The problem of illusory power for imaginary interactions

DARIO PAAPE & SHRAVAN VASISHTH
University of Potsdam
paape@uni-potsdam.de

INTRODUCTION

- Suppose we run an experiment with a 2×2 design, with factors factor1 and factor2, and predict a statistical interaction between the factors, e.g.
 A. ... constraining context ... low-frequency word ...
 B. ... constraining context ... high-frequency word ...
 C. ... non-constraining context ... low-frequency word ...
 D. ... non-constraining context ... high-frequency word ...

- The correct way of testing for an interaction is to fit the following model and check if the interaction term (factor1:factor2) comes out significant:
 \[\text{lmer}(rt - \text{factor1} * \text{factor2} + \ldots, \text{data}) \]

- An alternative, incorrect approach to “interaction” testing is splitting the dataset according to factor1 and then testing for the effect of factor2 in both of the resulting subsets:
 \[\text{lmer}(rt - \text{factor2} + \ldots, \text{subset1}) \]
 \[\text{lmer}(rt - \text{factor2} + \ldots, \text{subset2}) \]

- Yet another approach is to apply nested contrasts, that is, to code comparisons for factor2 within the levels of factor1:
 \[\text{lmer}(rt - \text{factor1} * \text{factor2} + \ldots, \text{data}) \]

- Under the incorrect approaches (2) and (3), authors argue for an interaction if either of the differences comes out as significant while the other does not – but the interaction term in model (1) tests whether the difference of the differences between conditions is significant; this is different from asking whether one difference is significant and the other is not.

Note: The difference between significant and not significant is not necessarily statistically significant!

- Significance thresholds are arbitrary, and it’s a matter of chance if an effect ends up slightly above or slightly below the criterion (e.g. Gelman & Stern, 2006).

THE PROBLEM

- The incorrect approaches can systematically lead to potentially gross overestimates of statistical power: Depending on the relative sizes of the true nested differences, “imaginary interactions” can lead to unwarranted discovery claims.
- Illusory “power” inflation is due to detecting one difference but failing to detect the other (Type II error).
- The relationship between real and illusory power can be visualized, assuming Hypothesizing After Results Are Known (HARKing; Kerr, 1998) in addition to incorrect analysis.
- Formula for illusory “power” with HARKing:
 \[P_I = P_{AB} \times (1 - P_{CD}) + P_{CD} \times (1 - P_{AB}) \]
 Numbers on lines show C-D difference (in ms)

FURTHER IMPLICATIONS

- Again assuming HARKing, plotting illusory “power” for the imaginary interaction against the (actual) power for the nested effects yields a saddle shape (independently of the statistical test used):

- Illusory “power” for the imaginary interaction is highest when actual statistical power is high for one nested difference but low for the other.
- This relationship can be exploited: Testing for the effect of a manipulation in two groups or conditions with different variances (e.g. high versus low constraint, native versus non-native speakers, impaired versus unimpaired individuals) will likely produce the required imbalance in statistical power, even if the true effect sizes are the same.
- The nested contrasts approach remedies the problem: somewhat due to pooling of variances (but heteroskedasticity remains an issue).

THE SHINY APP

- Our Shiny app is available at https://dpaape.shinyapps.io/ipower/

- Assuming a 2×2 design, it allows the user to interactively calculate power for the actual interaction and “power” for the imaginary interaction, along with the power for the nested effects, using \texttt{power.t.test}.

TAKE-HOME MESSAGE

- The problem of discovery claims based on imaginary interactions is widespread in neuroscience (Nieuwenhuis, Forstmann & Wagenmakers, 2011), and probably in psycholinguistics and psychology as well, though a systematic review has not been conducted so far.
- As 2×2 factorial designs with predictions for a statistical interaction are the most commonly encountered designs in psycholinguistics, it is imperative that claimed interactions are actually substantiated by the data.