
English, where word order is mostly fixed, and modifiers also tend to occur in
a specific order. For free word order languages (like German, which I deal with
in this thesis), such an approach would certainly yield serious problems. In the
German middle field, modifiers can usually appear in any order, and intermixed
with other arguments. It is not clear how this can be captured using lexical
entries like the ones in figure 4.2.

Head specification. As mentioned before, the SPUD system requires an
entity to describe as input. Its syntactic realization will then obligatorily be
regarded as the head of the realized utterance. Thus, similarly to (Koller and
Striegnitz, 2002), certain variations in the realization of a generation input

38

cannot be achieved.

As T have shown, the task whose solution SPUD attempts differs in important
aspects from the general task of realization from flat semantic representations I
am considering in this thesis.

SPUD is a system that can only deal with specific input, that can not be
easily extended to other domains, and whose grammars have to be hand-tailored
to its purpose (and therefore can not be replaced by existing standard TAG
grammars).

4.3 Integrated Discourse Generation (InDiGen)

The goal of the German InDiGen project’ at the University of the Saarland
is an integrated approach to discourse and sentence planning. Generation is
done with an LTAG for German, and thus realization tasks are also part of the
project.

4.3.1 Description

The generation in InDiGen differs from that in the SPUD system in that it
employs a chart-based generation algorithm (Kay, 1996).! Furthermore, all
possible realizations of an intended utterance are generated, so that in a post-
processing step they can be evaluated according to their appropriateness.

However, InDiGen follows SPUD in associating pragmatic content in addi-
tion to semantic contributions with lexical entries. The main focus of the system
are also the inferences that yield to the generation of contextually appropriate
referring expressions.

4.3.2 Discussion

The LTAG grammar used in InDiGen supposedly follows the design decisions
in SPUD, though the example lexical entries do not show the idiosyncratic
treatment of modification I commented on above.

Two of the flaws (for our purpose) of the SPUD system still carry over to
InDiGen:

Non-scopal semantics. In contrast to SPUD’s modal logic, first order logic is
used as the semantic representation language in InDiGen. As above, this makes
it impossible to express scopal relations in the semantics, and to distinguish
between the examples (4.3) and (4.4) considered above.

Head specification necessary. The input specifications of InDiGen quite
resemble those in SPUD, and consist (minimally) of the intention to “describe
e,” where e is some entity in the system’s world knowledge. This puts realization

9see http://www.coli.uni-sb.de/cl/projects/indigen.html
10(Striegnitz, 2001) shows the integration of a chart-based generation algorithm into the
architecture used in SPUD

39

decisions into the responsibility of the user (or the planning system that specifies
the generator’s input).

4.4 Verbmobil

Verbmobil (Wahlster, 2000) was a huge joint project for the translation of spon-
taneous speech, whose generation module (Becker et al., 1998, 2000) also used
Tree Adjoining Grammar. Because of the special properties of on-line spoken
dialogue translation, there were specific requirements for the generator:

e The module had to robustly deal with the special grammar of spontaneous
speech, speech errors, corrections, etc., as well as errors or inconsistencies
the preceding modules produced.

e On-line translation required very efficient next-to real-time translation.

e The generator input was not produced by a macroplanning module, but
came from a semantic transfer module. Therefore, some decisions usually
left for the microplanner were already specified in the input, e.g. sentence
mode, syntactic categories etc.

4.4.1 Description

The generation task was split into two phases in Verbmobil, the microplanning
and the syntactic realization phase. Microplanning included the tasks of lexical
choice, aggregation, theme and focus control, and reference specification. It was
seen, much like in this thesis, as a constraint satisfaction problem. However,
the solution in Verbmobil consisted of a huge database of thousands of rules,
mapping the input specifications to parts of a sentence plan. These rules were of
course closely adapted to the specific type of input specifications (VITs, Verb-
mobil Interface Terms) on which they had to operate, and are therefore not
easily transferrable to other systems.

The sentence plans that served as input to the syntactic realization module
were trees consisting of a node for each lexical item (remember that word choice
was almost complete at this stage) annotated with syntactic features, and edges
labelled with semantic/syntactic roles (like agent or modifier) connecting these
nodes.

The tasks remaining for syntactic realization were the choice of an elemen-
tary TAG tree for each lexical item, and the determination of the syntactic
operations combining them. This was accomplished using a first tree-selection
phase which depended on the output (in particular the syntactic annotations) of
the microplanner. A combination phase followed, employing a guided best-first
search strategy. A post-processing step dealt with morphology.

4.4.2 Discussion

Modularity The syntactic realizer of Verbmobil is very domain independent
and modular, it uses descriptive knowledge sources (for example a standard,

40

reusable TAG grammar). However, the task it performs is very narrow. The re-
alization problem considered in this thesis also subsumes subtasks that were ac-
complished by the microplanner in Verbmobil, most prominently lexical choice.

The Verbmobil micro planner, on the other hand, receives strongly domain
dependent input that is not easy to mimick in other generation systems. Fur-
thermore, the many planning rules can not easily be reproduced in such a new
system. In effect, of the two Verbmobil generation components, only the syn-
tactic realizer might be reusable.

Interleaved micro planning and realization It is worth pointing out that
the construction of a flat semantic representation should in principle be possible
in a dialog translation system, and make it possible to use a syntactic realizer
like the one presented in this thesis. This gets even more appealing as in some
cases, realization is interleaved with micro planning decisions, particularly word
choice. For example in the two German examples below, reference specification
(i.e. the choice of a pronoun vs. a complete NP) interacts with the choice of an
actual TAG elementary tree for the verb lexical item:

(4.5) Ich zeige Ihnen die Karte.
I show yougy [the map|gce.

I show you the map.

(4.6) Ich zeige sie Ihnen.
I show itgee yOUgat-
I show it to you.

The verb lexical entry (with either the NP 4,; before the NP, or the other
way around) would have to be chosen with respect to the fact whether those
NPs are pronominalized; but likewise, information structure might determine
the word order (and thus the choice of the elementary tree for the verb) — which
would in turn constrain the reference specification for the objects.

4.5 SmartKom

The multi-modal human-machine interaction system SMARTKOM includes a lin-
guistic presentation module that uses TAG for generation. Sentences belonging
to various domains and tasks need to be expressed, such as:

e question answering in the movie theater domain

(4.7) Hier sehen Sie eine Ubersicht diber — das Programm der
Here see you a overview about the program of-the
Heidelberger Kinos.

Heidelberg cinemas.

Here is an overview of the movie theater program in Heidelberg.

e pedestrian navigation

41

(4.8) Welchen Weg maochten Sie nehmen?
Which route want you take?

Which route do you want to take?
e user authentification

(4.9) Bitte sprechen Sie nach dem Ton!
Please speak you after the sound.
Please speak after the sound.

e meta dialogue

(4.10) Dazu habe ich leider keine Informationen.
For-that have I unfortunately no information.

Unfortunately, I do not have any information regarding this request.

A fix requirement for the generator was to produce an early prototype that
could already generate a range of outputs like the ones above. In addition, simple
sentence (string) generation was not possible, as the output of the generator was
to be used in a Concept-to-Speech (CTS) synthesis module (see Schweitzer et al.,
2002). For this reason, rich syntactic output had to be produced.

Thus, the SMARTKOM generator employed the fact that TAG lexical entries
need not be minimal. Instead, templates were used as the elementary syntac-
tic structures that comprised phrases or even whole sentences. The planning
module could then choose these larger templates without the need to have a
complete syntactic realizer that builds them from words. The templates could
also contain variable parts that the planner could instantiate with parts of the
generator input.

Figure 4.3 shows a template like those that were used in the SMARTKOM
generator. The variable part is printed in bold face. It could be replaced by
other words from the domain knowledge base.

For planning, SMARTKOM used a large rule base that traversed the abstract
input specifications (described in the introduction of this thesis) and chose the
appropriate templates. This method makes the generator hardly manageable as
the rule base gets larger.

However, the templates are in fact TAG derived (or intermediate) trees that
could be seen as the result of a sequence of substitutions and adjunctions on
“real” elementary trees. Thus, they can be split up into their elementary parts
(the “words”) in later development stages, which makes the rule base and there-
fore the whole generator much more modular. This has in fact been explored in
the SMARTKOM system.

In summary, the method of using templates can be judged very effective
where rapid prototypes are needed. The templates can later easily be split up
to yield a “real”, lexicalized TAG grammar. This has been proven feasible in the
SMARTKOM project.

The use of a large hand-written rule base, though, is not an advantage of
the system. The rule base depends directly on the type of input specifications
and the domain ontology employed in the project, and can thus not be used in
other systems.

42

A?V VP
//\
Hier Vv VP
here | T
sehen NP VP
see | T
N NP VP
Sie Det NP PP VP
you | | /\ |
die N P NP VTrace
the | | | |
Karte V0N N €
map of |
Heidelberg

(Here you see the map of Heidelberg.)

Figure 4.3: Example SMARTKOM template.

4.6 Other Approaches

There have been several other attempts at using Tree Adjoining Grammars for
generation. As they are not directly relevant to this thesis, I will only mention
some of them here.

One of the very early TAG generators is Mumble. Mumble-86 makes use
of a systemic-functional approach for its generation decisions. There, realiza-
tion starts at the head of the derivation tree and proceeds to successively find
new parts of the semantic input that can be adjoined or substituted into the
already derived syntactic structure. This yields a strict top-bottom generation
algorithm.

Followers of Mumble in the fact that they employ systemic-functional strate-
gies are McCoy, Vijay-Shanker, and Yang (1992). The DSG/TAG generation
architecture of (Kozlowski, 2002), in turn, follows (McCoy et al., 1992) by also
specifying active regions during the realization process, which is split into a
descent and an ascent phase.

Another approach is G-TAG, a generation system for (multi-sentential) texts
by Laurence Danlos of the University at Paris 7. See (Danlos, 2000) for a
presentation.

43

44

Chapter 5

A Syntactic Realizer

In this chapter, I describe the syntactic realization problem and the general
algorithm I propose for its solution. I give a motivation and the broader context
of the problem in section 5.1. Then, I will go on to characterize the syntactic
realization task as a constraint satisfaction problem. I will sketch the algorithm
in section 95.3.

Chapter 6 describes the implementation of this algorithm in Java.

5.1 Motivation

Syntactic realization is the problem of, given a representation of some semantic
content, finding an adequate syntactic structure expressing that semantics, in
accordance to some given grammar and semantics interface.

In a natural language generation (NLG) system, syntactic realization is just
one of the tasks that have to be performed. Reiter and Dale (1997) distinguish
six tasks in NLG:

Content determination. Specification of what should be said.

Discourse planning. The structuring of the content into subgoals, and the
determination of discourse relations that hold between the subparts (e.g.,
ELABORATION).

Sentence aggregation. Aggregation of content into sentences, this includes
coordination, subordination, the construction of ellipses and so on.

Lexicalization. The choice of lexical items for the parts of the content. This
includes choice not only between synonyms, but also across syntactic cat-
egories.

Referring expression generation. The choice of appropriate referring ex-
pressions for the entities that are referenced in the content specification.
Referring expression generation is strongly intertwined with lexical choice
in general.

45

Linguistic realization. The actual building of a syntactic structure by means
of the rules of a given grammar. This step includes verb cluster aggrega-
tion, inflection, etc.

In real natural language generation systems, these tasks often can not be
that clearly distinguished, though. For this thesis, we assume a slightly broader
understanding of the term syntactic (or linguistic) realization. It is meant to
also include the largest part of the lexicalization task.

5.1.1 Context of the realization task

The context for the syntactic realizer developed in this thesis is the SMARTKOM'
system, a multi-modal human-technology interaction system (Wahlster et al.,
2001). The generator module controls only one of several output modalities,
the others being graphical and textual presentations, as well as gestures (of an
animated humanoid figure on a screen). Figure 5.1 shows a screen shot of the
System.

Figure 5.1: SMARTKOM screen shot.

The generator input is an abstract presentation schema containing a (do-
main dependent) speech act classification and a presentation task that contains
references to entities in the ontology or to other objects, such as items in the
graphical presentation.

The current generator architecture is shown in figure 5.2. The generation is
currently done in one huge planning step, using the PrePlan planning system,
going directly from the abstract input representations to TAG derivation trees.
For this, a TAG grammar consisting of templates, i.e. elementary trees that
are anchored by phrases instead of single lexical items, is used. Obviously, as
the input specification depends strongly on the dialogue domain, the rules of

'see http://wuw.smartkom.org for more information

46

ABSTRACT PLAN

ﬁenerator \

PrePlan

TAG DERIVATION TREES

N

TAG DERIVED TREES WITH ANNOTATIONS

TAG Formalism

Figure 5.2: Old generator architecture.

the microplanner are also domain-dependent and can not be easily extended to
cover different topics.

ABSTRACT PLAN

Generator
f \ PrePlan

SEMANTIC REPRESENTATION

Syntactic Realization

k TAG DERIVATION TREES /

TAG DERIVED TREES WITH ANNOTATIONS

TAG Formalism

Figure 5.3: Intended generator architecture.

Therefore, T will introduce an intermediate level of representation into the
generator architecture. This is the flat semantic representation presented in
chapter 3. I will not deal with the domain-dependent initial planning step in
this thesis. The semantic representation, though, should be domain indepen-
dent. This allows a syntactic realization module that is truly reusable in other
generation systems. Figure 5.3 depicts the intended new generator architecture.

47

5.2 Realization as a constraint satisfaction problem

The syntactic realization problem can be approached in many different ways.
One particularly well-suited way to see it is as a constraint satisfaction problem.
The problem is to find a syntactic structure that correctly expresses all and only
the given semantics. The three basic global constraints are therefore:

(1) that the result should be a well-formed sentence according to some input
grammar,

(2) that the input semantics should be completely expressed by it, and
(3) that nothing additional should be expressed.

5.2.1 Constraint systems

A thorough introduction into constraint satisfaction problems (CSP), constraint
solving algorithms and the representation of natural language generation as a
CSP can be found in (Lockelt, 2000), in the context of the Verbmobil project.
Here, I will just give a very brief note on what is understood as a constraint
system in this thesis.

A constraint problem consists of a set of variables with fixed domains, and
a set of constraints over possible assignments of values to these variables. A
solution to the constraint problem is an instruction assigning values to each of
the variables in such a way, that all the constraints hold at the same time. The
constraints are relations between certain combinations of the assigned values.?

The central point in viewing a computational problem as a constraint satis-
faction problem is to separate the problem specification from the methods for
the production of solutions. In that way, when the variables, their domains,
and the constraints constituting a problem have been specified, different algo-
rithms can be applied to find its solution(s). These algorithms include simple
trial-and-error up to sophisticated methods using propagation, etc. Chapter 3
in (Lockelt, 2000) describes many algorithms used in constraint-solvers.

Advantages Representing a task as a constraint problem has many advan-
tages. Once a problem is specified in that way, different algorithms can be used
for its solution. This ensures that optimizing the efficiency of a program is
possible with minimal effort, as the task specification does not have to change.
Furthermore, many efficient constraint solving algorithms exist, and can be
reused for new constraint problems.

For many applications, natural representations as constraint problems exist,
and such representations are usually very descriptive in nature (and can for ex-
ample be more easily understood by domain experts). In addition, the splitting
of the problem solving process reduces its complexity: later optimizations will
usually only affect one of the two parts. Thus, the introduction of additional
constraints is easily possible and will not have consequences for other parts of
the system.

2Definitions of the basic terms assignment, constraint, constraint problem etc. can be found
in (Léckelt, 2000, chapter 3).

48

Constraint systems in LT Consequently, the use of constraint solvers has
already been explored for some language technology applications, mostly for
parsing (e.g. parsing of dependency grammar, see (Duchier and Debusmann,
2001)) or underspecified semantic representations.

For natural language generation, a constraint-based approach has been ex-
plored in the Verbmobil system (see Becker et al., 2000) and more thoroughly,
and building upon the work in Verbmobil, in (Lockelt, 2000).

5.2.2 Task

Characterizing the syntactic realization task more specifically, a set of lexical
items has to be chosen from the grammar, each of which expresses some (non-
overlapping) part of the semantics. For each of the lexical items, the grammar
usually contains several TAG elementary trees anchored by the word. The
realizer has to chose one tree for each item, and consistently use it during the
derivation. Then, these trees need to be combined binarily by syntactically and
semantically appropriate substitutions and adjunctions, in order to produce a
well-formed derivation tree.

The two global syntactic constraints posed by the TAG formalism that re-
main at the end of the realization process are:

(4) that all operations may be carried out in combination (i.e. the feature
unifications do not yield unification clashes), and

(5) that the computed derived tree may be finalized, i.e. the top and bottom
feature structures at each node unify.

These two constraints can only be checked on a complete potential solution,
as feature equations may inherit certain values up or down the tree and thus
cause complex interactions in the feature unifications.

5.2.3 Requirements

As discussed above, the global constraints can only be verified after the comple-
tion of the realization process. However, producing large TAG trees is computa-
tionally expensive; and particularly the bigger feature structures and operations
thereon cost much. Thus, these constraints should be checked at least partially
on partial results of the realization.

Furthermore, the algorithm should provide measures that avoid that inter-
mediate structures are computed multiple times if they occur in different stages
of the realization process.

5.3 Algorithm

In this section, I will point out how the constraint variables and their domains for
a constraint-based representation of the realization problem can be constructed
from an MRS-like structure. This descriptive presentation of the task naturally
lends itself to a range of constraint solvers.

49

Subsection 5.3.3 sketches the algorithm proposed in this thesis, which has
the advantage of conceptual simplicity, followed by the mentioning of some other
possible algorithms that might improve the efficiency of the realizer.

The implementation of the realizer in Java is presented in chapter 6.

5.3.1 Semantic graphs

In contrast to the syntactic realization task in Verbmobil (see section 4.4) the
input to the realizer assumed in this thesis is not a (rather syntactic) sentence
plan, but a semantic representation o. It does therefore not suffice to introduce
a constraint variable for each “link” between lexical items in the input tree.

I will therefore develop a slightly more complex specification of the task as
a set of variables. Firstly, I will introduce the notion of a semantic graph, that
will make certain semantic links in the input more explicit. This will in the
second step allow the determination of the set of variables that constitute the
realization problem, and their appropriate domains.

The bag of elementary predications of the semantic input o can be seen as
a semantic graph G:

Definition 6 (Semantic Graph) The semantic graph G for an MRS struc-
ture (t, L, C) is constructed as follows: For each semantic literal in L, introduce
a node in G. For all elementary predications (literals) ly and ls in L contain-
ing the same (ordinary) semantic argument, G shall contain an undirected edge
linking the nodes corresponding to Iy and lo. Furthermore, for each l; contain-
ing a scopal handle variable hy as its argument, let H; be the set of all literals
“dominated” by hg, t.e., H; contains all literals whose label is hg, and recursively
all those which are labelled with any handle argument h; that any of the literals
in H; takes. Then, introduce an undirected edge between the node corresponding
to l; with the nodes corresponding to each element in H;.

See the semantic graph for the MRS structure

(5.1) (ha,{hs : every(z, hs, ha) A hs : rich(z) A hg : man(z) A hg : allegedly (hy)
Ah1 2 usually(ho) A hg : drives(e,z,y) A hg : a(y, he, h7)A
he : cadillac(y)},
{h

(corresponding to one of the possible scopings for the sentence “Every rich man
allegedly usually drives a cadillac.”) in figure 5.4 as an example.

Some properties of the graph can instantly be seen: It contains complete
subgraphs, one for each semantic argument variable. These subgraphs roughly
contain all the literals “about z,” “about y,” and so on.

Moreover, two complete subgraphs typically have just one node in common.
Thus, the derivation tree we are looking for just constitutes one of the spanning
trees of the semantic graph (figure 5.5 shows an appropriate derivation tree for
the semantic graph above®). This is obvious because semantic linkings (the
“unifications” of semantic argument variables or handle variables) can only be

3The arrows point from the inner to the outer tree.

50

every

PN s

rich drives ‘

S TN e

usually

allegedly

Figure 5.4: An example of a semantic graph.

every

a

rich drives é

. / f \cadillac
man usually
allegedly

Figure 5.5: Derivation tree as spanning tree of a semantic graph.

obtained between two literals by carrying out an operation between the elemen-
tary trees that express these semantic literals. For example, if in a semantic
input both hy : peter(z) and hg : sleeps(e,x) contain the semantic argument
variable x, the tree chosen for peter has to take part in a syntactic operation with
sleeps. However, it is not determined in the semantic graph, in which direction
the substitution or adjunction will take place (i.e., which tree is the outer, and
which the inner one). Sometimes even both directions (with appropriate TAG
trees for the literals) might be possible.

5.3.2 Variables and Constraints

As shown above, it is not possible to just take each semantic “link” as a variable
for the realization problem here (as is done in Verbmobil). This comes from
several factors that may occur:

e the semantic input is not a tree;

e there may be several lexical items expressing a semantic literal, in partic-
ular also from different syntactic categories, yielding completely different
syntactic structures;

e alexical entry may be associated with more than one literal of the semantic
input.

Consequently, I define the variables for the realization problem as follows:
For each semantic literal in the input, one variable is introduced. Conceptu-
ally, the assignment of such a variable represents the syntactic operation which

o1

integrates the elementary predication into the sentence. The structure of such
a variable v is a tuple (04, t,,t;, OP,n). A well-formed assignment of a vari-
able specifies the outer semantics o,, i.e. with which of the neighbors in the
semantic graph the tree chosen for this literal will be combined; the TAG ele-
mentary tree ¢, chosen for the outer semantic literal; the inner TAG elementary
tree t; which expresses the literal this variable is associated with; the opera-
tion OP € {Subst, Adj}; and the node address n of the substitution node or
adjunction site in the outer tree ,.

Trivial assignment A variable can also be trivially assigned, which means
that no operation will be carried out to include the semantic literal associated
with it into the semantics of the sentence. Most importantly, the variable con-
structed for the syntactic head of the sentence always gets the trivial assignment
(as the TAG tree expressing this semantics will only be an outer tree for oper-
ations, never an inner tree). Moreover, as certain TAG elementary trees may
express more than one semantic literal, the semantics associated with a variable
might have been already expressed by some tree chosen elsewhere in the seman-
tic graph. Such a variable is also trivially assigned, as each semantic literal is
expected to be realized exactly once in the sentence.

N:m-mapping from semantics to syntax On the other hand, there may in
general be an n:m-mapping of semantics to syntax, i.e. one (or several) semantic
literals may also be expressed by a combination of several syntactic elements.
In my implementation, I do not deal with this very general case. However, as
was explored in the SmartKom project, a TAG generator may make heavy use
of templates. Thus, the syntactic elements can be put together into one TAG
template which is then integrated as one elementary unit into the grammar. I
obtain an n:1-mapping from semantics to syntax, which can be dealt with as
discussed in the previous paragraph.

Constraints on the variable assignments There remain very few global
constraints. In addition to the ones mentioned above, it is required that:

(6) wherever a semantic literal is chosen as the outer semantics, one and the
same TAG tree must be chosen for it, and if it ever is an inner tree (if
its own variable is not assigned trivially), this inner tree must also be the
same

Furthermore, the local constraint that
(7) the feature structures in one operation are unifiable

is subsumed in the global constraint (4). But as constraint (4) holds between
all variables in the specification, it can only be checked finally, when all vari-
ables have been set. The unary constraint (7), though, can be checked at each
assignment, and will therefore be much more efficient. Because many feature
phenomena are local, this will improve the overall performance of the generator,
as it reduces the search space.

02

5.3.3 Depth-first search

Plain “bottom-up” or “top-down” generation is not well-defined for the semantic
graph as input, as it per se does not have a determined head (see figure 5.6
for the ambiguous example given above in (4.1)-(4.2), or the even more notori-
ous example in figure 5.7, presented here after (Kozlowski, 2002)). For a first
demonstration of feasibility, I chose a straightforward depth-first traversal of
the graph. However, one could imagine using a pre-processing step in order to
find possible semantic heads, and then try a top-down (or left-edge) traversal
instead.

(5.2) {hg : see(e,z,y) A ha : you(z) A hs : movies(y) A ha : def (y, hs, hs)
Ahy 2 run(f,y) A he = here(e) A hy : today(f)}

you o . def\
see run
NN
here / movies today

Figure 5.6: Semantic graph with undetermined head.

(5.3) (a) {ho: teach(e,z,y) A hy : good(e) A ha : mary(z)}
(b

(c
(d

Mary excels at teaching.

Mary teaches well.

Mary is a good teacher.

teach

/N

mary good
Figure 5.7: Ambiguous semantic graph and realizations.

The basic algorithm is presented in figure 5.8. It is a relatively straight-
forward depth-first traversal of the semantic graph, during which at each new
node, the associated variable is assigned a value. The traversal is executed by
simple backtracking in the case of a failure to assign a variable its value.

A depth-first traversal with backtracking guarantees that all solutions to the
realization problem will be found. With the current algorithm, a post-processing
module could chose among the grammatical realizations the one which fits best
for the current system purpose.

Finding assignments for variables The search space for the assignments for
variables is the set of all possible combinations of outer semantics, appropriate
outer and inner trees, operation and goal node. This necessitates a complexly
cascaded loop to test all possibilities. The algorithm is presented in figure 5.9.

53

Algorithm 1. (Depth-first realization)

Called on: a start vertex v in the semantic graph G.

1. If there is not yet a variable for v, create a new variable var.
2. Find a new assignment for var.

(a) If there is a new assignment:
i. Find a new, unvisited vertex w in G. (depth-first-
search)
ii. Start recursively with step 1 on w.

(b) Else (no assignment can be found any more) backtrack
to the last visited variable.

3. When the whole input semantics has been realized (an assign-
ment is found, but no other unvisited vertices exist), execute
all operations that were assigned to the variables.

(a) If a global feature clash occurs, start backtracking from
the last set variable.

(b) Else, store the realization result. If all possible realiza-
tions should be found (instead of just one), start back-
tracking from the last set variable.

4. Return the stored realization result(s).

Figure 5.8: The realization algorithm.

54

Algorithm 2. (Variable assignment)
Called on: variable var.

1. If no variable has been chosen as the head, and var has not
been the head in an earlier step during backtracking, try the
trivial assignment. Return true.

2. Else, for all possible outer semantics (neighbors of the vertex
n in the semantic graph var is associated with):

(a) For all trees that express the chosen outer semantics:

i. For all trees that express the (inner) semantics var
was created for:
A. Choose an operation; and

B. Choose a new goal node in the outer tree for
this operation.

3. If no such assignment can be found, return false.

4. Else, return true.

Figure 5.9: Finding an assignment for a variable.

Furthermore, the variable assignment interacts with the traversal. In the
case of backtracking, the assignment loop has to be restarted in just the position
that it was left in, when the last valid assignment had been found. Therefore,
the status of the assignments has to be stored, to enable the realizer to continue
with only those assignments that have not been tested before.

Execution During the search process, operations are collected as the assign-
ments of variables, and only the local constraint (7) can be checked. Thus, in a
final step, all other global constraints need to be checked for the solution can-
didate. If a constraint fails at this stage, backtracking needs to be triggered to
find a new candidate.

Then, the collected substitutions and adjunctions need to be actually car-
ried out in order to produce the derived TAG tree that is the solution to the
realization problem.

5.3.4 Ordering of adjunctions

Actually, another parameter plays a role in the variable assignment, that has
been ignored until now. This is the order in which adjunctions are carried
out. As mentioned above (see subsection 2.1.3), I follow (Schabes and Shieber,
1994) in allowing multiple adjunctions into the same node in the supposed TAG
grammar.

95

Furthermore, (Joshi and Vijay-Shanker, 1999) have shown that the ordering
of adjunctions is not only necessary for adjunctions into one and the same node,
but also if trees adjoin into different nodes of the trunk of an elementary tree,
in order to avoid semantic underspecification (see subsection 3.1.2).

Of course, the order in which substitutions are carried out, or adjunctions
into different elementary trees, does not play a role (and does not yield different
derivations or derived trees). Schabes and Shieber (1994) show how derivations
need to be seen as equivalent if they only differ with respect to the orderings of
such operations.

Redefinition of variables This means that in fact the variables as-
sumed as the representation of the constraint problem should be a tuple
(00, to,ti, OP,m, A), with o,, t,, t;, OP, and n as defined above; and where
A is a set of adjunctions (e.g. represented by the variables that are assigned
those adjunctions) that need to be carried out before this one.

Discussion An upper bound for the combinatorics introduced by this addi-
tional parameter is the powerset of the set of variables (equivalent to the set of
semantic literals by definition). That is, for a variable var € V., Ay, € p(V). It
can be seen that the introduction of this parameter in the general case increases
the search space significantly.

However, Ayq; that differ only in elements that refer to variables which are
assigned substitutions or adjunctions into different outer trees are equivalent.
Moreover, the variation of the parameter A only makes sense if OP = Adj.
These facts ensure that in all practical cases, the search space will not explode
exponentially.

For the adjunctions, the specified scoping in the input semantics actually de-
termines the ordering of operations completely. As in (Joshi and Vijay-Shanker,
1999), inner trees will be adjoined “inside-out,” i.e. scoped-over elements before
the out-scoping elements. This fact will be exploited in the implementation (see
chapter 6).

56

Chapter 6

Implementation

In this chapter I will describe the implementation of the semantics interface and
the syntactic realizer in Java. Section 6.1 gives some preliminary remarks about
the context of the implementation in the larger SMARTKOM system, section
6.2 presents the implementation of the semantics interface, and the realization
algorithm is shown in section 6.3.

6.1 Preliminaries

As mentioned briefly in the previous chapters, the realizer presented in this thesis
is part of a larger system, the SMARTKOM system. Generation in SMARTKOM
is currently already done with Tree Adjoining Grammars, using a large rule base
for the generation decisions.

6.1.1 Grammar organization

For the testing of the realizer, a small toy grammar for German was produced
including a set of lexicalized TAG trees with features and an appropriate seman-
tics interface. For the development of the grammar, existing templates from the
SMARTKOM grammar were partly used and split up (as described in section
4.5).

Iintroduced only those features into the grammar, that were directly needed
in order to prevent ungrammatical outputs. A TAG grammar with larger cover-
age would certainly need a much larger set of features, possibly modelled after
the English XTAG grammar.

The grammar is written in an XML format. The syntax schema is given
in appendix B. In SMARTKOM, tools have been developed that allow the con-
struction and maintenance of a TAG grammar using graphical interfaces. But
still, a lot of fine-tuning has to be done by hand by editing the XML text files.

Figures 6.1 and 6.2! show example entries from the toy grammar. A list of

! CONSTRAINT or cSTR designates the adjunction constraint, NA means null adjoining.
ARGST stands for argument status, i.e. subject, object, or adjunct. This feature is required by
the concept-to-speech synthesis.

NP|:z labels a substitution node of category NP, whose associated semantic argument
variable is z. Feature structures are only shown where they contain values.

o7

trees in the toy grammar is given in appendix A.

DET +
NP:x bottom: | AGR

CASE

CASE nom
N:z bottom: PER I
1
o)0)
ich
1
ho : me(x)

Figure 6.1: Example grammar entry for “ich” ().

6.1.2 Technicalities

The SMARTKOM system is implemented in Java, and so is this realizer. Apart
from making an integration into the current system easier, the Java language
has several advantages:

e it is operating system-independent; and

e there exist many predefined packages in the large Java community that
can be used and are easily accessible through their API specifications.

An abridged version of the Java API documention for the two packages
implemented for this thesis is included in the appendix (appendices D-F). It
was automatically generated using the Doxygen tool (see van Heesch, 1997)
which is freely available under the terms of the GNU General Public License.?

The complete javadoc documentation is contained in the source files. These
are available in a CVS directory at the German Research Center for Artificial
Intelligence (DFKI Saarbriicken). The basic path to the source directory is
/project/imedia3/imediabackbone/framework/SKGen/src/.

6.1.3 Existing packages

The implementation of the realizer builds on existing packages developed for
the SMARTKOM project. In particular, I use the following three packages:

de.dfki.smartkom.generator.tag The tag package contains data structures
for Tree Adjoining Grammars. The classes and their most important function-
ality are shown in table 6.1.

%see http://www.gnu.org/copyleft/gpl.html

o8

CONSTRAINT: NA

top: |SENTMODE decl

/\

ARGST Subj

top: | CASE nom CSTR.: NA

AGR VP:e
NPz /\
V:e /\

ARGST Obj]
: fop: CASE
zeige

show NPJ:»

_ [ARGST Ob]

CASE acc VP:e

NPl:y

VTrace

ho : show(e,z,y, z)

Figure 6.2: Example grammar entry for “zeige” (show).

‘ class ‘ description

TagTree TAG tree data structure; input/output through
XML files; substitution, adjunction
TagNode TAG tree node; recursive structure

TagTreeFamily | container for a family of TAG trees

TagGrammar container class for a list of tree families; methods
for finding trees
TTools miscellaneous printing tools for debugging

Table 6.1: Classes of the de.dfki.smartkom.generator.tag package.

TAG grammars are saved in XML files and can be read and printed using the
templates package. A TAG grammar (TagGrammar) is organized in tree families,
as is assumed in standard descriptive TAG grammars, and represented here as
TagTreeFamily data structures. These families group conceptually related trees
together, such as all the trees for a certain verb class, etc. A TagTreeFamily con-
sists of TagTrees, which can be found using the method findTagTree(String
name) by their name.

TagTrees have a [String identifier] (the name), and a [TagNode
rootnode]. They also specify any open substitution nodes, their derivation
history (if they are not elementary trees) and the foot node (if they are auxil-
iary trees). As these are fully lezicalized trees, they keep track of their [Vector
anchors] and their [TagNode head], which is the prominent anchor (= the
anchor whose maximal projection is the root of this tree). Nodes in the tree are
stored as references.

The TagTree class provides functionality for reading trees from XML files
and printing them, according to a specified XML schema. In addition to var-
ious predicates (such as isAuxiliary(), isFinal()), the implementation pro-
vides the TAG operations substitution (method substitute(String nodelD,
TagTree tree2)) and adjunction (adjoin(String nodeID, TagTree tree2)).
These methods also trigger feature unification, and store the results destruc-
tively in the trees that participate in the operation.

de.dfki.smartkom.generator.templates This package provides a special-
ized interface to the Xerces DOM Parser® that parses XML documents and
constructs hierarchical Java document objects representing their content.

XML documents are used as implementation-independent data files in
SMARTKOM.

de.dfki.smartkom.generator.unifier The unifier package contains a
data structure for recursive feature structures with coreferences. This class also
implements a unifier for feature structures dealing correctly with coreferences

3see http://xml.apache.org/xerces2-j/index.html

60

that reach over the whole TAG tree.

class ‘ description

FSPath paths to feature structures; with comparison
functionality

FSType feature structure data type, i.e. atomic value or
recursive feature structure

FeatureStructure class for recursive attribute value matrices; with

unification functionality, input/output through
XML files

UnificationException | unification clash

Table 6.2: Classes of the de.dfki.smartkom.generator.unifier package.

The tag and unifier packages were reimplemented in Java after a previous
Common Lisp implementation in the Verbmobil project.

6.2 TAG semantics interface

The semantics interface for TAG was implemented as a wrapper around the
existing TAG data structures. It is provided in the package de.dfki.smartkom.
generator.semantics, whose classes are listed in table 6.3. Consequently, all

‘ class ‘ description ‘
Proposition an MRS elementary predication
PropositionSet | an MRS structure, as used in the semantics in-
terface
Function the function ¢ mapping from TAG tree nodes to
semantic arguments
SemTagTree a TAG tree enriched by the semantics interface
SemTagNode a TAG node enriched by the semantics interface
SemTagTreeFamily | a family of SemTagTrees
SemTagGrammar a semantics-enabled TAG grammar

Table 6.3: Classes of the de.dfki.smartkom.generator.semantics package.

SemTag-classes extend their respective basic classes in the tag package. The
extensions ensure the correct function of the read-in and printing methods.
Furthermore, the methods for substitution and adjunction are overridden in
order to also compute the correct semantics of a phrase.

The UML class diagram showing the most important links between classes
in the de.dfki.smartkom.generator.semantics and de.dfki.smartkom.
generator.realizer packages can be seen in figure 6.3.

The SemTagTree class is extended from TagTree to include a
PropositionSet representing the MRS structure that the leaves of the tree
express. Each SemTagNode contains a reference to an ordinary semantic argu-
ment. The function ¢ is also represented explicitly, and contained in the TAG

61

29

TagTree TagNode TagTreeFamily

package de.dfki.smartkom.generator.tag

.
Ué package de.dfki.smartkom.generator.semantics
=

@

S - | SemTagTree 0.0 SemTagTreeFamily 0.0 > SemTagGrammar

© —

-

= 1

: SemTagNode

= root

7

a. 1 1

) . ” 0.0 =

% Function PropositionSet <>——————"=1 Proposition

Y

= I}

o

L
S N
=

@

= _ .

S Graph <> ODVertex Variable toRealize grammar
-t

g.

Hg 0.0

5 0.0 Edge L~ |DFRealizer

=] ‘

e, grap ‘ |

& |

=z I

Z |

' executionResult Executor I

package de.dfki.smartkom.generator.realizer

tree.

6.2.1 Computation of the semantic content of phrases

The definitions given in chapter 3 are very straightforwardly implemented. First,
the conventional substitution or adjunction is carried out between the two trees.
If this succceeds, the semantic content of the phrase needs to be computed.

Substitution For substitution of a tree ¢5 into a tree ¢; at node n, the semantic
variables occuring in ¢, are first consistently renamed in order to let the two
functions ¢ and ¢o have different ranges, as is required in the definition.

Then, the semantic arguments of the root node of 5 and the substitution
site are equated: ¢o(root(72)) := ¢1(n). This equation has to be stored in the
semantics o9, the function ¢o and of course on the tree nodes itself. As the
handles are not affected by substitution, these are the only variable unifications
that need to be carried out.

Finally, the set union of the two semantic representations is constructed and
set as the semantic content of the resulting tree. The functions are also merged.

Non-scopal adjunction Adjunction of a tree t9 into a tree ¢; at the node
n also requires the renaming of all semantic variables (and handles) in ty. If
o2 does not have a scopal argument, the variable associated with the root and
foot of 79 is unified with the variable associated with n: ¢a(root(72)) := ¢1(n).
Furthermore, the two top handles of o; and o9 need to be equated.

In analogy to the substitution case, the two PropositionSets representing
the MRS structures are unified, and the functions merged.

Scopal adjunction In scopal adjunction, the semantics oy associated with
the adjoining tree has exactly one prominent scopal (handle) argument that
needs to be bound. (Note that as explained in chapter 3 T do not yet treat
quantifier scope, and the second handle argument of quantifiers is always left
unconstrained.)

This handle argument is the current top handle of the outer tree. Such
an approach ensures that subsequent adjunctions into the same tree will scope
over one another according to their adjunction order. This treatment of scope
without underspecification was put forward in (Joshi and Vijay-Shanker, 1999)
and is thus relatively straightforwardly implemented.

6.3 Realizer architecture

The syntactic realizer is implemented in the de.dfki.smartkom.generator.
realizer package, whose classes are listed in table 6.4.

6.3.1 Data structures

The Graph class for semantic graphs, along with its dependents Vertex and
Edge, is straightforwardly implemented after the generic graph data structure in

63

‘ class ‘ description

Graph a generic graph class
Vertex vertices of a generic graph, containing some ar-
bitrary piece of data
Edge edges of a generic graph, containing arbitrary
data

DFRealizer | the depth-first realizer
Variable | a variable of the realization problem associated
with a semantic literal

Executor | executor for the realization script returned by
the DFRealizer

TreeHandle | a handle associated with a semantic literal, re-
turning trees expressing this literal one by one

Table 6.4: Classes of the de.dfki.smartkom.generator.realizer package.

(Goodrich and Tamassia, 1997). It provides the infrastructure for the semantic
graphs with undirected edges on which the realizer operates. The vertices have
a data field containing the semantic Proposition they are constructed for.

The variables of the realization problem are represented as instances of class
Variable. Variable objects have a relatively complex inner structure to keep
track of their current status during assignment and re-assignment (triggered by
backtracking). Thus, they do not only have fields with references to the inner
and outer semantics, as well as inner and outer TAG trees they are assigned,
but also references to all available outer propositions, and all inner and outer
trees that are still possible for subsequent assignments. The possible trees are
stored in TreeHandles.

The TreeHandle class implements an iterator for TAG trees that encap-
sules the mechanism for choosing the next best elementary expressing a certain
semantics. In the current implementation, the trees are just returned in an
arbitrary order. It is easily imaginable, however, that this class’ functional-
ity is extended to provide trees in an order specified by context, by pragmatic
features, or other heuristics.

6.3.2 Depth-first algorithm

The depth-first realization algorithm is implemented in the DFRealizer class.
It is started by a call to realize (PropositionSet p), the only public method
in this class.

First, the method createGraph() in the class semantics.PropositionSet
is called to compute the appropriate semantic graph for the input MRS struc-
ture. This method explicitely constructs a new realizer.Graph object with
the nodes and edges as specified in definition 6.

Then, the method setVariables(Graph g) is called, that starts the depth-

64

first traversal of the semantic graph and the setting of the variables. A method
getStartNode() in the Graph class determines at which vertex the traversal
should be started. It currently just arbitrarily picks the first vertex in the
vertices list, but this could be improved by some appropriate heuristics.*

The search process is then started in DFRealizer by calling the recursive
method setVariable(Vertex v) with the computed start node. setVariable
first creates a new Variable for the Vertex it was called on, unless the method
was called in a subsequent (backtracking) step and there already exists a variable
for this vertex. Then, on the variable var the method findValidAssignment ()
in the Variable class is called.

Backtracking In case of a clash, backtracking has to be started at the last
visited variable. The variables are therefore kept in a list, in which backtracking
just retracts by the index.

When a variable is successfully assigned a new value, this is stored in
a HashMap containing all variables. Then, the search proceeds to the next
variable on the backtracking list. If there is no such variable, the method
findNewVertex () is called to find a new vertex in the semantic graph on which
setVariable() can be called. The vertices are returned in depth-first order.

The backtracking also keeps track of which propositions have already been
realized by the partial syntactic structures built at each stage. For this, all
proposition sets belonging to TAG trees that are chosen as inner trees during
the realization process are collected.

Variable assignment If the semantic content associated with this variable is
already realized, the variable gets a trivial assignment and is skipped. Other-
wise, the algorithm first attempts to make this variable the head of the sentence,
in case there has not been chosen a head before, and this variable has not been
tested as the head in previous steps.

If a trivial assignment is not possible, the complex loop sketched in algorithm
2 is started. TreeHandles stored in the variable keep track of which trees have
already been tried in previous attempts for a semantic proposition.

In order to choose the operation, once the participating trees have been
determined, a complete search is not necessary: the type of the operation is
uniquely determined by the type of the inner tree, i.e. whether it is an auxiliary
tree (adjunction) or an initial tree (substitution). The possible goal nodes are
also quite restricted: For substitution, only the substitution node which is asso-
ciated with the appropriate semantic argument is considered. For adjunction,
all nodes on the trunk need to be tested (because all of them yield the correct
semantics); wrong adjunctions will be filtered out by failing feature unifications.

Execution Once all semantic literals are realized (and no further vertex can be
found in the semantic graph), the execution of the collected operations (stored

“For example, a heuristic could determine which of the semantic vertices is likely to be
expressed as the head, in order to enable top-down realization. A possible criterion would be
the number of semantic argument variables (as opposed to handle variables) the literal takes,
or generally the degree of the vertex.

65

in the assigned variables) is attempted. As the adjunction order is not directly
implemented as a parameter of the variables, the operations have to be ordered
in a post-processing step. The ordering happens with the following heuristics:

e A strict bottom-up derivation is produced by ordering all operations that
specify a TAG tree t as the outer tree before the operation that uses this
tree as the inner tree.

e Adjunctions are ordered according to their scoping: scoped-over adjoining
semantic literals are ordered before all those literals that scope over them.

Finally, an Executor is created that takes the ordered derivation script and
actually carries out all operations. The resulting TAG tree is then finalized and
returned to the DFRealizer as a result. In case a clash occurs during execution
(because all operations have up to this point only been tested locally, i.e. one at
a time), or in case all possible realizations are requested to be found, not only
the first one, backtracking is triggered in the DFRealizer, starting from the last
visited variable.

Memoization The implementation uses memoization (see Norvig, 1992) in
order to avoid spurious computation steps. Memoization is currently used for
the construction of TreeHandles, which requires a search through the complete
TagGrammar to find all the trees that express a certain semantics. These trees
are then stored in a HashMap to make them available for further steps.

Memoization of the results of TAG operation computations is currently not
implemented. This is a possible addition that could improve the efficiency of
the syntactic realizer.

Another important memoization effect would be possible for the checking of
the consistency constraint (3), of using one and the same tree for a semantic
literal during the derivation. This can be done by storing the trees that were
chosen for a literal during the assignments, and deterministically choosing the
same tree (without the construction of a TreeHandle for all possible trees) if
the same literal takes part in another operation. This treatment interacts quite
heavily with the backtracking, though, as chosen trees have to be unset in case
of reassignment. It is therefore not implemented in the current version.

Parameters Memoization can be turned on and off by setting the field
memoize to true and false, respectively.

Furthermore, the realizer can be tuned to either deliver only one possible
realization of a given input, or return all realizations that are possible. This is
done by setting the field allRealizations to false or true.

6.4 Examples

This section presents a detailed example from the running system. The gram-
mar that was used to produce the examples had to be written by hand, as no
TAG grammar with semantics interface previously existed. All the trees of the

66

toy grammar are listed in appendix A. The grammar can also be found in the
CVS repository at DFKI, at SKGEN/etc/templates/semantics-test.xml. Fea-
tures were added “as needed,” only in order to prevent ungrammatical results.
This task was facilitated by the realizer, because the backtracking capability
guaranteed the production of additional unwanted realizations if features were
missing.

6.4.1 Usage

The realizer must be used through its Java API (see appendices). It can be
tested using a test class like the one presented in appendix C. It shows how a
grammar file must be parsed and a SemTagGrammar constructed, which can then
be used to realize the PropositionSet in the input file by a DFRealizer.

The realization results are returned in a HashSet, and can be printed one
by one into files.

6.4.2 Peter loves Mary.

A relatively simple example is:

(6.1) Peter liebt Maria immer.
Peter always Mary loves.

Peter always loves Mary.

Its input semantics is: (hg, {ho : always(e, h1)Ahy : loves(e, z,y) Aha : peter(z)A
h3 : maria(y)})®

The generator finds two realizations according to the grammar. Their deriva-
tions are shown in figure 6.4. Note that the grammar contains both subject
(nominative case) and object (accusative case) trees for “Peter” and “Maria”. It

Aliebt Qljebt
Y| [
75911 7 9911
1L 221' 222 1 221| 22
7 7
Ve I Ve I
Qpeter Omaria Bimmer Qpeter Amaria Bimmer
Peter liebt Maria immer. Peter liebt immer Maria.

(Peter loves Mary always.) (Peter loves always Mary.)

Figure 6.4: Derivation trees for “Peter liebt Maria immer.”

is the variable assignment algorithm that prevents the wrong substitutions right
away, because they would lead to wrong semantics.

However, null adjoining constraints at the root node and second-to-top VP
node of the tree for “liebt” (loves) prevent the adverb adjoining into them. The
realization algorithm tests all these possibilities, and is forced to backtrack.

®Semantic variables as well as handle variables are represented by Integer objects in the
code. They are written as Latin characters resp. h; here for readability.

67

6.4.3 SMARTKOM system example

An example output the SMARTKOM system is required to produce in the home
scenario is the information:

(6.2) Nachrichten kommen gerade im Ersten.
News run now on first-channel.

News are currently shown on the first (TV) channel.

This would be the appropriate answer for a user request like “Where can I watch
the news right now?”

Its semantic representation given as input to the realizer is the following:
(h3,hy : run(4,5) A hy : news(5) A hs : now(4, hy) A he : loc(4,8) A hy : ard(8))°

Semantic graph creation As a first step, the semantic graph for this input
PropositionSet is explicitely built using the algorithm defined in definition 6.
It is depicted in figure 6.5.

now
run—— loc
news ard

Figure 6.5: Semantic graph for “Nachrichten kommen gerade im Ersten.”

Traversal An arbitrary vertex in the semantic graph is chosen as a start
vertex. In one test, the system chose the vertex for now. The other vertices
are found one by one after successful assignments of all previous variables. In
the course of the depth-first search, 32 scripts are produced. These scripts are
complete assignments that were ordered by the heuristics described on page 66.

Three such scripts (retrieved from a log file of a test run on August 21) are
shown in figure 6.6. The variables are printed after the linear ordering of the
derivation, one in one line. The first item (e.g., ard) is the semantic literal
(or vertex in the semantic graph) the variable is associated with. The second
item (i: Nachrichten) names the chosen inner TAG tree; the third item (o:
anxOKOMMEN) names the chosen outer TAG tree. Fourth comes the type of
operation (SUBSTitution). The last item (anxOKOMMEN1) is the node identifier in
the outer tree, at which the operation should be carried out.

Trivially assigned variables do not have any trees or operations assigned.
The ordering heuristics always sorts them to the end of the script.

Execution The executor is called on realization scripts. There are three pos-
sible results of the execution:

SARD is the name of the first public TV channel in Germany.

68

1. < ard ; i: Ersten ; o: auf ; SUBST ; aufl2 >
< loc ; i: auf ; o: gerade ; ADJ ; gerade >
< now ; i: gerade ; o: anxOKOMMEN ; ADJ ; anxOKOMMEN22 >
< run ; i: laufenden ; o: Nachrichten ; ADJ ; Nachrichtenl >
< news -- trivial >
2. < news ; i: Nachrichten ; o: anxOKOMMEN ; SUBST ; anxOKOMMEN1 >
< ard ; i: Ersten ; o: auf ; SUBST ; aufil2 >
< loc ; i: auf ; o: gerade ; ADJ ; gerade >
< now ; i: gerade ; o: anxOKOMMEN ; ADJ ; anxOKOMMEN22 >
< run -- trivial >
3. < news ; i: Nachrichten ; o: anxOKOMMEN ; SUBST ; anxOKOMMEN1 >
< now ; i: gerade ; o: im ; ADJ ; im >
< ard ; i: Ersten ; o: im ; SUBST ; iml2 >
< loc ; i: im ; o: anxOKOMMEN ; ADJ ; anxOKOMMEN22 >
< run -- trivial >

Figure 6.6: Example derivation scripts.

1. The consistency constraint (3) is violated. An example is the first script
above, where in the variable for gerade, the tree anxOKOMMEN is chosen
for the semantics run; but in the variable for run itself, the chosen tree is
laufenden. This is of course impossible, and such a script is rejected by
the executor.

2. All operations can be carried out, but the finalization, which is called on
the complete derived tree, fails. This reflects feature clashes that can usu-
ally only be detected during the unifications of top and bottom structures
at each node.

An example is given with the second script above. The realizer chose the
tree auf for the semantics loc. However, the preposition “auf” (on) in
German usually requires that its NP argument is determined (i.e., nor-

(192

mally it is modified by a determiner “the” or “a”). As the NP argument
in the example (“Ersten” = first programme) carries a feature [DET —], a

clash occurs when the top and bottom feature structures of the NP node
are attempted to be unified.

3. The execution is successful. This is exemplified by script 3, which produces
the sentence from example (6.2).

Result In the example run, there were 26 cases (of the 32 complete scripts)
of a violation of the consistency constraint. Three times the finalization failed.”

"This number is quite small here, because of the few features and the very small size of
the grammar.

69

Akommen

7
7
1,7 \2N
e
'

X Nachrichten /Bgerade Bim
|
12]

|
QFErsten

Akommen

’
1.7 &2
’
’
QA Nachrichten 5gerade

&

,Bim
|
12]
|
QFErsten

()

Akommen

/
/
1, ¥2
/

QNachrichten ﬁzm
/

/
12, ¥
/
QFErsten /Bgerade

Figure 6.7: Derivation trees for “Nachrichten kommen gerade im Ersten.”

70

Three correct realizations were found. Figure 6.7 shows their derivation
trees,® and figure 6.8 the derived trees. There are two derivation trees for the
sentence “Nachrichten kommen im Ersten gerade,” because the grammar does
not prohibit embedded adjoinings at the moment. Thus, both the embedded
adjoining and the multiple adjoining versions exist.

Derivation trees (a) and (b) yield:

VP
//\
NP VP
| T
N Vv VP
Nachrichten kommen PP VP
news run TN T
P NP Adv VP
| | | |
m N gerade VTrace
on | now |
Ersten €
ARD

VP
NP VP
| — T
N Vv VP
| | T
Nachrichten kommen Adv VP
news run | T~
gerade PP VP
now /\ |
P NP VTrace
| | |
m N £
on |
FErsten
ARD

Figure 6.8: Derived trees for “Nachrichten kommen gerade im Ersten.”

8 Adjunctions, if necessary, are ordered left-to-right.

71

72

Chapter 7

Conclusion

This thesis has defined a semantics interface for Tree Adjoining Grammars to be
used in generation; and presented a syntactic realizer which uses this interface
to generate sentences from flat semantic input.

However, several extensions are possible, and remain for further work. I will
discuss them at the end of this chapter.

7.1 Contribution of this thesis

In this thesis, I gave criteria for a semantic representation to be used as the
input in natural language generation. I showed that Minimal Recursion Seman-
tics fulfills the requirements, being a flat, underspecified semantic structure. I
then defined a semantics interface for Tree Adjoining Grammar that uses a ver-
sion of MRS as its semantic representation. This interface can correctly deal
with (fixed) scope and scope ambiguities through the use of ordered multiple
adjunctions. At the moment, it can not handle quantifier scope and underspec-
ification, as dominance constraints on handles and handle argument variables
are not implemented yet.

In the second part of the thesis, I reviewed previous approaches to generation
with TAG, and found that most of them are not well modularized and/or not
easily transferrable to other domains or other languages. I proposed a syntactic
realizer that generates TAG structures from flat semantics using a generic depth-
first search strategy. To accomplish this, I redefined the realization problem as
a constraint satisfaction task, making it accessible for other constraint solving
mechanisms.

This solution lacks many of the noted defects: the introduction of a level of
semantic representation after the (often domain dependent) abstract generator
input modularizes the architecture. The realizer presented here can deal with
standard TAG grammars like the English XTAG grammar (of course enhanced
with an appropriate semantics interface). It can handle input that is notorously
ambiguous not only with respect to word choice in the case of synonyms, but
also with respect to different immediate dominance structures (i.e., which of the
semantic literals becomes the head) and to syntactic categories. The exhaus-
tive depth-first algorithm guarantees that all realizations of a given input are

73

produced.

7.2 Extensions

The algorithm proposed in this thesis for syntactic realization has the status
of a feasibility study. However, the formalization of the problem in the way
presented in this chapter as a constraint satisfaction problem makes it open to
extensions. I will discuss some of the extensions that seem directly available
and how they can be brought forward in this section.

7.2.1 More efficient algorithms

Constraint solving is a broad field, and many proposals exist for efficient con-
straint solving algorithms. It is one of the big advantages of formalizing a prob-
lem as a constraint system, that several solving mechanisms can be used once
the formalization is complete. Therefore, the employment of another, more effi-
cient constraint solving algorithm is easily possible in the proposed architecture,
and could lead to an increase in system performance in terms of efficiency.

A path worth exploring is the use of constraint propagators instead of just
plain search.

7.2.2 Quantifier Scope

The semantics interface in this thesis treats only fixed scope, not the floating
scope of quantifiers. However, there is a possibility how quantifier scope could be
directly integrated into the chosen architecture of the semantics interface. The
only necessary extension would be to allow dominance constraints on handle
variables and ensure the correct introduction of such a constraint between the
second scopal variable of a quantifier and the label of its appropriate nuclear
scope.

This could be done by following the proposal in (Gardent and Kallmeyer,
2003). They associate not only one semantic argument variable with each node
in a TAG tree, but also a label (handle). The correct nuclear scope for quan-
tifiers is then provided as the label of the verbal predicate is associated with
NP substitution nodes. Thus, this label will eventually be dominated by any
quantifiers that these NPs have.

Another possibility is to put the computation into the substitution oper-
ation: let an open (floating) scopal argument of a substituting tree dominate
the current top handle of the tree into which it substitutes. This treatment,
however, seems much more idiosyncratic.

7.2.3 More complex expressions

The introduction of a label index on nodes after (Gardent and Kallmeyer, 2003)
would also improve the coverage of the grammar by allowing some operations
that would otherwise be hard to control. They give examples of analyses of
quite interesting phenomena in English, like control verbs.

74

However, I believe that the implementation of the mechanism into the feature
structures could yield complexity problems, while a realization much like the
definition of the semantics interface in this thesis (see chapter 3) seems to be
straightforward.

7.2.4 Non-semantic information

One of the original goals of this thesis was to provide a modular description
of the realization task as a constraint satisfaction problem, in order to make it
possible to take other than strictly semantic information into account during
the generation decisions.

In the current architecture, a module choosing contextually appropriate re-
alizations could be easily included as a post-processor, because all the possible
realizations are generated. This is not an efficient solution, though.

One point were contextual information can already influence the generation
is the TreeHandles. The order in which trees are chosen is encapsuled into
a TreeHandle for each semantic literal. The TreeHandle could therefore use
information such as sentence mode (e.g., [SENTMODE interrogative]) to prefer

certain trees over others (e.g., prefer verb-first trees in German).

For the inclusion of other pragmatic information, a declarative constraint
base has to be built that specifies extra-semantic constraints on syntactic real-
izations, based on some input. For example, the SMARTKOM generator abstract
input representations contain pragmatic information such as the type of the ut-
terance, the user request, topic and focus, and so on. Once the constraints
have been formalized, a generic constraint solving algorithm can be employed
to make use of them.

I therefore believe that such extensions are relatively easily feasible in the
proposed architecture.

6]

76

Appendix A

List of trees in the toy grammar

Nominal trees

<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"
<elementaryTree type="initial"

Determiner trees

name="Peter"> (Subj)
name="Maria"> (Subj)
name="Peter-2"> (0bj)
name="Maria-2"> (0bj)
name="ich">
name="Sie">
name="TIhnen">
name="Uebersicht'">
name="Filme">
name="Sendungen">
name="Nachrichten">
name="Ersten'>
name="Pro7">
name="Programm'>
name="Kinos">

<elementaryTree type="auxiliary"
<elementaryTree type="auxiliary"
<elementaryTree type="auxiliary"
<elementaryTree type="auxiliary"

Preposition trees

<elementaryTree type="auxiliary"
<elementaryTree type="auxiliary"
<elementaryTree type="auxiliary"

Adjectival trees

<elementaryTree type="auxiliary"
<elementaryTree type="auxiliary"

name="eine">
name="die">
name="das">
name="der"> (Genitive)

name="'ueber">
name="im">
name="auf">

name="laufenden">
name="gewuenschten">

7

<elementaryTree

Verbal trees

<elementaryTree
<elementaryTree
<elementaryTree
<elementaryTree

Adverbal trees

<elementaryTree
<elementaryTree
<elementaryTree
<elementaryTree
<elementaryTree

type="auxiliary"

type="initial"
type="initial"
type="initial"
type="initial"

type="auxiliary"
type="auxiliary"
type="auxiliary"
type="auxiliary"
type="auxiliary"

Relative pronoun tree

<elementaryTree

type="auxiliary"

name="Heidelberger">

name="anxOLIEBTnx1">
name="anx0ZEIGEnx2nx1">
name="aSEHENnxOnx1">
name="anx0KOMMEN">

name="immer">
name="heute'">
name="abend">
name="hier">
name="gerade">

name="die">

78

Appendix B

Grammar format

<?7xml version="1.0" encoding="150-8859-1"7>
<!DOCTYPE schema SYSTEM "http://www.w3.org/1999/XMLSchema.dtd">

<schema
xmlns="http://www.w3.org/1999/XMLSchema"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<!-- <annotation/> -->

<element
name="elementaryTrees"
type="ElementaryTrees'">
</element>

<complexType name="ElementaryTrees'">
<element
name="treeFamily"
type="TreeFamily"
minOccurs="0"
maxOccurs="unbounded"/>
</complexType>

<complexType name="TreeFamily">
<element
name="elementaryTree"
type="ElementaryTree"
minOccurs="0"
max0Occurs="unbounded"> <!-- minOccurs="1" 77 -->
</element>
</complexType>

<complexType name="ElementaryTree'">
<element name="semantics" type="Semantics" maxOccurs="1"/>
<group ref="NodeAlternatives"/>
<attribute
name="comment"
type="string">
</attribute>

79

<attribute
name="name"
type="string">
</attribute>
<attribute
name="type"
type="string">
</attribute>
</complexType>

<complexType name="Semantics">
<attribute
name="globalHandle"
type="string"/>
<element name="predicate" type="Predicate" maxOccurs="unbounded"/>
</complexType>

<complexType name="Predicate'">
<attribute
name="name"
type="string"/>
<attribute
name="handle"
type="string"/>
<t--
<attribute
name="arity"
type="integer"/>
-=>
<element name="semArg" type="string" minOccurs="0" maxOccurs="unbounded"/>
<element name="scopeArg" type="string" minOccurs="0" maxOccurs="unbounded"/>
</complexType>

<group name="NodeAlternatives">
<choice>
<element
name="node"
type="RecursiveNode"/>
<element
name="node"
type="BaseNode"/>
</choice>
</group>

<group name="(OneFootNode">

<group
ref="NodeAlternatives"
minOccurs="0"
max0ccurs="unbounded" />

<element
ref="node"
type="FootNode"
minOccurs="0"

80

max0ccurs="1"/>
<group
ref="NodeAlternatives"
minOccurs="0"
max0ccurs="unbounded" />
</group>

<group name="ConstraintAndFeatures">
<element
name="constraint"
type="Constraint"
minOccurs="0"
maxOccurs="1"> <!-- minOccurs="0" implies <constraint type="none"/> -->
</element>
<element
name="top"
type= lITop n
minOccurs="0"
max0Occurs="1">
</element>
<element
name="bottom"
type="Bottom"
minOccurs="0"
maxOccurs="1">
</element>
</group>

<complexType name="RecursiveNode">
<group ref="ConstraintAndFeatures"/>
<group ref="OneFootNode"/>
<attributeGroup ref="NodeAttributes"/>
<attribute
name="type"
type="RecursiveNodeType"/>
</complexType>

<complexType name="FootNode">
<group ref="ConstraintAndFeatures"/>
<attributeGroup ref="NodeAttributes"/>
<attribute
name="type"
type="FootNodeType"/>

</complexType>

<!-- leaf <element> node == BaseNode -->
<!-- if anchor then a text() node exists -->
<!-- if subst then BaseNode is "empty" -->

<complexType name="BaseNode" base='"string" derivedBy="extension">
<attributeGroup ref="NodeAttributes"/>
<attribute
name="type"
type="BaseNodeType"/>

81

</complexType>

<attributeGroup name="NodeAttributes'">
<t-- ID -->
<attribute
name="cat"
sem-arg="string"
type="string"/>
<!-- type is different in BaseNode, FootNode, and RecursiveNode -->
</attributeGroup>

<simpleType
name="RecursiveNodeType"
base="string">
<enumeration value="int"/>
</simpleType>

<simpleType
name="BaseNodeType"
base="string">
<enumeration value="anchor"/>

<enumeration value="head"/> <!-- note that "head" implies "anchor" -->
<enumeration value="subst"/>

</simpleType>

<simpleType

name="FootNodeType"
base="string">
<enumeration value="foot"/>
</simpleType>

<complexType name="Constraint">
<element
name="tree"
type="TreeReference"
minOccurs="0"
max0ccurs="unbounded" />
<attribute
name="type"
type="ConstraintType"/>
</complexType>

<simpleType
name="ConstraintType"
base="string">

<enumeration value="SA"/> <!-- Selective Adjoining -->

<enumeration value="NA"/> <!-- Null Adjoining -->

<enumeration value="0A"/> <!-- Obligatory Adjoining -->

<enumeration value='"none"/> <!-- no constraint -->
</simpleType>

<complexType name="TreeReference'">
<attribute name="name" type="string"/>

82

</complexType>

<complexType name="Top">
<group ref="FVPair" minOccurs="0" maxOccurs="unbounded"/>
</complexType>

<complexType name="Bottom">
<group ref="FVPair" minOccurs="0" maxOccurs="unbounded"/>
</complexType>

<group name="FVPair">
<choice>
<element
name="fvpair"
type="RecursiveFVPair"/>
<element
name="fvpair"
type="BaseFVPair"/>
</choice>
</group>

<complexType name="RecursiveFVPair">
<attribute name="feature" type="string"/>

<!-- <attribute name="type" type="string"/> -->
<!-- NO VALUE -->
<attribute name="coreference" type="string"/> <!-- integer/ID? -->

<group ref="FVPair" minOccurs="0" maxOccurs="unbounded"/>
</complexType>

<complexType name="BaseFVPair">
<attribute name="feature" type="string"/>

<!-- <attribute name="type" type="string"/> -->
<attribute name="value" type="string"/>
<attribute name="coreference" type="string"/> <!-- integer/ID? -->
<!-- NO RECURSION -->
</complexType>
</schema>

83

84

Appendix C

RealizeTest class

package de.dfki.smartkom.generator.realizer;

import de.dfki.smartkom.generator.semantics.*;
import de.dfki.smartkom.generator.tag.TTools;
import de.dfki.smartkom.generator.templates.*;
import java.io.x*;

import java.util.*;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

public class RealizeTest {

public static void main(String[] args) {
// show debug messages.
TTools.showDebugMessages = true;

// parse the grammar document
TemplateParser parser = new TemplateParser();
try {
parser.parse("../etc/templates/semantics-test.xml");
}
catch (SAXException se) {
se.printStackTrace();
}
catch (IOException ioe) {
ioe.printStackTrace();
}
// construct the grammar
SemTagGrammar grammar = new SemTagGrammar (parser.getDocument());

// argument is a filename containing some semantics.
String filename = args[0];
try {
// construct the semantics contained in the file
parser.parse(filename) ;

85

Element el = (Element) parser.getDocument().
getElementsByTagName ("semantics").item(0) ;
PropositionSet pset = new PropositionSet(el);

DFRealizer realizer = new DFRealizer (grammar);
HashSet results = realizer.realize(pset);

// print the resulting SemTagTrees into files
Iterator resit = results.iterator();

int i = 0;

while (resit.hasNext()) {

i++;
((SemTagTree)resit.next()) .printToFile("tmp/" + i + "out.xml");
}
}
catch (Exception e) { e.printStackTrace(); }
}

}

86

Appendix D

Java API Class Index

DFRealizer (Class implementing a (top down) depth-first realizer for

some semantics represented as a PropositionSet (p.96)) . . 116
Edge (This class implements an undirected Edge that can hold some

data object) oL 118
Executor (This class implements an executor of TAG derivation scripts)120
Function (This class provides a function implementation) 90
Graph (This class implements a generic graph data structure, to be

used by a syntactic realizer) 122
Proposition (This class implements an MRS elementary predication) 92
PropositionSet (This class implements an MRS structure) 96
SemTagGrammar 103
SemTagNode (A Tag Node implementation that also provides a se-

mantics interface) 106
SemTagTree (A Tag Tree implementation that also provides a seman-

tics interface) L L 108
SemTagTreeFamily (A tag tree family is a set of trees) 113
TreeHandle (A handle class which delivers possible TAG trees for a

certain semantics in some order) 126
Variable (This class implements a realization variable) 128

Vertex (This class implements a Vertex that can hold some data object)131

87

88

Appendix E

Semantics Class Documentation

E.1 Package de.dfki.smartkom.generator.semantics

Classes

e class Function

This class provides a function implementation.

e class Function::FunclIterator

This class implements an iterator getting keys for values of a Function
(p.90).

e class Proposition

This class implements an MRS elementary predication.

e class PropositionSet

This class implements an MRS structure.

e class PropositionSet::PropositionHandlelterator
e class PropositionSet::PropositionTypelterator

e class SemTagGrammar

e class SemTagNode

A Tag Node implementation that also provides a semantics interface.

e class SemTagTree

A Tag Tree implementation that also provides a semantics interface.

e class SemTagTreeFamily

A tag tree family is a set of trees.

89

E.2 Function Class Reference

This class provides a function implementation.

Public Methods
¢ Function ()

Constructor.

e Iterator getKeysDirect (Object value)
Gets all keys mapping to the given value.

¢ boolean disjointValues (Function func)

Tests whether the values of the two functions are disjoint.

¢ int numberOfValues ()

Gets the number of disjoint values that this Function maps to.

E.2.1 Detailed Description

This class provides a function implementation.
Definition at line 8 of file Function.java.

E.2.2 Member Function Documentation

boolean Function::disjoint Values (Function func)

Tests whether the values of the two functions are disjoint.

Parameters:
func The second Function whose values to test.

Returns:
true, if the value sets are disjoint; false otherwise.

Definition at line 28 of file Function.java.

Iterator Function::getKeysDirect (Object value)

Gets all keys mapping to the given value.
This implements the Function”-1, returning keys for values.

Parameters:
value the value to which the keys need to be found.

Returns:
an Iterator containing all keys mapping to the specified value.

Definition at line 19 of file Function.java.

90

int Function::numberOfValues ()

Gets the number of disjoint values that this Function maps to.

Returns:
the size of the set of values.

Definition at line 42 of file Function.java.

91

E.3 Proposition Class Reference

This class implements an MRS elementary predication.

Public Methods
e String getName ()

Gets the name of this elementary predication.

e Integer getHandle ()
Gets the label of this elementary predication.

e ArrayList getSemArgs ()

Gets all (ordinary) semantic arguments of this elementary predication.

e ArrayList getScopeArgs ()

Gets all scopal arguments of this elementary predication.

e boolean hasScopeArgs ()

Tests whether this elementary predication has a scopal argument.

¢ Proposition (Element predicate)
Constructor from a parsed XML file.

e boolean equals (Object o)
Tests whether this Proposition and the specified object are equal.

e boolean translatesTo (Proposition p, HashMap translateArgs)

Tests whether this Proposition translates to the specified Proposition, given a
translation dictionary.

e void prettyPrint (PrintWriter out)
Prints this proposition human-readably onto the specified PrintWriter.

e String toString ()

Prints this proposition to a string.

E.3.1 Detailed Description

This class implements an MRS elementary predication.
Definition at line 15 of file Proposition.java.

92

E.3.2 Constructor & Destructor Documentation
Proposition::Proposition (Element predicate)

Constructor from a parsed XML file.
This constructs a new Proposition from an Element node contained in a
parsed XML file.
Parameters:
predicate the element node representing this proposition.

Definition at line 78 of file Proposition.java.

E.3.3 Member Function Documentation
boolean Proposition::equals (Object o)

Tests whether this Proposition and the specified object are equal.

Two propositions are equal, if they have the same name (i.e. represent the
same predicate), and their semantic argument and scopal argument lists are
both equal (i.e., contain the same argument variables).

Parameters:
o the Object to which to compare this Proposition.

Returns:
true, iff the specified Object is a Proposition, its name is the same as
this proposition’s name, and the semantic and scopal argument lists are
equal; false otherwise.

Definition at line 113 of file Proposition.java.
References getScopeArgs(), and getSemArgs().

Integer Proposition::getHandle ()

Gets the label of this elementary predication.

Returns:
the label of this proposition.

Definition at line 30 of file Proposition.java.
Referenced by PropositionSet::getHandles(), and PropositionSet::setHead().

String Proposition::getName ()

Gets the name of this elementary predication.
This returns the predicate.

Returns:
the predicate of this proposition

Definition at line 23 of file Proposition.java.

Referenced by PropositionSet::containsAllSemantics(), Proposition-
Set::containsProposition(), PropositionSet::isEqual(), Variable::prettyPrint(),
and translatesTo().

93

ArrayList Proposition::getScopeArgs ()
Gets all scopal arguments of this elementary predication.

Returns:
an ordered ArrayList of all the scopal argument variables of this propo-
sition.

Definition at line 43 of file Proposition.java.
Referenced by equals(), PropositionSet::getHandles(), and translatesTo().
ArrayList Proposition::getSemArgs ()

Gets all (ordinary) semantic arguments of this elementary predication.

Returns:
an ordered ArrayList of all the semantic argument variables of this
proposition.

Definition at line 37 of file Proposition.java.
Referenced by PropositionSet::createGraph(), equals(), Proposition-
Set::removePropsWithSemArg(), and translatesTo().

boolean Proposition::hasScopeArgs ()

Tests whether this elementary predication has a scopal argument.

Returns:
true, if this proposition has at least one scopal argument; false otherwise.

Definition at line 49 of file Proposition.java.

void Proposition::prettyPrint (PrintWriter out)

Prints this proposition human-readably onto the specified PrintWriter.
The format looks like: "h0:every(1,h2/h3)".

Parameters:
out the PrintWriter where to print this proposition.

Definition at line 231 of file Proposition.java.
Referenced by toString().

String Proposition::toString ()

Prints this proposition to a string.
Overwrite the generic toString() (p.94) method, and calls prettyPrint()
(p.94) instead.

Returns:
a String representing this proposition.

94

See also:
Proposition::prettyPrint (p.94)

Definition at line 254 of file Proposition.java.
References prettyPrint().
Referenced by Variable::find Assignment().

boolean Proposition::translatesTo (Proposition p, HashMap
translate Args)

Tests whether this Proposition translates to the specified Proposition, given a
translation dictionary.

If arguments are not included in the dictionary yet, they will be introduced
into it with their correspondants in p as the values.

Parameters:
p the Proposition to compare this object to.

translateArgs the translation dictionary.

Returns:
true, if this Proposition can be translated to the given Proposition with
respect to the translation dictionary; false otherwise.

Definition at line 135 of file Proposition.java.
References getName(), getScopeArgs(), and getSemArgs().

95

E.4 PropositionSet Class Reference
This class implements an MRS structure.

Public Methods

e Integer getGlobalHandle ()
Gets the global top handle.

e void setGlobalHandle (Integer handle)
Sets the top handle.

e PropositionSet ()

Constructor.

e PropositionSet (Collection c)

Constructor.

e PropositionSet (int i)

Constructor.

e PropositionSet (int i, float f)

Constructor.

e PropositionSet (Element semantics)

Constructs the PropositionSet from an element node of a parsed XML file.

e void setUnion (PropositionSet set2)

Computes the set union of this PropositionSet with the specified one.

e PropositionSet setUnionCopy (PropositionSet set2)
Computes the set union of this PropositionSet with the specified one.

e void replaceArg (Integer oldArg, Integer newArg)

Replaces the argument variable oldArg in all occurences with newArg.

e void prettyPrint (PrintWriter out)
Prints this PropositionSet human-readably onto the specified PrintWriter.

e boolean isEqual (PropositionSet ps)

Tests whether the two PropositionSets are the same.

e boolean containsAllSemantics (PropositionSet ps)

Tests whether this PropositionSet contains all the semantic literals in the
specified set, regardless of arguments.

96

¢ boolean containsProposition (Proposition p)
Checks whether this set contains the specified Proposition (p.92).

e int maxNumberOfArgs ()

Computes an upper bound to the number of argument variables occuring in
this set’s propositions.

e Iterator getPropositionsByName (String name)

Gets all propositions in this set that have the specified name.

e Iterator getPropositionsByHandle (Integer handle)

Gets all propositions in this set that have the same label.

e boolean hasHead ()
Tests whether this PropositionSet has a head.

e Proposition setHead (Proposition headp)
Set the specified Proposition (p.92) as the head of this PropositionSet.

e ArrayList removeScopalAdjunctions (Integer handle)

Remowves and returns all scopal predicates that scope over the specified handle.

e PropositionSet removePropsWithSemArg (Integer arg)

Removes and returns all predicates in this set that contain the specified se-
mantic argument variable.

¢ Graph createGraph ()

Creates a semantic graph from this PropositionSet.

E.4.1 Detailed Description

This class implements an MRS structure.
It consists of elementary predications and a top handle.
Definition at line 13 of file PropositionSet.java.
E.4.2 Constructor & Destructor Documentation
PropositionSet::PropositionSet (Element semantics)
Constructs the PropositionSet from an element node of a parsed XML file.

Parameters:
semantics the element node of the XML file representing this proposi-
tion set.

Definition at line 42 of file PropositionSet.java.

97

E.4.3 Member Function Documentation

boolean PropositionSet::containsAllSemantics (PropositionSet ps)
Tests whether this PropositionSet contains all the semantic literals in the spec-
ified set, regardless of arguments.

Parameters:
ps the PropositionSet to compare this one to.

Returns:
true, if this set contains all the predicates in the specified set; false
otherwise.

Definition at line 172 of file PropositionSet.java.
References Proposition::getName(), and getPropositionsByName().

boolean PropositionSet::containsProposition (Proposition p)

Checks whether this set contains the specified Proposition (p.92).

The argument variable names can vary between the found proposition and
the one specified as the argument, as long as they are consistently trans-
lated.

Parameters:

p the Proposition (p.92) to be checked for.

Returns:
true, if this set contains (a translation of) the specified Proposition
(p.92); false otherwise.

Definition at line 194 of file PropositionSet.java.
References Proposition::getName(), and getPropositionsByName().

Graph PropositionSet::createGraph ()

Creates a semantic graph from this PropositionSet.

Returns:
the semantic graph associated with this set.

Definition at line 416 of file PropositionSet.java.

References Graph::addEdge(), Graph::addVertex(), and Proposition::get-
SemArgs().

Referenced by DFRealizer::realize().

Integer PropositionSet::getGlobalHandle ()
Gets the global top handle.

Returns:
the top handle variable.

Definition at line 20 of file PropositionSet.java.
Referenced by isEqual().

98

Iterator PropositionSet::getPropositionsByHandle (Integer handle)
Gets all propositions in this set that have the same label.
Constructs a new Iterator containing all appropriate propositions.
Parameters:

handle the label for which to find the propositions.

Returns:
a new Iterator containing all propositions with the specified label.

Definition at line 302 of file PropositionSet.java.

Iterator PropositionSet::getPropositionsByName (String name)

Gets all propositions in this set that have the specified name.
This constructs a new Iterator containing all appropriate predicates.

Parameters:
name the predicate to look for.

Returns:
an Iterator containing all propositions with the specified name.

Definition at line 253 of file PropositionSet.java.
Referenced by containsAllSemantics(), containsProposition(), and isEqual().

boolean PropositionSet::hasHead ()

Tests whether this PropositionSet has a head.
The head is a proposition which is labelled by the top handle.

Parameters:
true if this set has a head; false otherwise.

Definition at line 352 of file PropositionSet.java.

boolean PropositionSet::isEqual (PropositionSet ps)

Tests whether the two PropositionSets are the same.

In contrast to the inherited equals() method, the objects contained in the
set do not have to be identical. Instead, it is checked whether the predicates
contained in the second set are the same as in this set, with the possibility of
arguments being consistently translated.

Parameters:
ps the PropositionSet with which to compare this object.

Returns:
true, if the two sets contain the same predicates and are equal under
consistent translation of argument variables; false otherwise.

Definition at line 140 of file PropositionSet.java.
References getGlobalHandle(), Proposition::getName(), and get-
PropositionsByName().

99

int PropositionSet::maxNumberOfArgs ()

Computes an upper bound to the number of argument variables occuring in this
set’s propositions.

Returns:
the maximum number of argument variables occuring in this proposition
set.

Definition at line 207 of file PropositionSet.java.
Referenced by SemTagTree::SemTagTree().

void PropositionSet::prettyPrint (PrintWriter out)

Prints this PropositionSet human-readably onto the specified PrintWriter.
The print format looks like this: "| hO, hO:every(1,h2,h3) & h2:man(1)

]H.
Parameters:
out the PrintWriter where to print this PropositionSet.

Definition at line 118 of file PropositionSet.java.

PropositionSet PropositionSet::removePropsWithSemArg (Integer
arg)

Removes and returns all predicates in this set that contain the specified semantic
argument variable.

Parameters:
arg the semantic variable for which to find predicates.

Returns:
a PropositionSet of predicates containing the argument variable.

Deprecated:
This method is deprecated and should not be used in Realizers. It might
not work properly.

Definition at line 397 of file PropositionSet.java.
References Proposition::getSemArgs(), and PropositionSet().

ArrayList PropositionSet::removeScopalAdjunctions (Integer
handle)

Removes and returns all scopal predicates that scope over the specified handle.

Find scopal predicates that take handle as argument. Do this recursively (i.e.
through handles of such scopal propositions). List the results in order, so that
the innermost predicate comes last. Remove the results from this Proposition-
Set.

100

Parameters:
handle the handle for which to find scoping predicates.

Returns:
a sorted ArrayList of all predicates scoping over the handle.

Deprecated:
This method is deprecated and should not be used in Realizers. It might
not work properly.

Definition at line 380 of file PropositionSet.java.

void PropositionSet::replaceArg (Integer oldArg, Integer newArg)

Replaces the argument variable oldArg in all occurences with newArg.
All propositions contained in this set are traversed and checked for oc-
curences of oldArg.

Parameters:
oldArg the argument variable to be replaced.

newArg the new argument variable.

Definition at line 89 of file PropositionSet.java.

Referenced by makeDistinctHandles().
void PropositionSet::setGlobalHandle (Integer handle)
Sets the top handle.

Parameters:
handle the new top handle.

Definition at line 25 of file PropositionSet.java.
Referenced by setUnionCopy().

Proposition PropositionSet::setHead (Proposition headp)

Set the specified Proposition (p.92) as the head of this PropositionSet.
This also sets the top handle as a side effect.

Parameters:
headp the new head Proposition (p.92).

Returns:
the head Proposition (p.92).

Definition at line 362 of file PropositionSet.java.
References Proposition::getHandle().

101

void PropositionSet::setUnion (PropositionSet set2)

Computes the set union of this PropositionSet with the specified one.
Stores all of set2’s propositions destructively in this set.

Parameters:
set2 the second PropositionSet with which to compute the set union.

Definition at line 59 of file PropositionSet.java.

PropositionSet PropositionSet::setUnionCopy (PropositionSet set2)

Computes the set union of this PropositionSet with the specified one.
Constructs a new PropositionSet and stores the union results into it.

Parameters:
set2 the second PropositionSet with which to compute the set union.

Returns:
the set union of this set and the specified set2.

Definition at line 72 of file PropositionSet.java.
References setGlobalHandle().

102

E.5 SemTagGrammar Class Reference
This class implements a TAG grammar with semantics interface.

Public Methods

¢ SemTagGrammar ()

Dummy constructor.

SemTagGrammar (Document doc)

Constructs a SemTagGrammar from an zml document complying with
grammar-sem.xsd.

TagTree findTagTree (String name)
Finds a SemTagTree (p.108) in this Grammar by its name.

TagTree findTagTreeCopy (String name)

Finds a copy of a TagTree in this Grammar.

Elements readFromFile (String path)

Reads a new Grammar from a file.

boolean printToFile (String path)
Prints this grammar to the file specified by its path.

HashSet getTagTreesBySemantics (Proposition p)

Finds tag trees in this grammar by the semantics it expresses.

E.5.1 Detailed Description

This class implements a TAG grammar with semantics interface.
Definition at line 19 of file SemTagGrammar.java.

E.5.2 Constructor & Destructor Documentation

SemTagGrammar::SemTagGrammar (Document doc)

Constructs a SemTagGrammar from an xml document complying with
grammar-sem.xsd.

Parameters:
doc the document element representing the xml document.

Definition at line 32 of file SemTagGrammar.java.

103

E.5.3 Member Function Documentation
TagTree SemTagGrammar::findTagTree (String name)
Finds a SemTagTree (p.108) in this Grammar by its name.

Parameters:
name the name of the TagTree.

Returns:
the TagTree. if no such TagTree exists in this Grammar, null is returned.

Definition at line 64 of file SemTagGrammar.java.
Referenced by findTagTreeCopy ().

TagTree SemTagGrammar::findTagTreeCopy (String name)

Finds a copy of a TagTree in this Grammar.
Looks for a tag tree with the specified name and deepclones it.

Parameters:
name The name of the TagTree.

Returns:
A copy of the TagTree. If no such TagTree exists in this Grammar, null
is returned.

Definition at line 85 of file SemTagGrammar.java.
References findTagTree().

HashSet SemTagGrammar::getTagTreesBySemantics (Proposition p)

Finds tag trees in this grammar by the semantics it expresses.

Parameters:
p the proposition which should be expressed.

Returns:
a hash set of all the trees in this grammar whose semantics contains the
proposition p.

Definition at line 227 of file SemTagGrammar.java.
Referenced by TreeHandle::TreeHandle().

boolean SemTagGrammar::printToFile (String path)
Prints this grammar to the file specified by its path.

Parameters:
path the path to the file where this grammar should be printed.

Returns:
false, if an I/O error occurs, else true.

Definition at line 196 of file SemTagGrammar.java.
References SemTagTreeFamily::getName().

104

Elements SemTagGrammar::readFromFile (String path)

Reads a new Grammar from a file.
Part of the de.dfki.smartkom.generator.treeEditor. Grammar interface imple-
mentation.

Parameters:
path the path to the file specifying a new grammar.

Returns:
the SemTagGrammar specified in the file at location path.

Definition at line 109 of file SemTagGrammar.java.
References SemTagGrammar().

105

E.6 SemTagNode Class Reference

A Tag Node implementation that also provides a semantics interface.

Public Methods

e Integer getArg ()
e SemTagNode ()

Dummy constructor.

e SemTagNode (String id, Vector children, FeatureStructure topfeats,
FeatureStructure botfeats, String cat, Integer a)

Constructor.

e void innerXmlPrint (PrintWriter out, int indent, Hashtable co-
References)

Prints the TagNode and its children and FeatureStructures into a Print Writer.

E.6.1 Detailed Description

A Tag Node implementation that also provides a semantics interface.
Definition at line 16 of file SemTagNode.java.

E.6.2 Constructor & Destructor Documentation

SemTagNode::SemTagNode (String id, Vector children,
FeatureStructure topfeats, FeatureStructure botfeats, String cat,
Integer a)

Constructor.

Parameters:
1d the identifier of this node.

children the Vector of child nodes.
topfeats a top feature structure.
botfeats a bottom feature structure.
cat the category of this node

a the semantic argument associated with this node.

Definition at line 45 of file SemTagNode.java.

E.6.3 Member Function Documentation

Integer SemTagNode::getArg ()

Returns:
The semantic argument that is associated with this node.

Definition at line 24 of file SemTagNode.java.

106

void SemTagNode::innerXmlPrint (PrintWriter out, int indent,
Hashtable coReferences)

Prints the TagNode and its children and FeatureStructures into a PrintWriter.
Output is formatted like the example in grammar.xml.
This method should only be invoked after a call to findCoReferences(new
Hashtable()) from the root node of this tree. Otherwise, a null pointer exception
will occur.

Parameters:
out the PrintWriter (file) where to write the node

indent the current indentation

coReferences all coReferences in the TagTree this node belongs to

Definition at line 164 of file SemTagNode.java.

107

E.7 SemTagTree Class Reference

A Tag Tree implementation that also provides a semantics interface.

Public Methods

Function getMapping ()
PropositionSet getSemantics ()
boolean hasScopalArgument ()
Integer removeScopalArgument ()

Remowve the scopal argument.

SemTagTree (String id)
Constructor of dummy TAG trees.

SemTagTree (DocumentImpl doc)

Constructor.

SemTagTree (Element elementaryTree)

Constructs a new SemTagTree from an xml document Element.

SemTagTree cloneSTT ()
Clone the SemTagTree.

boolean substitute (String nodelD, TagTree tree2) throws Exception
Substitution of tree2 at nodelD.

boolean adjoin (String nodelD, TagTree tree2) throws Exception
Adjunction of tree2 at nodelD.

boolean adjoinRoot (String nodelD, TagTree tree2) throws Exception

Adjunction of tree2 into nodelD, keeping the properties of the adjunction site
in the former root node of tree2 for further adjunctions into the same node.

boolean adjoinFoot (String nodelD, TagTree tree2) throws Exception

Adjunction of tree2 into nodelD, keeping the properties of the adjunction site
in the former foot node of tree2 for further adjunctions into the same node.

void printToPW (PrintWriter out)

Print this tree to a print writer in zml format.

E.7.1 Detailed Description

A Tag Tree implementation that also provides a semantics interface.
Definition at line 29 of file SemTagTree.java.

108

E.7.2 Constructor & Destructor Documentation
SemTagTree::SemTagTree (Element elementaryTree)

Constructs a new SemTagTree from an xml document Element.
The xml schema is grammar-sem.xsd.

Parameters:
elementaryTree The element node representing this elementary tree.

Definition at line 103 of file SemTagTree.java.
References PropositionSet::maxNumberOfArgs().

E.7.3 Member Function Documentation
boolean SemTagTree::adjoin (String nodelD, TagTree tree2)

Adjunction of tree2 at nodelD.

If tree2 is not a SemTagTree, normal adjunction without semantic compo-
sition is executed. Note that the resulting tree (this tree!) is not a well-formed
SemTagTree any more, but rather only a TagTree. For this reason, mixing of
SemTagTrees and simple TagTrees should be usually avoided.

This implementation tests non-destructively for unification. In case of a suc-
cess, results are stored destructively into the calling SemTagTree. If unification
fails, the SemTagTrees are yet unchanged (they can be used in further opera-
tions). However, in the current implementation, if something goes wrong with
the semantic composition only, the trees are already changed. This case should
not occur usually, though.

Parameters:
nodelD the node identifier of the adjunction node in the calling Tag-
Tree

tree2 the TagTree to adjoin

Exceptions:
Ezxception if this TagTree is final or if adjunction constraints are vio-
lated; or if the nodelD is not a valid identifier in this TagTree.

Returns:
true, if the adjunction is successful; false otherwise

Definition at line 235 of file SemTagTree.java.
Referenced by Executor::execute(), and Variable::isValidOperation().

boolean SemTagTree::adjoinFoot (String nodelID, TagTree tree2)

Adjunction of tree2 into nodelD, keeping the properties of the adjunction site
in the former foot node of tree2 for further adjunctions into the same node.

In this version, the identifier and adjunction constraints of the adjunction
node are given to the former root node of tree2, so that further adjunctions in
the "same" node are possible.

109

Parameters:
nodelD the adjunction site

tree2 the inner tree
Returns:

true in case of successful adjunction, false otherwise.

See also:
SemTagTree::adjoin (p.109)

Definition at line 293 of file SemTagTree.java.

boolean SemTagTree::adjoinRoot (String nodeID, TagTree tree2)

Adjunction of tree2 into nodelD, keeping the properties of the adjunction site
in the former root node of tree2 for further adjunctions into the same node.

In this version, the identifier and adjunction constraints of the adjunction
node are given to the former root node of tree2, so that further adjunctions in
the "same" node are possible.

Parameters:
nodelD the adjunction site

tree2 the inner tree

Returns:
true in case of successful adjunction, false otherwise.

See also:
SemTagTree::adjoin (p.109)

Definition at line 264 of file SemTagTree.java.

SemTagTree SemTagTree::cloneSTT ()

Clone the SemTagTree.

Constructs a deep clone of the SemTagTree, also cloning all SemTagNodes,
and the semantics. This is currently implement by printing the tree and reading
it in again, so the working directory should be writable.

Returns:
The cloned SemTagTree.

Definition at line 149 of file SemTagTree.java.
References print ToPW(), and SemTagTree().
Referenced by Executor::execute(), and Variable::isValidOperation().

Function SemTagTree::getMapping ()

Returns:
The function phi mapping nodes of the TAG tree onto argument vari-
ables in the associated semantics.

Definition at line 40 of file SemTagTree.java.

110

PropositionSet SemTagTree::getSemantics ()

Returns:
The set of semantic expressions associated with this (partial) TAG tree.

Definition at line 53 of file SemTagTree.java.
Referenced by DFRealizer::set Variable().

boolean SemTagTree::hasScopalArgument ()

Returns:
true, if this TAG tree has a scopal (handle) argument that needs to be
filled; i.e. if this is a scopal auxiliary tree. false otherwise.

Definition at line 64 of file SemTagTree.java.

void SemTagTree::print ToPW (PrintWriter out)

Print this tree to a print writer in xml format.

Prints the SemTagTree according to the xml schema grammar-sem.xsd onto
the specified printwriter. This calles recursive methods for printing semantics,
nodes and feature structures.

Parameters:
out The PrintWriter where to print me.

Definition at line 411 of file SemTagTree.java.
References PropositionSet::innerXmlPrint().
Referenced by cloneSTTY().

Integer SemTagTree::removeScopalArgument ()

Remove the scopal argument.
This method should be called once the scopal argument is filled.

Returns:
The previous scopal argument.

Definition at line 75 of file SemTagTree.java.

boolean SemTagTree::substitute (String nodelID, TagTree tree2)

Substitution of tree2 at nodelD.

If tree2 is not a SemTagTree, normal substitution without semantic compo-
sition is executed. Note that the resulting tree (this tree!) is not a well-formed
SemTagTree, but rather only a TagTree.

Parameters:
nodelD The substitution site in this tree.

tree2 The inner TAG tree.

111

Exceptions:
FEzxception if the TagTree is final; if the categories of substituted and
substituting node do not match; or if the nodelD is not valid (no
such node exists).

Returns:
true, if the substitution is successful, false otherwise.

Definition at line 195 of file SemTagTree.java.
Referenced by Executor::execute(), and Variable::isValidOperation().

112

E.8 SemTagTreeFamily Class Reference

A tag tree family is a set of trees.

Public Methods
¢ SemTagTreeFamily ()

Dummy Constructor.

¢ SemTagTreeFamily (String n)

Dummy Constructor.

¢ SemTagTreeFamily (Element elem)

Constructs a tree family from an element of an xml document.

e String toString ()
e TagTree findTagTree (TagTree tagTree)

Find tag tree.

e TagTree findTagTree (String name)
e String getName ()
e void setName (String newName)

E.8.1 Detailed Description

A tag tree family is a set of trees.

These trees are retrievable by their names.

Definition at line 19 of file SemTagTreeFamily.java.
E.8.2 Constructor & Destructor Documentation
SemTagTreeFamily::SemTagTreeFamily (String n)

Dummy Constructor.

Parameters:
n the name of the tree family.

Definition at line 33 of file SemTagTreeFamily.java.

SemTagTreeFamily::SemTagTreeFamily (Element elem)

Constructs a tree family from an element of an xml document.
This recursively calls the constructor of SemTagTree (p.108).

Parameters:
elem the xml document element node representing this tree family.

Definition at line 42 of file SemTagTreeFamily.java.

113

E.8.3 Member Function Documentation
TagTree SemTagTreeFamily::findTagTree (TagTree tagTree)
Find tag tree.

Parameters:
tagTree the tag tree to find.

Deprecated:
This will most likely not work, use findTagTree(String name) instead,
which also makes much more sense.

See also:
SemTagTreeFamily::find TagTree(String name)

Definition at line 67 of file SemTagTreeFamily.java.

String SemTagTreeFamily::toString ()

Returns:
the name of this tree family.

Definition at line 56 of file SemTagTreeFamily.java.

114

Appendix F

Realizer Class Documentation

F.1 Package de.dfki.smartkom.generator.realizer

Classes

e class DFRealizer

Class implementing a (top down) depth-first realizer for some semantics rep-
resented as a PropositionSet (p.96).

e class Edge

This class implements an undirected Edge that can hold some data object.

e class Executor

This class implements an executor of TAG derivation scripts.

e class Graph

This class implements a generic graph data structure, to be used by a syntactic
realizer.

e class TreeHandle

A handle class which delivers possible TAG trees for a certain semantics in
some order.

e class Variable

This class implements a realization variable.

e class Vertex

This class implements a Vertex that can hold some data object.

115

F.2 DFRealizer Class Reference

Class implementing a (top down) depth-first realizer for some semantics repre-
sented as a PropositionSet (p.96).

Public Methods

¢ void setMemoization (boolean b)

Sets the memoization parameter.

¢ void setGenerateAll (boolean b)

Sets the parameter determining whether all possible realizations should be gen-
erated instead of just one.

¢ DFRealizer (SemTagGrammar g)

Constructor.

e HashSet realize (PropositionSet p)
Realizes the given PropositionSet (p. 96).

F.2.1 Detailed Description

Class implementing a (top down) depth-first realizer for some semantics repre-
sented as a PropositionSet (p.96).
Definition at line 13 of file DFRealizer.java.

F.2.2 Constructor & Destructor Documentation
DFRealizer::DFRealizer (SemTagGrammar g)

Constructor.

Parameters:
g the TAG grammar that this realizer uses.

Definition at line 96 of file DFRealizer.java.
References memoizedTreeSets.

F.2.3 Member Function Documentation
HashSet DFRealizer::realize (PropositionSet p)

Realizes the given PropositionSet (p.96).

Parameters:
p the semantics that should be realized.

Returns:
a HashSet containing (all or one) realizations of the given semantics.

Definition at line 107 of file DFRealizer.java.
References PropositionSet::createGraph(), visitedEdges, and visited Vertices.

116

void DFRealizer::setGenerateAll (boolean b)

Sets the parameter determining whether all possible realizations should be gen-
erated instead of just one.

Calling this method with argument "false" results in generating only the
first possible realization of some input.

Parameters:
b the argument specifying whether all possible realizations should be
generated or not.

Definition at line 79 of file DFRealizer.java.

void DFRealizer::setMemoization (boolean b)

Sets the memoization parameter.

Parameters:
b the argument specifying whether memoization should be done or not.

Definition at line 55 of file DFRealizer.java.

117

F.3 Edge Class Reference

This class implements an undirected Edge that can hold some data object.

Public Methods
e Edge (Vertex vl, Vertex v2, Object d)

Constructs a new undirected edge.

e Vertex oppositeVertex (Vertex v)
Gets the Vertex (p.131) opposite the one specified on this edge.

¢ Vertex|| getEndPoints ()
Gets the end points of this edge.

e boolean isDirected ()

Tests whether this edge is directed.

F.3.1 Detailed Description

This class implements an undirected Edge that can hold some data object.

See also:
Graph (p.122)

Definition at line 9 of file Edge.java.

F.3.2 Constructor & Destructor Documentation
Edge::Edge (Vertex v1, Vertex v2, Object d)

Constructs a new undirected edge.

Parameters:
v1 the first end point of the new edge.

v2 the second end point of the new edge.

d some data to be associated with the new edge.

Definition at line 24 of file Edge.java.

F.3.3 Member Function Documentation
Vertex []| Edge::getEndPoints ()

Gets the end points of this edge.

Returns:
an array containing the two vertices this edge is incident upon.

Definition at line 53 of file Edge.java.
Referenced by Graph::endVertices().

118

boolean Edge::isDirected ()
Tests whether this edge is directed.

Returns:
true, if this is a directed edge; false if it is an undirected edge.

Definition at line 62 of file Edge.java.

Vertex Edge::oppositeVertex (Vertex v)
Gets the Vertex (p.131) opposite the one specified on this edge.

Parameters:
v the Vertex (p.131) whose opposite should be found.

Returns:
the Vertex (p.131) which is opposite v on this edge; if the specified
Vertex (p.131) v is not an end point of this edge, null is returned.

Definition at line 38 of file Edge.java.
Referenced by Vertex::addEdge().

119

F.4 Executor Class Reference

This class implements an executor of TAG derivation scripts.

Public Methods

e Executor (ArrayList s, boolean all, HashSet realizations)

Constructor.

e boolean execute () throws Exception

Ezecutes a realization script produced by the realizer.

e SemTagTree getExecutionResult ()

Gets the last execution result this Executor produced.

F.4.1 Detailed Description

This class implements an executor of TAG derivation scripts.

L.e., the script represents a derivation tree, of which some operations are
ordered.

Definition at line 12 of file Executor.java.

F.4.2 Constructor & Destructor Documentation
Executor::Executor (ArrayList s, boolean all, HashSet realizations)

Constructor.

Parameters:
s the execution script.

all whether all realizations need to be found.

realizations the set of realizations for the semantics.

Definition at line 27 of file Executor.java.

F.4.3 Member Function Documentation
boolean Executor::execute ()

Executes a realization script produced by the realizer.

Exceptions:
Ezxception if one of the operations in the execution script fails.

Returns:
true, if execution was successful; false otherwise.

Definition at line 40 of file Executor.java.

References SemTagTree::adjoin(), SemTagTree::cloneSTT(), Variable::inner,
Variable::innerTree, Variable::nodeld, Variable::operation, Variable::outer,
Variable::outerTree, and SemTagTree::substitute().

120

SemTagTree Executor::getExecutionResult ()

Gets the last execution result this Executor produced.

Returns:
the SemTagTree (p.108) that was produced by the last successful call
to execute() (p.120); null, if the last call was unsuccessful.

Definition at line 100 of file Executor.java.

121

F.5 Graph Class Reference

This class implements a generic graph data structure, to be used by a syntactic
realizer.

Public Methods

e Graph ()
Constructor of an empty graph.

e int numVertices ()

Gets the number of Vertices contained in this graph.

e int numEdges ()
Gets the number of Edges contained in this graph.

e Iterator vertices ()
Gets all the Vertices of this graph.

e Iterator edges ()
Gets all the Edges of this graph.

e void addVertex (Vertex v)
Adds a Vertex (p.131) to this graph.

e Edge addEdge (Vertex v1, Vertex v2, Object d)
Constructs a new Edge (p. 118) and adds it to this graph.

e int degree (Vertex v)
Gets the degree of the specified Vertex (p.131).

e Iterator adjacentVertices (Vertex v)

Gets all vertices adjacent to the specified one.

e Iterator incidentEdges (Vertex v)
Gets all edges incident to the specified Vertex (p.131).

¢ Vertex|| endVertices (Edge e)
Gets the two vertices that are the endpoints of Edge (p.118) e.

e boolean areAdjacent (Vertex v, Vertex w)

Tests whether the two specified vertices are adjacent.

e Vertex getStartNode ()
Gets a start vertex for this graph.

122

F.5.1 Detailed Description

This class implements a generic graph data structure, to be used by a syntactic
realizer.
Definition at line 10 of file Graph.java.

F.5.2 Member Function Documentation

Edge Graph::addEdge (Vertex v1, Vertex v2, Object d)

Constructs a new Edge (p. 118) and adds it to this graph.

Parameters:
v1 the first vertex adjacent to the edge.

v2 the second vertex adjacent to the edge.

d some data associated with the edge.

Returns:
the newly constructed edge.

Definition at line 58 of file Graph.java.

References Vertex::addEdge().

Referenced by PropositionSet::createGraph().
void Graph::addVertex (Vertex v)

Adds a Vertex (p.131) to this graph.

Parameters:
v the Vertex (p.131) to be added.

Definition at line 48 of file Graph.java.
Referenced by PropositionSet::createGraph().

Iterator Graph::adjacentVertices (Vertex v)

Gets all vertices adjacent to the specified one.

Parameters:
v a Vertex (p.131) in this graph.

Returns:
an Iterator containing all the vertices adjacent to v.

Definition at line 77 of file Graph.java.
References Vertex::get AdjacentVertices().

123

boolean Graph::areAdjacent (Vertex v, Vertex w)

Tests whether the two specified vertices are adjacent.

Parameters:
v a first Vertex (p.131) in this graph.

w a second Vertex (p.131) in this graph.

Returns:
true, if the two vertices are neighbors; false otherwise.

Definition at line 96 of file Graph.java.
References Vertex::hasNeighbor().

int Graph::degree (Vertex v)
Gets the degree of the specified Vertex (p.131).

Parameters:
v a Vertex (p.131) in this graph.

Returns:
the degree of Vertex (p.131) v.

Definition at line 71 of file Graph.java.
References Vertex::degree().

Iterator Graph::edges ()
Gets all the Edges of this graph.

Returns:
an Iterator containing all the edges this graph consists of.

Definition at line 42 of file Graph.java.

Vertex []| Graph::endVertices (Edge e)

Gets the two vertices that are the endpoints of Edge (p.118) e.

Parameters:
e an Edge (p.118) in this graph.

Returns:
an array containing the two endpoints of e.

Definition at line 89 of file Graph.java.
References Edge::getEndPoints().

124

Vertex Graph::getStartNode ()

Gets a start vertex for this graph.
Just picks one Vertex (p.131) arbitrarily.

Returns:
a Vertex (p.131).

Definition at line 104 of file Graph.java.

Iterator Graph::incidentEdges (Vertex v)
Gets all edges incident to the specified Vertex (p.131).

Parameters:
v a Vertex (p.131) in this graph.

Returns:
an Iterator of all edges incident to v.

Definition at line 83 of file Graph.java.
References Vertex::getIncidentEdges().

int Graph::numEdges ()
Gets the number of Edges contained in this graph.

Returns:
the number of edges this graph consists of.

Definition at line 32 of file Graph.java.

int Graph::numVertices ()

Gets the number of Vertices contained in this graph.

Returns:
the number of vertices of this graph.

Definition at line 27 of file Graph.java.

Iterator Graph::vertices ()

Gets all the Vertices of this graph.

Returns:
an Iterator containing all the vertices this graph consists of.

Definition at line 37 of file Graph.java.

125

F.6 TreeHandle Class Reference

A handle class which delivers possible TAG trees for a certain semantics in some
order.

Public Methods
e TreeHandle (Proposition p, SemTagGrammar g)

Constructs a new TreeHandle that handles all trees which are assigned se-
mantics p by grammar g.

TreeHandle (HashSet origSet, Object constraints)

Constructs a new TreeHandle for the trees listed in origSet.

boolean hasNext ()

Tests whether there are more trees in this tree handle.

SemTagTree next ()
Gets the next tree in this handle.

SemTagTree current ()

Gets the current tree in this handle.

F.6.1 Detailed Description

A handle class which delivers possible TAG trees for a certain semantics in some
order.

The specific order is capsuled in this class. In this implementation, the trees
are returned in no specific order.

Definition at line 11 of file TreeHandle.java.

F.6.2 Constructor & Destructor Documentation

TreeHandle:: TreeHandle (Proposition p, SemTagGrammar g)

Constructs a new TreeHandle that handles all trees which are assigned semantics
p by grammar g.

Parameters:
p the semantic proposition whose trees are to be handled.

g the grammar where to find the trees to be handled.

Definition at line 24 of file TreeHandle.java.
References SemTagGrammar::getTagTreesBySemantics().

126

TreeHandle:: TreeHandle (HashSet origSet, Object constraints)

Constructs a new TreeHandle for the trees listed in origSet.

Parameters:
origSet the trees that should be handled. The HashSet is copied, so
that we don’t influence each other.

constraints ignored dummy argument.

Definition at line 35 of file TreeHandle.java.

F.6.3 Member Function Documentation
SemTagTree TreeHandle::current ()
Gets the current tree in this handle.

Returns:
the SemTagTree (p.108) that was returned by the last call to next()
(p. 127).

See also:
TreeHandle::next() (p.127)

Definition at line 62 of file TreeHandle.java.

boolean TreeHandle::hasNext ()
Tests whether there are more trees in this tree handle.

Returns:
true, if any more trees are left; false otherwise.

Definition at line 44 of file TreeHandle.java.
Referenced by Variable::find Assignment/().
SemTagTree TreeHandle::next ()
Gets the next tree in this handle.

Returns:
the next SemTagTree (p.108).

Definition at line 52 of file TreeHandle.java.
Referenced by Variable::find Assignment().

127

F.7 Variable Class Reference

This class implements a realization variable.

Public Methods
e Variable (DFRealizer r, Vertex v, HashMap memoized TreeSets)

Constructor.

boolean isAssigned ()

Tests whether this variable has been assigned a value.

boolean find Assignment ()

Finds a new assignment for the variable.

boolean findValidAssignment ()

Finds a valid assignment for the variable.

boolean isValidOperation ()

Tests whether the operation assigned to this variable is valid.

String prettyPrint ()

Prints this variable to a string.

Static Public Attributes

e final int OP _SUBST - 1
The substitution TAG operation.

e final int OP _ADJ = 2
the adjunction TAG operation.

F.7.1 Detailed Description
This class implements a realization variable.
Definition at line 10 of file Variable.java.
F.7.2 Constructor & Destructor Documentation

Variable::Variable (DFRealizer r, Vertex, HashMap
memoized TreeSets)

Constructor.
Parameters:

r the DFRealizer (p.116) this Variable belongs to.

128

v the Vertex (p.131) in the semantic graph this variable is associated
with.

memoizedTreeSets a map of literals to memoized tree sets for faster
finding of trees.

Definition at line 64 of file Variable.java.
References Vertex::degree(), Vertex::getAdjacentVertices(), and Vertex::get-
Datal().

F.7.3 Member Function Documentation
boolean Variable::find Assignment ()

Finds a new assignment for the variable.
The new assignment is destructively stored in this variable.

Returns:
true, if a new assignment could be found; false otherwise.

Definition at line 172 of file Variable.java.
References Vertex::getData(), TreeHandle::hasNext(), TreeHandle:mext(),

and Proposition::toString().
Referenced by findValid Assignment().

boolean Variable::findValid Assignment ()

Finds a valid assignment for the variable.
This method also checks for the possibility of trivial assignments.

Returns:
true, if a valid assignment could be found; false otherwise.

Definition at line 403 of file Variable.java.
References findAssignment(), and isValidOperation().
Referenced by DFRealizer::set Variable().

boolean Variable::isAssigned ()

Tests whether this variable has been assigned a value.

Returns:
true, if this variable was assigned a value; false otherwise.

Definition at line 81 of file Variable.java.
References OP __ADJ, and OP_SUBST.
Referenced by isValidOperation(), and prettyPrint().

129

boolean Variable::isValidOperation ()

Tests whether the operation assigned to this variable is valid.
This performs only local tests.

Returns:
true, if the operation is valid; false if this variable hasn’t been assigned
a value or the operation is invalid.

Definition at line 428 of file Variable.java.

References SemTagTree::adjoin(), SemTagTree::cloneSTT(), isAssigned(),
OP _ADJ, OP_SUBST, and SemTagTree::substitute().

Referenced by findValid Assignment().

String Variable::prettyPrint ()

Prints this variable to a string.
The format is: < loves — trivial > or < every ; i:every-1 ; o:man-1 ; ADJ ;
man-1-1 >

Returns:
the String containing a printed version of this variable.

Definition at line 474 of file Variable.java.
References Proposition::getName(), and isAssigned().

130

F.8 Vertex Class Reference

This class implements a Vertex that can hold some data object.

Public Methods

e Object getData ()
Gets the data object contained in this Vertex.

e Vertex (String id, Object d)
Constructs a new Vertex with the specified id and data object.

¢ void addEdge (Edge e)
Adds an Edge (p. 118) incident to this Vertex.

e int degree ()
Gets the degree of this Vertex.

e Iterator get Adjacent Vertices ()

Gets the vertices adjacent to this one.

e Iterator getIncidentEdges ()
Gets the edges incident on this Vertez.

e ArrayList getEdgeList ()

Gets the edges incident on this Vertex as a list.

e boolean hasNeighbor (Vertex w)
Tests whether the specified Vertex w is a neighbor of this Vertex.

F.8.1 Detailed Description

This class implements a Vertex that can hold some data object.

See also:
Graph (p.122)

Definition at line 10 of file Vertex.java.

F.8.2 Constructor & Destructor Documentation
Vertex::Vertex (String id, Object d)
Constructs a new Vertex with the specified id and data object.

Parameters:
id the identifier of this Vertex.

131

d some data to be associated with this Vertex.

Definition at line 29 of file Vertex.java.

F.8.3 Member Function Documentation
void Vertex::addEdge (Edge e)
Adds an Edge (p.118) incident to this Vertex.

Parameters:
e the new incident edge.

Definition at line 39 of file Vertex.java.
References Edge::oppositeVertex().
Referenced by Graph::addEdge().

int Vertex::degree ()

Gets the degree of this Vertex.

Returns:
the degree of this Vertex.

Definition at line 48 of file Vertex.java.
Referenced by Graph::degree(), and Variable::Variable().

Iterator Vertex::getAdjacentVertices ()

Gets the vertices adjacent to this one.

Returns:
an Iterator containing all neighbors of this Vertex.

Definition at line 55 of file Vertex.java.
Referenced by Graph::adjacentVertices(), and Variable::Variable().

Object Vertex::getData ()

Gets the data object contained in this Vertex.

Returns:
the data associated with this Vertex.

Definition at line 22 of file Vertex.java.

Referenced by Variable::findAssignment(), DFRealizer::setVariable(), and
Variable::Variable().

132

ArrayList Vertex::getEdgeList ()

Gets the edges incident on this Vertex as a list.

Returns:
an ArrayList containing all incident edges.

Definition at line 70 of file Vertex.java.

Iterator Vertex::getIncidentEdges ()

Gets the edges incident on this Vertex.

Returns:
an Iterator containing all incident edges.

Definition at line 62 of file Vertex.java.
Referenced by Graph::incidentEdges().

boolean Vertex::hasNeighbor (Vertex w)

Tests whether the specified Vertex w is a neighbor of this Vertex.

Parameters:
w the Vertex to test for adjacency.

Returns:
true, if the specified Vertex is adjacent; false otherwise.

Definition at line 79 of file Vertex.java.
Referenced by Graph::areAdjacent().

133

134

Bibliography

Anne Abeillé and Marie-Héléne Candito. FTAG: A lexicalized Tree Adjoining
Grammar for French. In Anne Abeillé and Owen Rambow, editors, Tree
Adjoining Grammars: Formalisms, Linguistic Analysis, and Processing, pages

305-330. CSLI Publications, Stanford, CA, 2000.

Jon Barwise and John Perry. Semantic innocence and uncompromising situa-
tions. Midwest Studies in the Philosophy of Language, VI, 1981.

Jon Barwise and John Perry. Situations and Attitudes. MIT Press (Bradford
Books), Cambridge, 1983.

Tilman Becker, Wolfgang Finkler, Anne Kilger, and Peter Poller. An efficient
kernel for multilingual generation in speech-to-speech diaglogue translation.
In Proceedings of the 38th ACL and 17th Coling, Montreal, Canada, 1998.

Tilman Becker, Anne Kilger, Patrice Lopez, and Peter Poller. The Verbmobil
generation component VM-GECO. In Wolfgang Wahlster, editor, Verbmobil:
Foundations of Speech-to-Speech Translation. Springer, Berlin, 2000.

Johan Bos. Predicate logic unplugged. In Proceedings of the 10th Amsterdam
Colloguium, Amsterdam, NL, 1995.

Stephan Busemann. Best-first surface realization. In Proceedings of the 8th
INLG Workshop, Sussex, UK, 1996.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl Pollard. Minimal Re-
cursion Semantics. An Introduction. Draft, Stanford University, 1999.

Ann Copestake, Alex Lascarides, and Dan Flickinger. An algebra for semantic
construction in constraint-based grammars. In Proceedings of the 39th ACL,
pages 132-139, Toulouse, France, 2001.

Cassandre Creswell and Owen Rambow. English dependency treebank cod-
ing manual. Available online at: http://www.cis.upenn.edu/~creswell/
dependency/ecm.html, 23.3.2003.

Mary Dalrymple, editor. Semantics and Syntaz in Lexical Functional Grammar.
MIT Press, 1999.

Mary Dalrymple. Lezical-Functional Grammar, volume 34 of Syntax and Se-
mantics. Academic Press, 2001.

135

Mary Dalrymple, John Lamping, Fernando Pereira, and Vijay Saraswat. Linear
logic for meaning assembly. In Proceedings of Computational Logic for Natural
Language Processing, Edinburgh, 1995.

Laurence Danlos. G-TAG: A lexicalized formalism for text generation inspired
by Tree Adjoining Grammar. In Anne Abeillé and Owen Rambow, editors,
Tree Adjoining Grammars: Formalisms, Linguistic Analysis, and Processing.

CSLI Publications, Stanford, CA, 2000.

Ralph Debusmann. A declarative grammar formalism for dependency gram-
mar. Master’s thesis, Computational Linguistics, Universitdt des Saarlandes,
Germany, 2001.

Christine Doran, Beth Ann Hockey, Anoop Sarkar, B. Srinivas, and Fei Xia.
Evolution of the XTAG system. In Anne Abeillé and Owen Rambow, editors,
Tree Adjoining Grammars: Formal, Computational and Linguistic Aspects.

CSLI, Stanford, 2000.

Denys Duchier and Ralph Debusmann. Topological dependency trees: A
constraint-based account of linear precedence. In Proceedings of the 39th
ACL, Toulouse, France, 2001.

Anette Frank and Josef van Genabith. Linear logic based semantics for LTAG -
and what it teaches us about LFG and TAG. In Miriam Butt and Tracy Hol-
loway King, editors, Proceedings of LFG’01, University of Hong Kong, 2001.

Robert Frank. Syntactic locality and tree adjoining grammar: grammatical ac-
quisition and processing perspectives. PhD thesis, University of Pennsylvania,
1992.

Claire Gardent and Laura Kallmeyer. Semantic construction in Feature-Based
TAG. In Proceedings of the 10th EACL, Budapest, Hungary, 2003.

Michael T. Goodrich and Roberto Tamassia. Data structures and algorithms in
Java. Worldwide series in computer science. John Wiley & Sons, Inc., 1997.

Saul Gorn. Explicit definitions and linguistic dominoes. In J. Hart and
S. Takasu, editors, Systems and Computer Science, pages 77-115. University
of Toronto Press, Toronto, CA, 1967.

Aravind K. Joshi. The relevance of Tree Adjoining Grammar to generation. In
G. Kempen, editor, Natural Language Generation: New Directions in Artifi-
cial Intelligence, Psychology, and Linguistics. Dordrecht: Kluwer, 1987.

Aravind K. Joshi, Laura Kallmeyer, and Maribel Romero. Flexible composition
in LTAG, quantifier scope and inverse linking. In Proceedings of the 5th IWCS,
pages 179-194, Tilburg, NL, 2003.

Aravind K. Joshi and Yves Schabes. Tree-Adjoining Grammars. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages. Volume 3: Beyond
Words, pages 69-123. Springer, 1997.

136

Aravind K. Joshi and K. Vijay-Shanker. Compositional semantics with Lex-
icalized Tree Adjoining Grammar (LTAG): How much underspecification is
necessary? In Proceedings of the 3rd IWCS, pages 131-145, Tilburg, NL,
1999.

Laura Kallmeyer. Enriching the TAG derivation tree for semantics. In 6. Kon-
ferenz zur Verarbeitung natirlicher Sprache. Proceedings, DFKI GmbH, Saar-
briicken, Germany, 2002a.

Laura Kallmeyer. Using an enriched TAG derivation structure as basis for
semantics. In Proceedings of TAG+6, pages 127-136, Venice, Italy, 2002b.

Laura Kallmeyer and Aravind K. Joshi. Factoring predicate argument and scope
semantics: Underspecified semantics with LTAG. In Proceedings of the 12th
Amsterdam Colloquium, pages 169-174, Amsterdam, NL, 1999.

Martin Kay. Chart generation. In Aravind Joshi and Martha Palmer, editors,
Proceedings of the 34th ACL, pages 200-204, San Francisco, 1996.

Anne Kilger and Wolfgang Finkler. Incremental generation for real-time appli-
cations. Technical Report RR-95-11, Deutsches Forschungszentrum fiir Kiin-
stliche Intelligenz GmbH, 1995.

Alexander Koller and Kristina Striegnitz. Generation as dependency parsing. In
Proceedings of the 40th ACL, University of Pennsylvania, Philadelphia, 2002.

Raymond Kozlowski. DSG/TAG: An appropriate grammatical formalism for
flexible sentence generation. In Proceedings of the 40th ACL, student session,
University of Pennsylvania, Philadelphia, 2002.

Anthony Kroch and Aravind K. Joshi. The linguistic relevance of Tree Adjoining
Grammar. Technical Report MS-CS-85-16, Department of Computer and
Information Sciences, University of Pennsylvania, 1985.

Markus Lockelt. Liliput — ein parametrisierbarer Constraint-Solver fiir endliche
Wertebereiche und sein Einsatz in der Generierung natiirlicher Sprache. Mas-
ter’s thesis, Computer Science, Universitit des Saarlandes, Germany, 2000.

Kathleen F. McCoy, K. Vijay-Shanker, and Gijoo Yang. A functional approach
to generation with TAG. In Proceedings of the 30th ACL, pages 48-55, Uni-
versity of Delaware, 1992.

David D. McDonald and James D. Pustejovsky. TAG’s as a grammatical formal-
ism for generation. In Proceedings of the 23rd ACL, pages 94-103, University
of Chicago, IL, 1985.

M. Meteer et al. Mumble-86: Design and implementation. Technical report,
University of Massachusetts, 1987. COINS Technical Report 87-87a.

Stefan Miiller. Deutsche Syntaz deklarativ. Head-Driven Phrase Structure Gram-
mar fiir das Deutsche. Number 394 in Linguistische Arbeiten. Max Niemeyer
Verlag, Tiibingen, 1999.

137

Peter Norvig. Paradigms of AI Programming: Case Studies in Common LISP.
Morgan Kaufmann, 1992.

Carlos Prolo. Systematic grammar development in the XTAG project. In Pro-
ceedings of the TAG+6 Workshop, Venice, Italy, 2002.

Owen Rambow, Cassandre Creswell, Rachel Szekely, Harriet Tauber, and Mar-
ilyn Walker. A dependency treebank for english. In ISLE Workshop on Di-
alogue Tagging for Multi-Modal Human Computer Interaction, University of
Edinburgh, UK, 2002.

Ehud Reiter and Robert Dale. Building applied natural language generation
systems. Natural Language Engineering, 3(1):57-88, 1997.

Yves Schabes and Stuart M. Shieber. An alternative conception of tree-adjoining
derivation. Computational Linguistics, 20(1):91-124, 1994.

Antje Schweitzer, Norbert Braunschweiler, and Edmilson Morais. Prosody gen-
eration in the SmartKom project. In Bernard Bel and Isabel Marlien, editors,
Proceedings of Speech Prosody 2002, pages 639-642, Aix-en-Provence, France,
2002.

Stuart M. Shieber. The problem of logical-form equivalence. Computational
Linguistics, 19(1):179-190, 1994.

Stuart M. Shieber, Gertjan van Noord, Robert C. Moore, and Fernando C. N.
Pereira. A semantic-head-driven generation algorithm for unification-based
formalisms. In Proceedings of the 27th ACL, pages 7-17, Vancouver, Canada,
1989.

Matthew Stone and Christine Doran. Paying heed to collocations. In Proceedings
of the 8th INLG Workshop, pages 91-100, Sussex, UK, 1996.

Matthew Stone and Christine Doran. Sentence planning as description using
Tree Adjoining Grammar. In Proceedings of the 35th ACL, pages 198-205,
Madrid, Spain, 1997.

Matthew Stone, Christine Doran, Bonnie Webber, Tonia Bleam, and Martha
Palmer. Microplanning with communicative intentions: The SPUD system.
Available online at http://www.cs.rutgers.edu/ "mdstone/pubs/spud.pdf,
2001.

Kristina Striegnitz. Pragmatic constraints and contextual reasoning in nat-
ural language generation: a system description. Report; Available online
at http://www.coli.uni-sb.de/cl/projects/indigen/papers/bulzoni.
ps.gz, 2000.

Kristina Striegnitz. A chart-based generation algorithm for LTAG with prag-
matic constraints. Report; Available online at http://www.coli.uni-sb.de/
“kris/papers/chart.ps.gz, 2001.

138

Dimitri van Heesch. Doxygen documentation system, 1997. Available online at:
http://www.stack.nl/"dimitri/doxygen/download.html.

K. Vijay-Shanker and Aravind K. Joshi. Feature structures based Tree Ad-
joining Grammars. In Proceedings of the 12th Coling, Budapest, Hungary,
1988.

K. Vijayashanker. A Study of Tree Adjoining Grammars. PhD thesis, University
of Pennsylvania, Philadelphia, PA, 1987.

Wolfgang Wahlster, editor. Verbmobil: Foundations of Speech-to-Speech Trans-
lation. Springer, Berlin, 2000.

Wolfgang Wahlster, Norbert Reithinger, and Anselm Blocher. Multi-modal com-
munication with a life-like character. In Proceedings of FuroSpeech2001, Aal-
borg, DK, 2001.

XTAG Research Group. A lexicalized tree adjoining grammar for english. Tech-
nical Report IRCS-01-03, IRCS, University of Pennsylvania, 2001.

139

