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Abstract



Research on similarity-based interference has provided extensive evidence
that the formation of dependencies between non-adjacent words relies on a
cue-based retrieval mechanism. There are two different models that can ac-
count for one of the main predictions of interference, i.e., a slowdown at a re-
trieval site, when several items share a feature associated with a retrieval cue:
Lewis and Vasishth’s (2005) activation-based model and McElree’s (2000)
direct-access model. Even though these two models have been used almost
interchangeably, they are based on different assumptions and predict differ-
ences in the relationship between reading times and response accuracy. The
activation-based model follows the assumptions of the ACT-R framework,
and its retrieval process behaves as a lognormal race between accumulators
of evidence with a single variance. Under this model, accuracy of the re-
trieval is determined by the winner of the race and retrieval time by its rate
of accumulation. In contrast, the direct-access model assumes a model of
memory where only the probability of retrieval can be affected, while the
retrieval time is drawn from the same distribution; in this model, differences
in latencies are a by-product of the possibility of backtracking and repairing
incorrect retrievals. We implemented both models in a Bayesian hierarchi-
cal framework in order to evaluate them and compare them. The data
show that correct retrievals take longer than incorrect ones, and this pattern
is better fit under the direct-access model than under the activation-based
model. This finding does not rule out the possibility that retrieval may be
behaving as a race model with assumptions that follow less closely the ones
from the ACT-R framework. By introducing a modification of the activa-
tion model, i.e, by assuming that the accumulation of evidence for retrieval
of incorrect items is not only slower but noisier (i.e., different variances for
the correct and incorrect items), the model can provide a fit as good as the
one of the direct-access model. This first ever computational evaluation of
alternative accounts of retrieval processes in sentence processing opens the
way for a broader investigation of theories of dependency completion.

Keywords: cognitive modeling; sentence processing; working memory; cue-
based retrieval; similarity-based interference; Bayesian hierarchical modeling

There is strong evidence that the formation of syntactic dependencies between non-
adjacent words relies on the memory system. An example is the so-called locality effect:
increasing the distance between co-dependents (such as subjects and verbs) tends to lead to
greater processing difficulty (Gibson, 2000; Grodner & Gibson, 2005). Research on inter-
ference makes a similar point: the speed and/or accuracy of dependency completion can be
adversely affected by the presence of items in memory that are similar to the retrieval target
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(among others: Gordon, Hendrick, & Levine, 2002; Van Dyke & Lewis, 2003; Van Dyke,
2007; Jager, Engelmann, & Vasishth, 2015; Nicenboim, Engelmann, Suckow, & Vasishth,
Submitted; Vasishth, Briissow, Lewis, & Drenhaus, 2008). Such a central role for memory in
sentence comprehension is well-motivated: it is implausible that the parser could keep track
of a large and in principle unbounded inventory of the dependencies that can be found in a
sentence, since they easily exceed the amount of information that can be held in the focus
of attention (McElree & Dosher, 1989; McElree, 2006; Cowan, 1995; Oberauer, 2013; Mar-
cus, 2013). The evidence from studies investigating similarity-based interference (see the
meta-analysis of published reading studies in Jager, Engelmann, & Vasishth, 2017) suggests
that dependency completion relies on a content-addressable cue-based retrieval mechanism
that is subject to interference (McElree, 2000; Van Dyke & Lewis, 2003; Lewis, Vasishth,
& Van Dyke, 2006). Similarity-based interference is a phenomenon that is not unique to
language, and occurs when several items share a feature associated with a retrieval cue. A
major implication is that the retrieval mechanism employed for the creation of linguistic
dependencies is similar to the one utilized in non-language domains.

There are multiple implementations compatible with such a content-addressable cue-
based retrieval mechanism in sentence processing. As a verbally stated model, this type
of mechanism would entail that when retrieval cues fully match the target of retrieval,
similarity-based interference would cause an inhibitory effect, that is, an increase of pro-
cessing difficulty at the retrieval of a dependent. This processing difficulty would be reflected
in longer reading times and lower accuracy. However, in some cases, shorter reading times
have been observed when increased processing difficulty was clearly expected (Van Dyke &
McElree, 2006; Nicenboim, Vasishth, Gattei, Sigman, & Kliegl, 2015; Nicenboim, Logacev,
Gattei, & Vasishth, 2016). In these cases, it is usually assumed that the fast reading times
are a consequence of a shallow parse (due to, for example, good-enough processing, Ferreira,
Bailey, & Ferraro, 2002) caused by cognitive overload. There can be good reasons to assume
that shorter reading times are associated with increased difficulty, for example, when shorter
reading times co-occur with lower comprehension accuracy (Van Dyke & McElree, 2006)
or lower working memory capacity (Nicenboim et al., 2015, 2016). However, the trade-off
between reading times and comprehension accuracy is usually left underspecified.

There are two models that make explicit the relationship between reading times and
retrieval accuracy, and even though they are sometimes not differentiated, they constitute
two different implementations of the content-addressable cue-based retrieval mechanism.
These model are the Lewis and Vasishth’s (2005) activation-based model, and McElree’s
(2000) direct-access model. These models have different implications for retrieval processes
in sentence comprehension. The activation-based model assumes a process that resembles
a race model (Audley & Pike, 1965; Vickers, 1970), where evidence for each retrieval can-
didate is accumulated with different rates. This race determines both the latencies and the
retrieval accuracy. By contrast, the direct-access model assumes that retrieval candidates
have different levels of availability, which is the probability that a memory representation is
retained. Availability determines only the accuracy of the retrieval and not the latency. In
this model, a difference in latency between two conditions is a by-product of a mixture of
directly accessed items, and retrievals that were initially incorrect, but they are reanalyzed
leading to a correct retrieval.

The goal of this paper is to unpack the quantitative predictions of the activation-based
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and direct-access models by implementing them in a Bayesian hierarchical framework. This
will allow us to compare their relative fit to a representative dataset and to assess their
validity as models of retrieval that can account for similarity-based interference. We used a
subset of the data from Nicenboim et al. (Submitted), which investigated similarity-based
interference from the number feature using two relatively large-sample self-paced reading
experiments. The data in this study include two dependent measures: (i) reading times for
the critical region where retrieval from memory is assumed to occur, and (ii) accuracies in
a comprehension task that targets specific dependency relations through a multiple choice
task. This dataset is especially suitable for our modeling purposes because, apart from
Van Dyke (2007),who also evaluated some of the dependencies, this is the only dataset
that we are aware of that uses comprehension questions to directly assess the resolution
of the dependencies. As explained in detail later, these two dependent measures (reading
times and accuracy) are necessary for evaluating the models. We begin by describing the
Nicenboim et al. study.

The Nicenboim et al. study

Nicenboim et al. (Submitted) used stimuli like (1). There were two conditions, high
vs. low interference, which were assumed to affect the dependency between the subject
(i.e., Der Wohltditer “The philanthropist”) and the verb (i.e., begrifst hatte “had greeted”).
In the high interference condition, two nouns intervened between these two co-dependents
that had the same number marking as the target noun, the subject of the sentence, namely,
singular marking. In the low interference case, the two intervening nouns had plural marking
while the target noun remained singular. In German, the verb (i.e.,begrifit hatte) agrees in
number with its subject; in the high interference condition, the retrieval cue set at the verb
to seek out a singular noun would match three nouns. By contrast, in the low interference
condition, only one noun matches this retrieval cue. Thus, reading time at the critical
region, the verb begriifit hatte, provides an estimate of any interference effect.

Each target sentence was followed by a question that queried either the subject of
the matrix verb (e.g., “sat”), the subject of the embedded verb (e.g.,“had greeted”), or the
object of the embedded verb. The possible answers were provided in multiple-choice format
in pseudo-randomized order. For all the questions, participants had the option to answer
“I don’t know”, when they did not remember or could not answer.

(1) a. HIGH INTERFERENCE

Der Wohltéater, der den Assistenten
The.sg.nom philanthropist, who.sg.nom the.sg.acc assistant  (of)
des Direktors begriif3t hatte, safl spéater im

the.sg.gen director greeted had.sg, sat.sg later in the
Spendenausschuss.

donations committee.

‘The philanthropist, who had greeted the assistant of the director, sat later in
the donations committee.’

b. LOwW INTERFERENCE
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Der Wohltéater, der die Assistenten
The.sg.nom philanthropist, who.sg.nom the.pl.acc assistants (of)
der Direktoren begriif3it hatte, safl spéter im

the.pl.gen directors greeted had.sg, sat.sg later in the
Spendenausschuss.

donations committee.

‘The philanthropist, who had greeted the assistants of the directors, sat later in
the donations committee.

Nicenboim et al. (Submitted) ran two experiments that showed an inhibitory effect
of similarity-based interference for the retrieval of the subject (“the philanthropist”) when
it shared the number feature singular with other competitor NPs (“the assistant”, “the
director”), that is retrieval in high interference conditions took longer than in low inter-
ference conditions. Given that the auxiliary verb (hatte “had”) is morphologically marked
as singular, the longer reading times at the auxiliary verb is consistent with cue-based re-
trieval. Figure 1 shows the posterior distribution of the difference of reading times between
conditions.

Difference between interference
conditions (Nicenboim et al.)

Density

—iO -5 0 5 10 15 20 25
Estimate of interference in ms
Figure 1. Posterior distribution of the estimated difference in reading times between con-
ditions (in milliseconds) for the pooled data of Nicenboim et al. The vertical line indicates
the mean of the posteriors, the outer error bars demarcate the 95% credible intervals, and
the inner error bars and filled section of the distributions the 80% credible interval.

Both the activation-based and the direct-access models make the correct predictions
regarding the average behavior—both predict an inhibitory interference effect. However,
these two accounts differ in the way that correct and incorrect retrievals occur, and these
different underlying mechanisms can be investigated using the data from Nicenboim et al.
(Submitted).

We first describe the models qualitatively, but in order to unpack the predictions of
these two models we later provide a more formal presentation. We then evaluate the models
quantitatively by examining the relationship between reading times and accuracy.

There are two main findings in the present study: First, the direct-access model
provides a better fit to the data than the activation-based model. Second, we show that
a variation of the activation-based model fits the data as well as the direct-access model,
and also provides a reasonable model of the underlying generative process. A surprising



MODELS OF RETRIEVAL )

aspect of the model selection is that it is driven by the difference in latencies for correct
and incorrect retrievals, and not by the difference between interference conditions.

Overview of the activation-based and direct-access model

The activation-based model. The activation-based model as implemented by
Lewis and Vasishth (2005) is a computational model of sentence processing in which depen-
dencies of non-adjacent elements are created via a content-addressable cue-based retrieval
mechanism. This model was realized in ACT-R (Anderson et al., 2004), which is a general
cognitive architecture used to model a vast variety of cognitive phenomena. The activation-
based model uses the declarative retrieval module of ACT-R, which has been shown to be
able to account for many memory-related phenomena (e.g., Anderson, Bothell, Lebiere, &
Matessa, 1998; Anderson & Reder, 1999; Van Rijn & Anderson, 2003). This means that
sentence processing depends on the application of general cognitive principles to the spe-
cialized task of sentence parsing. Being a computational model, it provides quantitative
predictions of retrieval speed and accuracy.

The predictions regarding interference, locality, and some antilocality effects of Lewis
and Vasishth’s (2005) original model have been investigated using simulations (Lewis &
Vasishth, 2005; Vasishth et al., 2008). In addition, simplified versions of the model, which
focused on certain aspects of the architecture and evaluated some of the assumptions of the
original model, have also been used (e.g., Dillon, Mishler, Sloggett, & Phillips, 2013; Dillon
et al., 2014; Kush & Phillips, 2014; Jager et al., 2015; Vasishth & Lewis, 2006; Nicenboim et
al., 2016; Engelmann, 2015; Parker & Phillips, 2016, 2017; Engelmann, Jager, & Vasishth,
Submitted).

Crucially, the activation-based model provides an account of the relationship between
reading times at the dependency resolution site and the accuracy of the resolution. This
is so because dependency creation relies on the retrieval of the correct item from mem-
ory; in ACT-R terms, what is retrieved is a chunk. The chunk with the highest activation
is retrieved and its activation level determines the retrieval time with higher activation
leading to shorter times. We provide next an informal explanation of the key aspects of
the activation-based model. We do this using example (1) from Nicenboim et al. (Submit-
ted). We show that the activation-based model can explain similarity-based interference
effects, predicting inhibitory interference (i.e., an increase in processing difficulty) when a
competitor NP matches the singular number feature of the target of retrieval.

The main assumptions of the model are that (i) words and phrases are encoded in
memory as bundles of features (as in Nairne, 1990; Oberauer & Kliegl, 2006) that include
lexical, semantic, and syntactic information, and that (ii) retrieval cues are used to identify
the “correct” chunk from memory: If retrieval cues (which are feature specifications) match
with the features of a chunk in memory, the chunk gets a boost in activation, and if cues
mismatch a chunk’s features, activation is decreased. Such a mechanism would always re-
trieve the correct item. However, due to noise in the system, activation fluctuates randomly
from trial to trial, so that despite a cue match with a target, a competitor could have higher
activation and could end up being retrieved. An alternative possibility is that all candidate
chunks in memory fall below a retrieval activation threshold (a parameter in ACT-R); in
this case, retrieval would fail.



MODELS OF RETRIEVAL 6

As an example, consider the auxiliary verb (hatte, “had.sg”) of (1). This is the
region where an interference effect was seen in Nicenboim et al. (Submitted). In both
sentences (la) and (1b), there is a dependency between this verb and its subject (“the
philanthropist”), and the only difference between the sentences is that the intervening NPs
(“the assistant/s”, “the director/s”) appear in singular in (la) and in plural in (1b). The
activation-based model assumes that the feature information of each item such as category,
case, number, gender, and so forth is encoded in memory. When the embedded verb (begrift
hatte, “greeted had.sg”) is being read, an attempt is made to retrieve the subject. The verb
provides cues such as NP, nominative (notice that case is encoded in the determiner of the
NP in German), singular, among others features required from the target of the retrieval.
For each cue, a limited amount of activation (called the maximum associated strength or
MAS) is spread among the target and the competitors that are stored in memory. The
M AS determines the strengths of association from each cue to each item in memory. This
strength of association represents how uniquely the cue identifies a target. This means that
in the low interference condition (1b), the strength of association of the singular cue with
the target is determined by the maximum activation associated with this cue (since the
cue fully identifies the item). In the high interference condition (1a), however, the target
(“the philanthropist”) and the competitors (“the assistant”, “the director”) will be assigned
some smaller part of the maximum activation (this is the so-called fan effect, for details,
see Anderson & Reder, 1999), and thus their strength of association of singular will be
smaller than the maximum activation. This is regardless of the fact that in both conditions,
there is another cue that uniquely identifies the target, namely, being nominative: In both
conditions the target also receives activation due to the strength of association with the cue
nominative. This means that (i) the target in high interference conditions would receive
(on average) less total spreading activation than the target in low interference conditions,
(ii) the competitors in high interference conditions would receive (on average) more total
spreading activation than the competitors in low interference conditions, and (iii) the target
would receive (on average) more total spreading activation than the competitors. See Figure
2 for a schematic that illustrates this. Given that higher activation leads to shorter retrieval
times, the way activation is shared among the NPs leads to inhibitory interference, that is,
longer retrieval times and lower accuracy in high interference conditions in comparison with
low interference ones. Another less studied consequence is that the incorrect retrieval of
the competitors should take longer than the correct retrieval of the target. We will return
to this last point in the discussion section.

Given that both latency and probability of successful retrieval are affected by acti-
vation, we will show later that the retrieval process is similar to a race of accumulators
(among many others: Audley & Pike, 1965; Vickers, 1970; Usher & McClelland, 2001):
Each item in memory is assigned an accumulator of evidence for its retrieval, where the
activation of each item acts as the rate of accumulation. The accumulator that reaches
the threshold of evidence first determines which item is retrieved and with which latency.
This places the model under a sequential sampling framework (such as the drift diffusion
model: Ratcliff, 1978; Ratcliff & McKoon, 2008; the leaky competitive accumulator: Usher
& McClelland, 2001; linear deterministic models: Brown & Heathcote, 2008; Heathcote &
Love, 2012, among others). Furthermore, some of the assumptions of ACT-R can allow us
to frame the retrieval process as one of simplest accumulator models: the lognormal race
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Low interference High interference
e.g.,“philanthropist e.g.,“philanthropist’
<MAS _— <MAS o
NP Target NP Target
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nominative Competitornominative Competitory
—_———— —_——
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e.g.,“directors’ e.g.,“director’

Figure 2. Graph showing the associations between the cues NP, nominative, and singular,
and the target and two competitor NPs. The width of the arrow represents the strength of
association, but this strength is weighted, so two identical associations may assign different
amount of activation depending on the cue to which they belong.

model with a single variance for the noise associated with target, competitors, and failure
accumulators (Heathcote & Love, 2012; Rouder, Province, Morey, Gomez, & Heathcote,
2014). A variant that we will consider later is a model with two separate variances, one for
the target accumulator, and one for the competitors and failure accumulators.

The direct-access model. It should be noted that a content-addressable system
does not necessarily entail a race between items in memory, and there are other models
that are also compatible with a content-addressable cue-based retrieval mechanism. The
cue-based retrieval model proposed in Van Dyke and McElree (2006) is based on McElree
and colleagues’ previous work (e.g., McElree, 2000; McElree, Foraker, & Dyer, 2003) and,
while it does not assume a race model, it shares with the activation-based model some of
the assumptions of cue-based retrieval: Words and phrases are also encoded in memory
as feature bundles, and retrieval cues are used to distinguish the target from the competi-
tors.  Whereas here the cues are combined multiplicatively (as proposed in the Search
of Associative Memory (SAM) model of Raaijmakers & Shiffrin, 1980; Gillund & Shiffrin,
1984), ! and in the activation-based model the cues are combined additively, the result
is similar: The probability of retrieving a particular item from memory given the retrieval
cues is a function of the degree of the match between the cues and the item, reduced by the
degree to which the cues match other competitor items in memory. However, in contrast
with the activation-based account, cues are supposed to enable direct access to relevant
memory representations. This means not only that there is no serial search between items
in memory, but that the distribution of access time is independent of the degree of match
between item and cue, and regardless of the quality or strength of the representation of the
item in memory (McElree, 2000). As a consequence of the direct access, in this model, the

Van Dyke and McElree (2011) are explicit, however, in that it could also be that cues are combined
linearly, but with weights that are different enough so that certain cues, such as syntactic cues, have a more
prominent role.
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probabilities of retrieval are affected by inhibitory interference, resulting in a pattern similar
to the one described for the activation-based model: (i) the probability of retrieving the
target in high interference conditions would be lower than in low interference conditions, (ii)
the probability of retrieving one of the competitors in high interference conditions would be
higher than in low interference ones, and (iii) the probability of retrieving the target would
be higher than the probability of retrieving one of the competitors.

It is not uncommon, however, that both poorer accuracy and longer reading times
associated with similarity-based interference are taken as evidence for McElree’s (2000)
direct-access model as well as for Lewis and Vasishth’s (2005) activation-based model. For
example, Van Dyke and McElree (2006) write:

The current experiment supports a retrieval-based account of interference effects
in sentence processing, one that is compatible with the hypothesis that a cue-
based retrieval mechanism mediates the creation of grammatical dependencies
during parsing. One such mechanism has been proposed in Van Dyke and Lewis
(2003; see also Lewis and Vasishth, 2005; Van Dyke, 2002), in which parsing
success depends on the extent to which required constituents can be retrieved
from working memory. On this account grammatical heads provide retrieval
cues that are used to access previously stored items via a content-addressable
retrieval process (McElree, 2000, 2006; McElree, Foraker, & Dyer, 2003).

A slowdown in self-paced reading or eyetracking-while-reading can also be taken as
evidence for direct access, since processing speed may be affected by differences in the
likelihood of recovering an item from memory (McElree, 1993; McElree et al., 2003). This
is because McElree (1993) assumes that after a misretrieval, that is, an incorrect or failed
retrieval, the parser can often backtrack to reprocess the retrieval and reach the appropriate
analysis. This would mean that a correct interpretation of a dependency could be arrived at
because the correct dependent was retrieved at the first attempt or, alternatively, because
a wrong dependent was retrieved initially but the parser backtracked and retrieved the
correct one. Given that backtracking should take some additional time, latencies associated
with the correct responses would be a mixture of fast directly accessed dependents and
retrievals slowed down due to the time needed for backtracking. Since interference adversely
affects retrieval probabilities, the proportion of errors would be higher in high interference
conditions. This would entail a higher proportion of backtracking and hence slower latencies
in the mixture of correct responses and on average, high interference conditions would show
longer reading times than low interference conditions.

Since the assumed constant distribution of retrieval times may not be observable in
reading for comprehension, evidence compatible with the direct-access model but incompat-
ible with the activation-based model comes only from findings of speed-accuracy trade-off
(SAT) procedure on rapid grammaticality judgment task (e.g. McElree, 2000; McElree et
al., 2003; Van Dyke & McElree, 2011). In this task, participants need to judge a sentence
as either grammatical or ungrammatical, and their judgment process is interrupted with a
cue to respond (typically a tone) after varying amounts of time (Reed, 1973; Wickelgren,
1977; and see also: Foraker & McElree, 2011). However, this is a meta-linguistic task and
it would be desirable if independent support for the direct-access model could be found
with a reading-for-comprehension task. In addition, the conclusion that there is a constant
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distribution of retrieval times requires arguing for a null result in one of the parameters of
the SAT model. For SAT procedures, accuracy is modeled as a function of three parameters
corresponding to the three phases of the SAT curve: (i) the asymptotic level of performance,
(ii) the intercept or the point in time where performance is different from chance, and (iii)
the rate at which accuracy grows from chance to asymptote. While the presence of the effect
in the asymptote, such that an increase on interference lowers the asymptote, is evidence for
the reduction of the probability of accessing the target, the lack of evidence for changes in
the rate and intercept must be taken as evidence for no effect on the speed of the retrieval.
It could be, however, that the differences were too small to be detected.

Since both models give virtually identical predictions for non-SAT (self-paced reading
or eye-tracking) experiments when comparing only reading time averages across conditions,
a slowdown at high interference conditions has been taken as evidence for both models.
However, the two models assume different relationships between retrieval times and re-
sponses. It is important to assess the fit to the data of each model, since each one is
compatible with different memory retrieval mechanisms.

Implementation of the models

In order to distinguish between the activation-based and direct-access models, we
implemented them as hierarchical Bayesian models. Implementing these models affords
several advantages: (i) we can investigate (through posterior predictive checking, explained
below) whether the data could have been generated by the models; (ii) we can determine
how each model’s parameters were affected by interference effects; and (iii) the quality of
fit of the two models can be compared using cross-validation. It is important to note
that we are using Bayesian methods as a flexible and interpretable way of extending models
of cognitive processes (Lee, 2011; Shiffrin, Lee, Kim, & Wagenmakers, 2008), and this
approach is orthogonal to the question of whether the mind does or does not do Bayesian
inference (see Feldman, 2016, for a critical review on how probabilistic models of perception
and cognition should work).

The benefits of using hierarchical Bayesian modeling are two-fold: (i) The models
incorporate the general advantages of Bayesian inference, such as the use of credible intervals
instead of confidence intervals, and the possibility of fitting complex non-linear models (see
Nicenboim & Vasishth, 2016, for an extended discussion), and (ii) hierarchical models allow
us to take both between- and within-group variance into account and pool information via
shrinkage (Gelman, Hill, & Yajima, 2012). This means that we avoid overfitting the data
and at the same time we avoid aggregating data and losing valuable information about
group-level variability (Gelman & Hill, 2007). In the next section we provide a more formal
presentation of the assumptions and details of the implementation of both models than the
one given in the introductory overview.

The activation-based model as a lognormal race

In order to assess the fit of the activation-based account to the experimental data, we
implemented it as a lognormal race of accumulators with a shift parameter and a single vari-
ance for the noise of all accumulators (Rouder et al., 2014), as explained further below. The
retrieval in ACT-R can be thought of as a decision processes, where target and competitors
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stored in memory accumulate evidence until the first chunk reaches a certain value and is
retrieved. Activation can be linked to evidence by assuming that it represents the rate of
its accumulation (in a similar way as assumed by van Maanen, van Rijn, & Taatgen, 2011).
This is so because activation in ACT-R represents the probability of the retrieval, and it is
boosted by processes that increase evidence such as matching cues, previous retrievals and
so forth, while it is penalized by processes that decrease the evidence such as mismatching
features and decay.

Since the chunk with the highest activation is retrieved, the equation that determines
the latency of the retrieval in ACT-R (1) ignores the activation of the other chunks. Our
implementation, however, assumes that there is a potential retrieval time, or finishing time
in the race, t. for each candidate ¢ in memory that depends on its activation, A.. This is
the time it would have taken for the chunk to be retrieved given its activation, as shown in
Equation (2).

—argmax (Ac)

Latency xe ¢ (1)

te oc e~ Ae (2)

The race model is implemented in the following way: Since the noise component in
A, is assumed to be normally distributed (Lebiere, Anderson, & Reder, 1994) and affects
the activations of all the chunks to the same extent,? for each trial, the finishing time of
each chunk, t., is sampled from a lognormal distribution with the same standard deviation
o, and the fastest chunk in a given trial would be the one retrieved (i.e., the chunk with
the lowest t. in a given trial). We account other aspects of processing (e.g., lexical access)
with a parameter ~.

te ~ enormal(*ﬂc+%0) = 10g(tc) ~ normal(—,uc + 7, 0—) (3)
&te ~ lognormal(—pe + v, 0) (4)
where
Ac = pc + € (5)
€ ~ normal (0, o) (6)

The only observable data for every trial are (i) the answer of the comprehension
question at the multiple choice task, w, (we assume that when the question asks about
the subject of the embedded verb, the answers correspond to the chunk retrieved from
memory, i.e., the winner of the race, modulo offline distractions), and (ii) the reading times
at the site of the retrieval (the auxiliary verb “had.sg”). The reading times will include the
retrieval time, t.—,,, of the “winner” chunk, and the time taken for other processes. Given
the evidence that distributions of reaction times are shifted (Rouder, 2005; Nicenboim et
al., 2016), we assume a lower bound, 1, which represents changes in peripheral aspects of
processing, such as encoding or motor execution (Rouder, 2005).

2The noise component is sometimes approximated to have a logistic distribution for convenience, see, for
example Lebiere (1999).
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RTo—y ~ Y + lognormal(—p. + v, 0) (7)

Since the observed reading times, as shown in Equation (7), are associated with
the maximum activation (on a specific trial), the observable data constrain the unobserved
finishing times of all the other non-selected choices ¢ which are not the winner; these finishing
times must be slower than the finishing time of the winner w. We can write this as Equation

(8).

th,c;éw > te=w (8)

Since we are not interested in the specific value of y., or 7, but in learning from the
model (i) whether the retrieval process resembles a race of accumulators, and (ii) the effect
of number interference on the target and competitors, we fit the reading times, RT, as a
function of ., and an arbitrary constant, b, such that b — a. = —pu. + p. By setting b large
enough (to 10, for example), we ensure that «. is strictly positive for ease of interpretation:
a higher positive number corresponds with a higher rate of accumulation. Rouder et al.
(2014) show that without further assumptions, thresholds and accumulation rates cannot
be disentangled in the lognormal race model. To estimate the thresholds in a lognormal race
model, Heathcote and Love (2012) assumed that both the rate of accumulation v and the
thresholds 1 were lognormally distributed, so that the finishing times, y, were distributed
in the following way y ~ lognormal(p = py — p,0 = /o2 +02). If the thresholds are

fixed at some arbitrary point b, then o = ¢, (since o,, = 0) and the rate of accumulation
1y, = b—p, thus we can interpret «. as the rate of accumulation associated with each chunk,
and we can rewrite Equation (7) in the following way:

RT.—y ~ ¢ + lognormal(b — ey, 0) (9)

On every trial, [, we can estimate oy .—,, from the observed RT’, and we can constrain
the possible values of oy cx, from the values of ¢y, -+, that could not be possible on a
given trial.

Given that shifts vary across participants but tend not to vary with experimental
manipulation (Rouder, 2005), we assume a certain shift for every participant 7, while o ., the
activation together with nuisance parameters, will vary by participant ¢ and by experimental
item j.

RTj; i ~ i + lognormal(b — ay i j c=w, 0) (10)

In standard ACT-R, if the activation is below a certain threshold, T', the retrieval fails
with a latency that is proportional to e~ (Lebiere et al., 1994). To avoid a deterministic
latency, we assign an accumulator to the possibility of failure, which acts as a noisy timer,
and its timeout depends on its parameter ci.— fqijure- In this way, the retrieval threshold
can be also thought as a chunk that competes for activation (Van Rijn & Anderson, 2003).

Figure 3 summarizes the parameters and the process for two chunks. The lognormal
race model is sometimes called a ballistic or deterministic race model because there is no
within-choice noise (as in, for example, the drift diffusion model): once a rate of accumu-
lation is set for a given accumulator, it will determine its time to the threshold; this is
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represented in the lower part of Figure 3 by the straight lines. This, however, does not
make the process deterministic, since the rate of accumulation changes from trial to trial.

In the implementation of the activation-based model, the hierarchical structure of
this model is embedded in each parameter «. associated with each chunk ¢ (including one
representing the failure) that is allowed to vary by condition (high/low interference) and
includes by-participants and by-experimental-items intercepts and slopes (which are also
allowed to be correlated). This means that the model can account, for example, for an NP
of a certain experimental item being more semantically plausible as a retrieval candidate
than other NPs, by simply adjusting the by-item intercept of the accumulators associated
with each NP. See Appendix A for the details of the Bayesian model.

The direct-access model as a mixture model

Next, we present an implementation of a direct-access model. This is a Bayesian
hierarchical implementation of the cue-based retrieval model proposed by Van Dyke and
McElree (2006) based on McElree and colleagues’ previous work (e.g., McElree, 2000; McEl-
ree et al., 2003). Since the original model has never been implemented computationally, it
is underspecified in some respects. We therefore made some assumptions in the model to
spell these details out; these are described below.

In order to account for differences in reading times, the direct-access model assumes
that, in some proportion of the cases, the parser is able to backtrack a misretrieval and to
access the target candidate, taking some extra time. Thus the reading times associated with
the correct retrievals are a mixture of directly accessed as well as backtracked retrievals as
shown in Figure 4. This means that the probability of the final retrieval of a certain chunk,
P, (which should be equivalent to the proportion of responses given at the multiple choice
task modulo offline distractions), is affected by the probability of backtracking, 6y, together
with the probability of either an initial retrieval of the target, 074, ¢et, an initial retrieval of
one of the competitors, Ocompetitor, ,, OF an initial failure, 04i1ure, in the following way:

P, (Tm“get) = QTarget + (1 - HTa'r‘get) - Oy (11)
P.(Competitor o)) = Qcompetitor{m} (1 —6p) (12)
Pfaz'lure = efailure : (]— - 9!7) (13)
where
HTarget + HCompetitom + QC'ompetitorg + afailure =1 (14)

The core assumption of the direct-access model is that retrieval takes the same time
on average, tq,, regardless of the availability of the to-be-retrieved chunk. This is in contrast
with the activation-based model, but also in contrast with the SAM framework of (Gillund
& Shiffrin, 1984), where the retrieval time depends on the match between cues and features
of the chunk. The implications for the direct-access model is that there will be two different
distributions of reading times: a distribution associated with the incorrect responses and a
distribution associated with the correct ones. An incorrect response is given by a participant,
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Activation—based model as a lognormal race model
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Figure 3. The figure depicts how the distribution of retrievals is generated from the
activation-based model as a lognormal race model. The bottom figure depicts the param-
eters of the activation-based model, the full lines in green and red are the mean finishing
times tc—Target and te—Competitor, and the broken lines are finishing times one standard de-
viation away from the mean. The middle figure shows the distributions of finishing times
for target and candidate; since every chunk is associated a potential finishing time, ¢, both
distributions have the same number of elements. The top-most figure shows the distribution
of retrieval times (adding the shift parameter ¢ would transform it to reading times); since
only the winning chunks are retrieved, the distribution of retrieval times for targets has
more elements than the one of the competitors. Notice that the retrieval times are faster
than the finishing times: this is so because when a chunk has a very long finishing time in
a given trial, it is very likely that its competitor will be faster.
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Figure 4. Graph showing the different responses as a categorical distribution with correct
responses inflated by the probability of backtracking, 8,. Correct responses are inside ellipsis
and incorrect ones inside rectangles.

“I don’t know”
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only when the wrong chunk is retrieved and there is no backtracking and repair process;
see Figure 4. In this case, the reading times at the retrieval site will only include the time
needed for the direct access, t4,, together with the time taken for other processes, v, and
normally distributed noise with standard deviation ¢; crucially, this time is independent
of the level of interference. We assume, as before, that the noise and the time taken for
other processes are added to the location of the lognormal distribution; in addition, reading
times are assumed to be shifted by some minimum amount % of time that represents the
lower bound of the process. Thus, we can assume that the reading times at the retrieval
site for each trial [ that are associated with an incorrect response (i.e., the retrieval of a
competitor or a failed retrieval) have a shifted lognormal distribution, where the ¢4, depends
on each participant ¢, and experimental item j, but not on the experimental condition or
the identity of the chunk retrieved.

Rﬂncorrect,l,i,j ~ wz + lognormal(tda,i,j + Yi,gs U) (15)

For correct responses, the reading times depend on whether there is a repair process
or not; see Figure 4. This entails that the distribution of reading times is a mixture of two
components: The first one is associated with chunks correctly retrieved at the first attempt
as shown in the first line of Equation (16), and it is identical to the distribution of incorrect
responses. The second one is associated with incorrect responses that are backtracked and
repaired, and it includes the direct-access times, tg4,, together with the time it takes to
backtrack and do a reanalysis, ¢, as shown in the second line of Equation (16). (We derive
the exact proportions in Appendix B.)

lognormal(tda,:; + Vij:0) , if the first try is correct

RTcorrect,l,i,j ~ 1/% + { (16)

lognormal(taeij +tvij + vij,0) , otherwise

As with the activation-based model, we are not interested in -y, and we define Ty, ; ; =
tdai,j+i,j- In the implementation of the model, we estimate the probability of each retrieval
and the effect of interference on the retrieval probability using a multi-logit regression
(or categorical distribution with the parameters on the logit scale). This is achieved by
assigning a hierarchical structure to the parameters of the multi-logit regression which vary
by condition (high/low interference) and include by-participants and by-experimental-items
intercepts and slopes which have one correlation matrix for participants and one matrix for
experimental items. Furthermore, we assign a hierarchical structure also to T, and t;, which
are composed by by-participant and by-experimental-item varying intercepts. To allow for
correlations between the direct access time and the backtracking time, we included also one
correlation matrix for participants and one matrix for experimental items. This means that
we assume that latencies should not be affected by retrieval probabilities. See Appendix B
for more details.

Evaluation of the activation-based and direct-access models
Application to data from a self-paced reading experiment

We fit the models to a subset of the data from Nicenboim et al. (Submitted). This
work reports two self-paced reading studies: an exploratory and a confirmatory study with
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a total of 183 participants investigating similarity-based interference. Both studies included
the same 60 experimental items, where a high interference condition with two competitor
nouns sharing the singular feature with the target of the retrieval (e.g., “the director”) is
contrasted with a low interference condition with two plural competitors, see (1), repeated
here for convenience as (2). In order to encourage attentive reading, after every sentence
participants answered a multiple choice questions querying different aspects of the sentence:
for example, (3).

(2) a. HIGH INTERFERENCE
Der Wohltéater, der den Assistenten
The.sg.nom philanthropist, who.sg.nom the.sg.acc assistant  (of)
des Direktors begriif3t hatte, safl spéter im
the.sg.gen director greeted had.sg, sat.sg later in the
Spendenausschuss.
donations committee.

‘The philanthropist, who had greeted the assistant of the director, sat later in
the donations committee.
b. Low INTERFERENCE
Der Wohltéter, der die Assistenten
The.sg.nom philanthropist, who.sg.nom the.pl.acc assistants (of)
der Direktoren begriif3it hatte, safl spiter im
the.pl.gen directors greeted had.sg, sat.sg later in the
Spendenausschuss.
donations committee.

‘The philanthropist, who had greeted the assistants of the directors, sat later in
the donations committee.

(3) Wer hatte jemanden begrifit?
Who had greeted someone?

a. der/die Wohltédter (CORRECT) c. der/die Direktor/en
the philanthropist(s) the director(s)

b. der/die Assistent/en d. Ich weifl es nicht
the assistant(s) I don’t know

For the current study, we pooled the data of both self-paced reading experiments,
keeping only the sentences with questions that queried the subject of the embedded verb,
as in (3). This was done because cue-based retrieval models predict that interference will
affect only retrievals where the cue is relevant. This left us with 20 sentences for each
participant. For each sentence we used two dependent variables: (i) the time taken for
reading the auxiliary verb hatte (“had.sg”), where Nicenboim et al. (Submitted) found
evidence for interference effects in reading times, and (ii) the response given at the multiple
choice task.
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In order to fit the models, however, we need retrieval times and the retrieved argument.
Thus we assume that all things being equal (as in an experimental setting), (i) reading times
at the auxiliary verb include the retrieval time (as well as other theoretically uninteresting
processes), and (ii) participants’ answers are informative of the dependency completion they
carried out.

We fit the models using rstan package (Stan Development Team, 2017, version 2.15.1)
in R (R Core Team, 2015) with four chains and 3000 iterations, half of which were the burn-
in or warm-up phase. In order to assess convergence, we verified that the potential scale
reduction factors, Rs, of the parameters were close to one, and we also visually inspected
the chains (Gelman, Carlin, et al., 2014, section 11.4). This indicates that the chains have
mixed and they are transversing the same distribution. When needed, we also increased the
maximum tree-depth and the adaptation parameter ¢ of the sampler to eliminate divergent
transition and achieve convergence. We also verified that we could recover the parameters
from the models using fake-data simulation (Gelman & Hill, 2007), see Appendix C.3

Posterior predictive checking

We use posterior predictive checking to examine the descriptive adequacy of the mod-
els (Shiffrin et al., 2008; Gelman, Carlin, et al., 2014, Chapter 6), that is, the observed data
should look plausible under the posterior predictive distribution. The posterior predictive
distribution is composed of 6000 datasets (one for each iteration) that the model generates
based on the posterior distributions of its parameters. In other words, given the posterior
of the parameters of the model (which are based on the current data), the posterior pre-
dictive distribution shows how other data may look like. Achieving descriptive adequacy
means that the current data could have been predicted with the model. While passing a
test of descriptive adequacy is not strong evidence in favor of a model, a major failure in
descriptive adequacy can be interpreted as strong evidence against a model (Shiffrin et al.,
2008). Thus, posterior predictive checking is an important sanity check to assess whether
the model behavior is reasonable (see Gelman, Carlin, et al., 2014, for further discussion)

Given that the main difference between the activation-based model and the direct-
access model is in the way they account for the relationship between retrieval probability
and latencies, for each of the 6000 datasets generated by the models, we calculate the means
and .1-.9 quantiles of the reading times associated with each response, as well as the mean
proportion of responses given. We represent this graphically using violin plots (Hintze &
Nelson, 1998): the width of the violin plots represents the density of the predicted means
(or quantiles). The observed mean (or quantile) of the data is represented with a cross. If
the data could plausibly have been generated by the model, we would expect the crosses to
be inside the violin plots.

Estimation of relevant parameters

In addition to fitting the data, the models include parameters that can be interpreted
and can give support (or falsify) some assumptions of the effect of interference under the
two presented models. In particular, the following inequalities represent the expected rela-

3Data and code can be downloaded from: www.ling.uni-potsdam.de/ nicenboim/code/code-data-retrieval-mode
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tionships between activations for the activation-based model and how they are affected by
interference (with |H I indicating under high interference, and |LI under low interference):

QTarget| HI < QTarget| LI (17)
ATarget > {aCompetitorl’ QCompetitors s CVFailure} (18)
O‘Competitor{ 1,2} [HI > OCompetitor{LQ} |LI (19)

and similarly for the probability of retrieval at the first attempt in the direct-access model:

eTarget\HI < 9Tm"get|LI (20)
eTarget > {eCompetitorla 900mpetito7‘2; HFailure} (21)
eCompetitor{lyg}\HI > QC’ompetitor{lygﬂLI (22)

In addition, the direct-access model includes the probability of backtracking, 6, and
the time needed for backtracking, tp.

We provide the estimates of the previous key parameters (or relations between key
parameters) with their credible intervals.

Cross-validation

We also compared the models using cross-validation, since the descriptive adequacy
can also be achieved by a model that is too flexible and can generate too many different
results. The idea behind cross-validation is to assess the accuracy the model would have in
making predictions for new data, that is the expected predictive performance.

We compare the expected predictive performance of the models (Gelman, Hwang, &
Vehtari, 2014) using k-fold cross-validation (Vehtari & Ojanen, 2012; Vehtari, Gelman, &
Gabry, 2017), with k set to ten. We calculated the k-fold cross-validation by first splitting
the data into ten subsets (or folds) and then using each subset as the validation set, while the
remaining data were used for parameter estimation. We partitioned the data into subsets
by pseudo-randomly permuting the observations, and then systemically dividing them into
10 subgroups; we ensured that each group contained similar number of observations for
each subject (this was meant to avoid the situation where most of the data of a certain
subject is left out due to chance). The estimate of the expected log pointwise predictive
density (el/p\d) for a new dataset (i.e., the sum of the expected log pointwise predictive
density of each observation) can be used as a measure of predictive accuracy for the total
number of observation (N) taken N/k at a time; elpd can be transformed to deviance
scale by multiplying it by minus two, providing a fully Bayesian alternative to AIC (Akaike
Information Criterion; Akaike, 1974) or DIC (Deviance Information Criterion; Spiegelhalter,
Best, Carlin, & Van Der Linde, 2002).

Results

Activation-based model.
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Posterior predictive check. The posterior predictive check reveals that the model
is inadequate for predicting some key characteristics of the data. Figure 5(a) shows that
the model predicts shorter times for reading the auxiliary verb when the correct response
is given and longer times for reading the auxiliary verb when an incorrect answer is given.
In other words, the model underestimates the retrieval time of the correct dependent and
overestimates the retrieval time of the competitor NPs, or the timeout. Figure 5(b) also
shows a slight misfit for the predicted accuracy: the model tends to underestimate the
proportion of correct responses and to slightly overestimate the proportion of incorrect
ones. Furthermore, Figure 5(c) reveals that the fit is especially poor for the second half of
the quantiles.

Estimation of relevant parameters. The key parameters and relationships be-
tween parameters of the activation-based model are summarized in Figures 6(a) and (b).
Figure 6(a) shows caterpillar plots of the posterior distributions for the rates of accumulation
of evidence for each choice assuming an arbitrary threshold of 10. In the activation-based
model, these parameters represent the mean activation (together with a common additive
constant) of the target, competitor NPs, and in the case of the failure option, the activation
represents the speed of the timeout. As assumed by the activation-based model, the acti-
vation of the target is higher than the activation of the competitors and of the failure. The
figure shows that the activations of the chunks fit the Equation (18), which indicates that
the correct chunk should receive more activation on average than the competitor chunks.

Figure 6(b) shows the difference in activation for high and low interference for the
target and the competitors. The figure shows that the posterior means and most of the
probability mass of the effect of interference fit the predictions of Equations (17), i.e., inter-
ference lowers the activation of the target, and (19), i.e., interference raises the activation
of the competitors. However, all the 95% Crls include 0 as a plausible value; for the target:
B = —0.03, 95% CrI = [—0.12,0.06], P(8 > 0) = 0.25, for the first competitor: 3 = 0.18,
95% Crl = [-0.06,0.44], P(8 > 0) = 0.93, and for the second competitor: 3 = 0.07, 95%
CrI = [-0.27,0.38], P(# > 0) = 0.66. There is clearly a lot of uncertainty about the pa-
rameters’ plausible values. While the posteriors do not clearly contradict the predictions of
the model regarding the effect of interference, they do not bring much support either.

Direct-access model.

Posterior predictive check. The posterior predictive check reveals that, in con-
trast to the activation-based model, the direct-access model is able to predict the main
characteristics of the data fairly well. Figure 7(a) shows that the model is able to predict
that reading times associated with correct responses are on average slower than the ones
associated with incorrect ones, while Figure 7(b) shows that the model is able to predict
fairly well the proportion of responses from the data. Furthermore, Figure 7(c) reveals that
the fit is generally good for the entire distribution of reading times.

Estimation of relevant parameters. The key parameters of the direct-access
model are: (i) the probability that each of the candidate NPs would be retrieved (as shown
in Figure 8), (ii) the probability of backtracking (reported below), and (iii) the time needed
for backtracking (reported below). Figure 8(a) shows caterpillar plots of the posterior
distributions for the parameters that represent probability of retrieving each chunk from
memory in order to build a dependency at the auxiliary verb. Figure 8(a) shows that the
retrieval of the target is more likely than the retrieval of the competitors or the retrieval
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Activation—based model
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Figure 5. The top-most figure shows the fit of the mean reading times (RTS) for response
(a) and proportion of responses (b) of the activation-based model. The width of the violin
plot represents to the density of predicted mean RTs (a) and responses (b) generated by the
model. The bottom figure (c) shows the fit of the .1-.9 quantiles of the reading times (RTs)
for response of the activation-based model. The width of the violin plot represents to the
density of predicted quantile generated by the model. The observed means and quantiles
are represented with a cross.
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Activation—based model
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Figure 6. Mean activation of the different chunks assuming an arbitrary threshold of 10
(a), and mean difference between the activations of the chunks in high interference vs. low
interference conditions (b). The outer error bars indicate 95% credible intervals while the
inner error bars indicate 80% credible intervals.

failure; this is in agreement with Equation (21). Notice that since the model assumes that
backtracking is possible, after some trials the incorrect retrieval will be repaired. This
means that the probability of retrieving a dependent is not the same as the proportion of
times a response was given in the multiple choice task. In fact, the model estimates that
around half of the time that there is a misretrieval, it will be corrected (éb =0.48, 95% Crl
= [0.4,0.55]). In addition, the model estimates that backtracking takes 120 ms, 95% Crl
= [30,231] ms (after transforming it from log-scale).

As shown in Figure 8(b) and similarly to the case of the activation-based model, the
posterior distributions for the effect of interference do not clearly support or contradict
the predictions of the model regarding the effect of interference. As before, the means
and most of the probability mass of the posteriors for the effect of interference on the
target and competitors fit the predictions of Equations (20), i.e., interference lowers the
probability of retrieval of the target, and (22), i.e., interference raises the probability of
retrieval of the competitors. However, all the 95% Crls include 0; for the target: B =
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Figure 7. The top-most figure shows the fit of the mean reading times (RTS) for response
(a) and proportion of responses (b) of the direct-access model. The width of the violin
plot represents to the density of predicted mean RTs (a) and responses (b) generated by
the model. The bottom figure (c) shows the fit of the .1-.9 quantiles of the reading times
(RTs) for response of the direct-access model. The width of the violin plot represents to the
density of predicted quantile generated by the model. The observed means and quantiles
are represented with a cross.
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—0.04, 95% Crl = [-0.11,0.02], P(8 > 0) = 0.08, for the first competitor: B = 0.04, 95%
Crl = [0,0.08], P(8 > 0) = 0.96, and for the second competitor: § = 0.02, 95% Crl =
[-0.01,0.04], P(8 > 0) = 0.88.

direct—access model
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Figure 8. Mean probability of retrieval of the different chunks (a), and mean difference
between the probabilities due to interference (b). The outer error bars indicate 95% credible
intervals while the inner error bars indicate 80% credible intervals.

Cross-validation: activation-based vs. direct-access models. In order to as-
sess the compatibility of the models with the data, we compared how the models would
generalize to an independent data set, that is, the pointwise out-of-sample prediction ac-
curacy or elpd of the models. Comparing the models using k-fold cross validation reveals
an_estimated difference in elpd of —110 (SE = 28) in favor of the direct-access model
(elpd = —26747, SE = 100) in comparison with the activation-based model (elpd = —26858,
SE = 100).

Figure 9 shows for any given observation, whether one model has an advantage over
the other in its predictive accuracy. Since higher (or less negative) values of elpd indicate a
better fit for a model, observations that are further away from the dotted line correspond
to data that are particularly better predicted by one model (and poorly by the other).
This figure shows that the advantage of the direct-access model is not due to some outlier
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observations, but mostly due to a high number of observations that fit slightly better under
this model than under the activation-based one (this is the darker patch on the top right
corner). Figure 10 shows the difference between the elpd of the two models for every
observation corresponding to either a correct or an incorrect response. The figure shows
that most of the advantage of the direct-access model comes from reading times between 300
and 1000 ms (notice the darker patch above the zero dotted line). In addition, the direct-
access model has a clear advantage in predicting long reading times associated with correct
responses and short reading times associated with incorrect ones, while the activation-based
model has an advantage in predicting short reading times for correct responses and long
reading times for incorrect ones.

Activation—based vs.
direct—access models

P

T
he)
o
£
@ -104
Q
8
©
§ -12
5
£ g
% -144 Number of
observations
<7 160
N 120
-161 l 80
40
-184."

-18 -16 -14 -12 -10 -8 -6
N
elpdactivation—based model

Figure 9. Comparison of the activation-based and direct-access models in terms of their
predictive accuracy for each observation. Each axis shows the expected pointwise contribu-
tions to 10-fold cross-validation for each model (eTp\d stands for the expected log pointwise
predictive density of each observation). Higher (or less negative) values of el/p\d indicate a
better fit. Darker cells represent a higher concentration of observations with a given fit.
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Figure 10. Comparison of the activation-based and direct-access models in terms of their
predictive accuracy for each observation depending on its log-transformed reading time
(x-axis) and accuracy (left panel showing correct responses, and the right panel showing
any of the possible incorrect responses). The y-axis shows the difference between the ex-
pected pointwise contributions to 10-fold cross-validation for each model (elpd stands for
the expected log pointwise predictive density of each observation); that is, positive values
represent an advantage for the direct-access model while negative values represent an ad-
vantage for the activation-based model. Darker cells represent a higher concentration of
observations with a given fit.

Discussion

The evaluation of the activation-based and direct-access models reveals two sets of
findings: one relates to the effect of interference on the key parameters of the models, and
other the relates to their validity as models of retrieval in sentence comprehension.

Regarding the effect of interference on the parameters of the models, the results show
that interference affects the parameters as expected, but some of the posteriors include
a large degree of uncertainty. Given the relatively small effect of interference in reading
times in the experimental study of Nicenboim et al. (Submitted), and given that we used
a subset of the original data, this is not surprising. However, this serves as a sanity check
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that confirms that both models can work in principle and that experimental findings can
produce the expected effects on the parameters of the models.

For the activation-based model, the underlying activation of the target NP was, as
expected, clearly larger on average than the one of the competitors and the one associated
with the timeout. The parameters that correspond to the effect of interference on activation,
however, provided very weak evidence that interference decreases the activation of the target
and increases the activation of the competitors.

Similarly for the direct-access model, the underlying probability of retrieving the
target was clearly larger than the one of the competitors and the one associated with
the failure of the retrieval process. The model estimated that approximately half of the
time (éb = 0.48, 95% Crl = [0.4,0.55]) that a retrieval was incorrect, it was repaired to
the correct retrieval in 120 ms, 95% Crl = [30,231] ms. This finding shows, as McElree
(2000) suggested, that it is possible to account for differences in reading times that arise
only from differences in probabilities of retrieval, if there is a repair process that takes
more than a negligible amount of time. However, as with the activation-based model, the
posterior distributions present only weak evidence that interference decreases the probability
of retrieving the target and increases the probability of retrieving one of the competitors.

In order to evaluate the validity of the models for retrieval in sentence comprehen-
sion, we examined whether the models were able to fit the patterns found in the data
using posterior predictive checks, and we compared their predictive accuracy using cross-
validation. The posterior predictive checks of the activation-based and direct-access models
show clearly that some aspects of the data fit better under the direct-access model than
under the activation-based model. While the reading times at the auxiliary verb associated
with correct responses in the multiple choice task were on average slower than the read-
ing times associated with incorrect responses, this pattern could only be captured by the
direct-access model. This is so because in the case of the direct-access model, reading times
associated with correct responses are assumed to be a mixture of fast direct accessed re-
trievals and slower backtracked responses, while incorrect responses are assumed to be just
direct accessed wrong or failed retrievals. By contrast, in the case of the activation-based
model, reading times associated with correct responses are assumed to be faster on average
than reading times associated with incorrect responses. The activation-based model as-
sumes a race between the accumulation of evidence for the candidates to the retrieval, where
the fastest item is the one retrieved. The particular characteristics of this race-between-
accumulators model, which are motivated by ACT-R, include the assumption of a ballistic
race (lack of fluctuations occurring during the accumulation process or within-choice noise;
Brown & Heathcote, 2005), the same variance parameter for all the accumulators (i.e., a
single between-choice noise), and no variation in the initial bias (Heathcote & Love, 2012).
Under this type of race, the correct responses, which are answered more frequently than
the incorrect ones, will also be the fastest on average.

Even though reading times for correct responses were on average slower than the ones
for incorrect ones, this was not the case for every observation. Model comparison using
cross-validation shows that the advantage of the direct-access model is based mainly on
giving a better fit for reading times between 300 and 1000 ms, while the model is worst
suited to predict fast reading times corresponding to correct responses and slow reading
times corresponding to incorrect responses, which are better predicted by the activation-
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based model (see Figure 10).

Cross-validation supports the direct-access model, but does not rule out others models
that assume a race between accumulators of evidence for each retrieval candidate: the
concept of activation determining retrieval latencies and accuracy may still be fruitful. It
may be possible to explain the pattern in the data by including a mixture process in the
race model, that is, if it is assumed, in a similar way as with the direct-access model, that
the reading times associated with the correct responses are a mixture of fast retrievals due
to high activation together with repaired wrong or failed retrievals. However, a model like
this would be too flexible for the data at hand and may present problems of identifiability
(since it would be hard to estimate the activation of the non-retrieved candidates).

A closely related model that has been proposed to account for fast errors by Nicenboim
et al. (2016) assumes that failed retrievals may take less time than completed retrieval. This
is achieved by assuming that, when the activation is too low, the retrieval is aborted instead
of waiting until the timeout is reached. However, this would only explain the fast failures
(“I don’t know answers” in the multiple choice task), but it would still leave fast retrievals
of competitor NPs unexplained.

As we mentioned before, the activation-based model is based on a specific race model,
namely the lognormal race model, which in turns is a very specific implementation of a
model that assumes the sequential sampling of evidence for a decision (a class of models
that includes the race of accumulators and random walk /diffusion models; for a review, see
Ratcliff, Smith, Brown, & McKoon, 2016). There are other tasks that trigger error responses
that are on average faster than correct responses and have been explained with sequential
sampling models such as the drift diffusion model (Ratcliff & Rouder, 1998; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008), or the linear ballistic accumulator (Brown & Heathcote,
2008). These models, in contrast with the lognormal race model, allow for variation in
the initial bias due to noise. Fast errors can be captured by assuming a low threshold of
evidence for all the decisions (in comparison with the variation in the initial bias). The
low thresholds will produce faster responses in general, but the increase in speed will be
larger for error responses. This is because incorrect responses will to tend occur when the
process starts near the error boundary for the drift diffusion model or near the thresholds
of evidence of the incorrect responses for the linear ballistic accumulator (Wagenmakers
et al., 2008; Heathcote & Love, 2012). This is in contrast with the situation where the
thresholds of evidence are higher in comparison with the initial bias, in this case errors will
tend to occur when the target candidate was slower than average. Since models such as the
drift diffusion model or the linear ballistic accumulator allow fast or slow errors depending
on the participants’ decision thresholds, an interesting implication of the fast errors in the
current experiment would be that participants privileged speed at the expense of accuracy
without explicit instructions. Even though the aforementioned models could account for
the faster average reading times associated with incorrect responses, they would lose the
close connection with the ACT-R framework that motivated our use of the lognormal race
model.

Regarding the lognormal race model, its limitation is that if equal variance is associ-
ated with each accumulator, fast errors on average cannot be predicted because bias (dis-
tance) and rate of accumulation cannot be disentangled (Heathcote & Love, 2012; Rouder
et al., 2014). Fast errors on average can be predicted, if the variance of the accumulators of
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the incorrect responses is larger than the one of the correct response. Heathcote and Love
(2012) propose that poorer matches may spread not only weaker activation on average but
may also be noisier than stronger matches. This idea is also present in SAM framework of
Gillund and Shiffrin (1984), which assumes slower reactions and more variability for poorer
matches than for more precise matches. Figure 11 shows graphically how the distribution of
correct and incorrect retrievals is generated from the activation-based model with different
variances.

In the following section, we evaluate the activation-based model with different vari-
ances, one for the accumulator of target and one for the other accumulators, and we compare
it with the direct-access model.

Evaluation of the activation-based model with different variances

We evaluated the activation-based model with different variances using the same data
as with the previous models. As before, we (i) examined the descriptive adequacy of the
model using posterior predictive checks, (ii) estimated its relevant parameters, and (iii)
compared it with the direct-access model using cross-validation.

The assumptions of the activation-based model with different variances are identical
to those of the default activation-based model, except that the noise in the rate of accumula-
tion of evidence of each chunk can have different variances. This means that the lognormal
distributions associated with each activation have different scale parameters (which cor-
responds to the standard deviation of the associated normal distribution). Since all the
competitors were retrieved only 21% of the time, for simplicity (and for improving the con-
vergence of the models) we assumed only two variances, one for the lognormal distribution
associated with the target, and one for the competitors or the failure timeout.

Results

Posterior predictive check. The posterior predictive check reveals that the
activation-based model with different variances can capture the main characteristics of the
data. Figure 12(a) shows that the model predicts a wide range of reading times associated
with the incorrect responses, and most of the predicted reading times associated with in-
correct responses are only slightly faster than the correct ones. Figure 12(b) shows that the
model is able to predict the proportion of responses from the data. Figure 12(c) reveals that
the fit is better for the first half of the quantiles, while for the second half of the quantiles
the predicted data contains the observed quantiles, mainly because of the wide distribution
of predicted reading times.

Estimation of relevant parameters. The estimation of the key parameters and
the relationship between parameters of the activation-based model with different variances
shows similar results to the ones in the default activation-based model. As in the default
model, Figure 13(a) shows that the activation of the target is higher than the activation
of the competitors and of the failure. In addition and also similarly to the case of the
default model, Figure 13(b) shows that while the posterior means and most of the prob-
ability mass of the effect of interference on the target and competitors fit the predictions
of Equations (17) and (19), all the 95% Crls include 0; for the target: B = —0.03, 95%
Crl = [-0.11,0.05], P(8 > 0) = 0.23, for the first competitor: § = 0.17, 95% Crl =
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Activation—based model with different variances
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Figure 11. The figure depicts how the distribution of retrievals is generated from the
activation-based model with different variances. The bottom figure depicts the parameters
of the activation-based model, the full lines in green and red are the mean finishing times
te=Target and te—Competitor, and the broken lines are finishing times one standard deviation
away from the mean. The middle figure shows the distributions of finishing times for
target and candidate; since every chunk is associated a potential finishing time, ¢, both
distributions have the same number of elements. The top-most figure shows the distribution
of retrieval times (adding the shift parameter ¢ would transform it to reading times); since
only the winning chunks are retrieved, the distribution of retrieval times for targets has more
elements than the distribution of the competitors. Notice that even though the finishing
times for the competitors are slower on average than those of the targets (middle plot), the
situation is reversed for the retrieval times (top-most plot).
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Activation—based model with different variances
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Figure 12. The top-most figure shows the fit of the mean reading times (RTs) for response
(a) and proportion of responses (b) of the activation-based model with different variances.
The width of the violin plot represents to the density of predicted mean RTs (a) and

responses (b) generated by the model.

The bottom figure (c) shows the fit of the .1-

.9 quantiles of the reading times (RTs) for response of the activation-based model with

different variances.

The width of the violin plot represents to the density of predicted

quantile generated by the model. The observed means and quantiles are represented with

a Cross.
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[—0.09,0.46], P(8 > 0) = 0.89, and for the second competitor: 3 = 0.13, 95% Crl =
[—0.23,0.49], P(8 > 0) = 0.77. Recall that the variance was allowed to be different for the
correct and incorrect retrievals; Figure 14 shows that, as hypothesized, this allows the scale
associated with the distribution of activations of the incorrect retrievals to be larger than
the one associated with correct retrievals.

Activation—based model with different variances
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Figure 13. Mean activation of the different chunks assuming an arbitrary threshold of
10 (a), and mean difference between the activations due to interference (b). The outer
error bars indicate 95% credible intervals while the inner error bars indicate 80% credible
intervals.

Cross-validation: activation-based model with different variances vs.
direct-access model. A comparison of the activation-based model with different vari-
ances and direct-access model using 10-fold cross-validation shows that the estimates of
elpd are very similar, with a very small advantage for the activation-based model with
different variances (elpd = —26725, SE = 98) in comparison with the direct-access model
(elpd = —26747, SE = 100), namely an estimated difference in elpd of —22 (SE = 18); while
the advantage of the direct-access model in comparison with the default activation-based
model was of -110 with SE = 28. In addition, the activation-based model with different
variances shows a clear advantage in comparison with the default activation model, namely
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Figure 14. The figure depicts that the scale of the distributions of activations of the target
chunk and of the competitors or timeout. The outer error bars indicate 95% credible
intervals while the inner error bars indicate 80% credible intervals.

an estimated difference in elpd of —133 (SE = 18)

Figure 15 shows that the predictive accuracy of the models is fairly similar with most
of the observations being fit well by both of them. There are, however, some observations
scattered at the bottom left corner of Figure 15, which favors the activation-based model
with different variances. Figure 16 shows in blue cells the difference between the el/p\d of both
models for every observation corresponding to either a correct or an incorrect response; and
in white cells the previous comparison (from Figure 10) of the default activation-based model
and direct-access model. Figure 16 shows that the difference between the activation-based
model with different variances and direct-access model is smaller than the difference between
the direct-access model and the (default) single-variance activation-based model. The main
difference between the fits is that the activation-based model with different variances is able
to account better for some fast and slow reading times associated with incorrect responses.
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Figure 15. Comparison of the activation-based model with different variances and the
direct-access model in terms of their predictive accuracy for each observation. Each axis
shows the expected pointwise contributions to 10-fold cross validation for each model (el/p\d
stands for the expected log pointwise predictive density of each observation). Higher (or less
negative) values of el/p\d indicate a better fit. Darker cells represent a higher concentration
of observations with a given fit.

Discussion

The estimation of the relevant parameters of the activation-based model with different
variances shows that the scale parameter associated with the distribution of activations for
incorrect retrievals is larger than the one associated with correct ones, as it is necessary
to account for fast errors. However, this did not change the predicted interference effect
compared to the default activation-based model. Similarly, as with the default model,
the parameters that correspond to the effect of interference on activation do not clearly
support or contradict the predictions of the model regarding the effect of interference, that
is that interference decreases the activation of the target and increases the activation of the
competitors.

Regarding the descriptive adequacy of the model, even though the inclusion of dif-
ferent variances improves the fit, the posterior predictive checks show more variation on
the predicted reading times associated with incorrect responses for this model than for the
direct-access model. This is not necessarily a disadvantage, and it may indicate that the
direct-access model is more flexible and may be slightly overfitting the data, since these
predictions are generated with the best estimates (and posterior distributions) to account
for the data. In fact, despite an apparent better fit for the direct-access model, the esti-
mates of predictive accuracy (fj]?d) are very similar with a very slight advantage for the
activation-based model with different variances. In contrast with the difference between the
fit of the original models (i.e., the default activation-based vs. the direct-access model shown
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Figure 16. Comparison of the activation-based model with different variances and direct-
access model in terms of their predictive accuracy for each observation depending on its
log-transformed reading time (x-axis) or accuracy (left panel showing correct responses, and
the second panel showing any of the possible incorrect responses). The y-axis shows the
differencgl)etween the expected pointwise contributions to 10-fold cross-validation for each
model (elpd stands for the expected log pointwise predictive density of each observation);
that is, positive values represent an advantage for the direct-access model while negative
values represent an advantage for the activation model with different variances. Darker
cells represent a higher concentration of observations with a given fit. The white cells show
the comparison (shown earlier in Figure 10) of the default activation-based model with the
direct-access model.

in Figure 10), the difference between the fit of the activation-based model with different
variances and the direct-access model is smaller (see Figure 16), with the new version of
the activation-based model giving a better fit to some of the fast and slow reading times
associated with incorrect responses.

This comparison shows that even though the inclusion of different variances for the
accumulators does not imply a clear superiority over the direct-access model, it is possible
to account for the data with a model which is based on a race of accumulation of evidence.
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General discussion

We evaluated two models that have been successful in explaining similarity-based
interference in sentence comprehension: Lewis and Vasishth’s (2005) activation-based model
following ACT-R assumptions (Anderson et al., 2004) and McElree’s (2000) direct-access
model. We also evaluated a third model, a variation of the activation-based model.

The models were implemented in a Bayesian hierarchical framework and fit to the
data of Nicenboim et al. (Submitted). Even though the activation-based model was already
implemented computationally (Lewis & Vasishth, 2005), our implementation enabled us
to go beyond simulations as they are usually done for this model (e.g., Vasishth & Lewis,
2006; Nicenboim et al., 2016), and to fit the observations of an experiment by accounting
for variation coming from participants and experimental items. For the direct-access model,
we provided a first computational implementation which allowed us to derive precise and
unambiguous predictions, which are fully transparent in our instantiation of the model.
We first summarize our findings, and we then discuss the motivation of this work, the
implications of the findings, and future work.

Our evaluation can be summarized in three main results. First, the underlying param-
eters of both models behave as expected under interference effects. However, the parameters
showed a large degree of uncertainty in their posterior distributions. While this may be
due to the relatively small magnitude of the interference effect in the original experiment
(Nicenboim et al., Submitted), the findings confirm that, as expected, both models can in
principle explain interference effects.

Second, we evaluated the validity of both models in predicting the reading times and
accuracy patterns during retrieval. The posterior predictive checks and the comparison
using cross-validation show that some aspects of the data fit better under the direct-access
model than under the default activation-based model. The data showed on average slower
reading times associated with correct responses than with incorrect ones, and this pat-
tern could be explained only by the direct-access model. This suggests that the default
activation-based model may not be flexible enough to accommodate patterns in the data
that go beyond means between conditions.

Third, we show that by introducing a modification to the default activation-based
model, namely, by assuming that the accumulation of evidence for the retrieval of incorrect
items is not only slower but noisier, the new model can provide a fit as good as that of the
direct-access model.

The importance of a formal comparison of Lewis and Vasishth’s (2005) activation-
based model and McElree’s (2000) direct-access model lies in disentangling their predic-
tions. Since both models assume that dependencies of non-adjacent elements are created
via a content-addressable cue-based retrieval mechanism, they have been used almost inter-
changeably to explain interference effects (e.g. Van Dyke & McElree, 2006). For experiments
that draw inferences from differences in means, these two models yield identical predictions
for the inhibitory effect of similarity-based interference: namely, longer reading times at
the retrieval of a dependent and/or a reduction of comprehension accuracy when several
items share a feature associated with a retrieval cue. However, these models are based on
different underlying assumptions. The activation-based model follows ACT-R assumptions
(Anderson et al., 2004); in this framework, the activation of the items in memory determines
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the retrieval accuracy and latency, and the activation of the target of retrieval is, in turn,
adversely affected by interference. Crucially, latency and accuracy are not deterministic
because activation fluctuates due to noise in the system. We show that this process can
be seen as a lognormal race between accumulators of evidence with a single variance for
all the accumulators, where activation represents the rate of accumulation of evidence. In
contrast, the direct-access model assumes a model of memory where only the probability
of retrieval can be affected by interference, while items take the same time to be retrieved
(if they are not in the focus of attention as it is the case for non-local dependencies). In
this model, differences in latencies are a by-product of the possibility of backtracking and
repairing incorrect retrievals. These different assumptions lead to a different behavior in
the relationship between reading times and response accuracy on a trial-level basis which
cannot be examined by only comparing mean reading times or accuracy between conditions.
While acceptability judgment tasks with speed-accuracy trade-off (SAT) allow a finer grain
look at the reaction times and have been used to argue in favor of the direct-access model
(see, for example, Van Dyke & McElree, 2011), until now there has been no computational
evaluation of the model in reading for comprehension.

While the activation-based model uses the declarative retrieval module of ACT-R,
which has been shown to be an empirically successful model (e.g., Anderson et al., 1998;
Anderson & Reder, 1999; Van Rijn & Anderson, 2003), our findings show that its default
implementation cannot account for incorrect retrievals that were generally faster than the
correct ones in our data. The model cannot account for this pattern because items in mem-
ory that match the retrieval cues will have higher activation on average than competitors
that match the retrieval cues only partially. The higher activation on average leads in turn
to overall faster retrievals. In contrast, the direct-access model can successfully accommo-
date faster incorrect retrievals. This is done by assuming that reading times associated
with correct responses are generated from a mixture distribution of fast directly accessed
correct retrievals at the first attempt together with slower backtracked and repaired re-
trievals. Reading times associated with incorrect responses, in contrast, belong to a faster
distribution of retrieval latencies of items that are directly accessed. It should be noted that
this repair mechanism that explains slow correct retrievals could in principle be added to
the activation-based model, but it would lead to an unidentifiable model. The direct-access
model, however, is able to account for the data with a very simple architecture that can
integrate this repair mechanism.

While the simple architecture of the direct-access model may be preferred on grounds
of parsimony, the activation-based model has some arguably desired characteristics: it is
compatible with a sequential sampling framework (such as the drift diffusion model: Ratcliff,
1978; the leaky competitive accumulator: Usher & McClelland, 2001; linear deterministic
models: Heathcote & Love, 2012, among others). In the sequential sampling framework,
decisions (such as which is the right dependent that needs to be retrieved) are considered a
process of noisy accumulation of evidence, which has been shown to be compatible with the
behavior of populations of neurons (e.g., Zandbelt, Purcell, Palmeri, Logan, & Schall, 2014).
In addition, sequential sampling has been also linked to theories of optimality (Ratcliff et
al., 2016; Summerfield & Tsetsos, 2015), which compare how an ideal agent would perform
(given the levels of uncertainty in the stimuli) with the actual behavior of participants.

The sequential sampling framework could still be useful to explain retrieval, if we as-
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sume that the retrieval process behaves similarly to other more complex accumulator models
such as the linear ballistic accumulator (Brown & Heathcote, 2008), since, as explained ear-
lier, they can account for fast and slow errors (Wagenmakers et al., 2008). However, these
models lose the close connection with the ACT-R framework that motivated the lognormal
race, which underlies the activation-based model. In addition, given that these models are
more complex than the lognormal race model, it may be the case that they overfit the
data and it is not clear whether their fit would be comparable to the fit of the direct-access
model. A potential future direction of this work would be to evaluate different plausible
accumulator models as models of retrieval.

We also relaxed one of the assumptions of ACT-R to capture the patterns of the
data: Here we assumed that the activation of chunks that match the retrieval cues only
partially is not only lower but also noisier. This amounts into assuming different variances
for the different accumulators. Heathcote and Love (2012) show that when the accumulators
associated with incorrect responses have a larger variance than the accumulator of correct
responses, the model can account for fast errors on average. For simplicity, we assumed
one variance for the accumulator of the target, and one for the competitors and failure
accumulators. While our study shows that this is enough to account for the pattern in the
data, nothing would prevent all accumulators from having different variances.

Both the activation-based model with different variances and the direct-access model
showed an equally good fit to the data. In order to investigate these models’ relative fit,
future work should replicate the classical interference results (e.g., Van Dyke & McElree,
2006; Van Dyke, 2007; Van Dyke & McElree, 2011), while including reading times and ques-
tions probing the comprehension of the relevant dependencies. Given that the posteriors
for the interference effect in the relevant parameters had a broad distribution and were not
too informative, a large-sample replication of the classical interference experiments would
allow us to verify the main predictions of the cue-based retrieval models.

There are other phenomena that the models could explain. These are: (i) the facilita-
tory interference effects found in ungrammatical sentences (Wagers, Lau, & Phillips, 2009),
(ii) the ambiguity advantage in relative clauses (Traxler, Pickering, & Clifton, 1998) and the
effect of task demands (Swets, Desmet, Clifton, & Ferreira, 2008), and (iii) good-enough
processing (Ferreira et al., 2002). Since some of the predictions of the activation-based
model with different variances are not very intuitive, we provide an R script called race-plot
using the Shiny package (Chang, Cheng, Allaire, Xie, & McPherson, 2016) that can help
visualizing the predictions.*

Facilitatory interference. Wagers et al. (2009) noticed that the so-called number
attraction effect in ungrammatical sentences such as (4), that is, the speedup in are in (4b)
vs. (4a), could be accounted by Lewis and Vasishth’s (2005) activation-based model.

(4) a. *The keyging to the cabinet, gy, are in the box.
b. *The keysing to the cabinets, ,, are in the box.

In sentences like (4), a cue-based retrieval mechanism would assume that a retrieval

4The application can be accessed in the browser with the following commands in R:
install.packages(c("dplyr", "tidyr", "ggplot2","cowplot"',"shiny")) #if needed
library (shiny) #load shiny

runUrl ("http://www. ling . uni—potsdam.de/~nicenboim /code/race—plot.zip")
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is initiated at the verb (are) with at least two retrieval cues: grammatical subject and
plural. In sentence (4a), the key matches one of the retrieval cues, because it is the gram-
matical subject, but mismatches the plural cue. In sentence (4b), both nouns partially
match the retrieval cues: the key matches the grammatical subject cue, while the cabinets
matches the plural cue. An interesting prediction of the activation-based model (confirmed
by experimental findings; see Jiger et al., 2017, for a meta-analysis) is that reading times
are faster at the verb in (4b) than in (4a). This is so because a situation with no un-
ambiguous match (both nouns are partial matches) leads to statistical facilitation (Raab,
1962), that is, an overall speedup when we examine mean reading times (facilitatory in-
terference). For facilitatory interference in ungrammatical sentences, the predictions of the
default activation-based model and the activation-based model with different variances are
the same. This situation can be simulated using race-plot script mentioned before, by as-
signing arbitrary (but plausible) activations to the candidates to retrieval in (4a) and (4b):
In (4a), the key (partial match) can be assigned an activation of 4 and the cabinet (no
match) an activation of 2.5 (and o = 1.5); this would result in a mean reading time of ap-
proximately 832 ms. Notice that since the process is not deterministic, different simulations
will show different retrieval times; the relationship between the conditions, however, should
hold on average. In (4b), the key (partial match) can be assigned an activation of 4 and the
cabinets (partial match) an activation of 3.5 (since they will not necessarily reach exactly
the same activation); this would result in a faster reading time on average, approximately
692 ms.

In contrast to the activation-based model, the direct-access model would not predict
a difference in reading times at the verb between (4a) and (4b). This is the case since
increased reading times depend only on backtracking, which would only occur to repair an
initially incorrect retrieval. In ungrammatical sentences with partial match, it is unclear
how the repair would work, and why there would be more backtracking in (4a) than in (4b).

The predictions of the activation-based model, however, have not been investigated
taking into account both reading times and comprehension. Even if a speedup compati-
ble with facilitatory interference has been reported in the literature, the activation-based
model would be accounting for facilitatory interference only if participants reach a different
interpretation of the sentence in (4b) more often than in (4a).?

The ambiguity advantage in relative clauses and task-demands effects.
The so-called ambiguity advantage is based on the observation of Traxler et al. (1998),
who found a speedup at mustache in ambiguous conditions such as (5¢) in comparison with
unambiguous conditions such as (5a) and (5b), where mustache is the disambiguating word.

(5) a. The driver of the car that had the mustache was pretty cool. (high attachment)

b. The car of the driver that had the mustache was pretty cool. (low attachment)

c. The son of the driver that had the mustache was pretty cool. (globally ambigu-
ous)

The account of the activation-based model with different variances is very similar to
the unrestricted race model proposed by van Gompel, Pickering, and Traxler (2000), which

®Notice that even though it is unlikely that readers would understand that the cabinets are in the boz, it
may be that the sentence is reanalyzed when the parser reaches box.
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predicts statistical facilitation in the case of ambiguity. According to the unrestricted race
model, the parser starts building all possible structures simultaneously. While the time
taken depends on plausibility, it is also affected by noise. This means that the adopted
structure in each trial is the one that takes the least time, leading to shorter time on
average when there are more candidates.

The activation-based model with different variances would yield similar predictions
to the unrestricted race model if the inhibitory effect of interference in (5c) is sufficiently
small. Given the relatively small magnitude of the interference effect in the literature (Jager
et al., 2017; Nicenboim et al., Submitted), this is likely to be the case. In unambiguous
cases such as (5a) and (5b), there is only one NP that matches the retrieval cue: “being
capable of having a mustache” (i.e., the driver). In ambiguous cases such as (5c), there are
two NPs that match the retrieval cue (i.e, The son and the driver). Therefore, we would
expect statistical facilitation (similarly to the case of facilitatory interference) leading to
faster reading times on average. This situation can be simulated using the race-plot script
similarly as before: In (5a) or (5b), the driver (full match) can be assigned an activation
of 5 (and o = 1), and the car (partial match) can be assigned an activation of 2.5 (and
o = 2); this would result in a mean reading time of approximately 416 ms. In (5c), both
The son and the driver should have similar activation since there is no penalty component
involved, both are a full match. However, the cue “can have a mustache” does not uniquely
identify any candidate. Given the small magnitude of inhibitory interference effects, we
could assume an activation of 4.8 (instead of 5) and the same variance since there is no
mismatch (i.e. 0 = 1) for both NPs. This would result in a faster reading time on average,
approximately 349 ms.

Furthermore, the activation-based model may be able to account for Logacev and
Vasishth’s (2016) observation that the parser seems to behave in a way that resembles
a race between interpretations (low attachment vs. high attachment) but it is also task-
dependent (as assumed by Swets et al., 2008). This could be achieved by setting the
timeout (the parameters of the accumulator associated with the retrieval failure) to be
task-dependent: longer timeouts when instructions or context encourage attentive reading
and shorter timeouts when a full interpretation is not needed for successfully completing
the experimental task.

In this case, the direct-access model could also predict the ambiguity advantage in
a very simple way: While in (5a) or (5b) it is possible to retrieve the incorrect NP (i.e.
“the car”) leading to a certain proportion of slower backtracked retrievals, in (5¢) there
should only be fast directly accessed retrievals, since both NPs (i.e. “The son” and “the
driver”) are correct targets. In addition, for the direct-access model, the proportion of
incorrect retrievals that are backtracked could be task dependent, with a larger proportion
of backtracking associated with deeper processing. However, the predictions of both models
would not be identical. The direct-access model predicts that the reading times at the
disambiguating region when the incorrect interpretation (or no interpretation) is held in
(5a) or (5b) would be identical to the reading times in (5c¢). In contrast, for the activation
based-model with different variances, the relationship between reading times at the different
conditions would depend on comprehension accuracy. Future work that includes measures of
reading times and queries for the comprehension of the relative clause, as well as manipulates
task demands could compare the activation-based model with different variances, the direct-
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access model, and the model presented in Logacev and Vasishth (2016), which subsumes
the unrestricted race model and allows it to be task-dependent.

Good-enough processing. While a comprehensive alternative to good-enough pro-
cessing is out of the scope of this section (see Christianson, 2016, for a complete overview),
it should be noticed that without further assumptions the activation-based model with
different variances and the direct-access model can account for manipulations that show
(sometimes unexpectedly) fast reading times which have been attributed to good-enough
processing. For the activation-based model with different variances, this can be achieved
by associating the timeout with either task demands as suggested previously or also with
individual differences. An increase of either timeout speed (i.e., the rate of accumulation
of the retrieval failure) or an increase of its noise (i.e., the variance of the accumulator
associated with retrieval failure) would lead to more frequent shallow parses with incom-
plete dependencies which are read faster. Thus, experiments that probe the comprehension
of certain dependencies less often may lead to faster (and maybe noisier) timeouts, which
would in turn lead to shorter mean reading times. Individual differences in participants
such as working memory capacity may have a similar effect, with lower capacity leading to
faster and noisier timeouts in the retrieval process.

Similarly for the direct-access model, the probability of backtracking could be affected
by task demands or by individual differences: A less demanding task would reduce reading
times and comprehension accuracy on average by discouraging backtracking. Individual
differences may have a similar effect, participants with lower working memory capacity
may be less prone to backtracking. As suggested before, this could be assessed in future
work by including measures of reading times and comprehension accuracy of the relevant
dependencies.

Conclusion

We have provided an evaluation of two theoretically grounded and empirically success-
ful models in explaining similarity-based interference in sentence comprehension: Lewis and
Vasishth’s (2005) activation-based model built under the assumptions of ACT-R (Anderson
et al., 2004) and McElree’s (2000) direct-access model. We also evaluated a third model, a
variation of the activation-based model.

Our evaluation, which consisted in implementing these models in a Bayesian hierar-
chical framework, confirms that, as expected, both the activation-based and direct-access
models can in principle explain interference effects. However, posterior predictive checks
and model comparison using cross-validation show that some aspects of the data fit better
under the direct-access model, in particular, the default activation-based cannot predict
that, on average, incorrect retrievals would be faster than correct ones.

Finally, we show that by introducing a modification of the activation model, namely,
by assuming that the accumulation of evidence for the retrieval of incorrect items is not
only slower but noisier (i.e., different variances for the correct and incorrect items), the new
model can provide a fit as good as that of the direct-access model.
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Appendix A
Implementation of the activation-based model in Stan
The Stan code (shown in Listing 1) was fit to a Latin-squared design, where only the sen-
tences of the original experiment (Nicenboim et al., Submitted) with questions that queried
the subject of the embedded verb was kept, and it used a non-centered parameterization
to improve convergence (for details see: Papaspiliopoulos, Roberts, & Skold, 2007; Stan
Development Team, 2016b) in Stan (Stan Development Team, 2016a). However, to improve
clarity, we ignore that each participant did not respond to each experimental item, and we
assume a centered parametrization in the equations below.

Let 1 =1,..., Noupj, 7 = 1,..., Nitems, and ¢ = 1, ..., Nepoices index participants, items,
and choices in the multiple-choice questions (1 is the correct response, the target of the
retrieval, 2 and 3 are incorrect responses, the competitors, and 4 is the option “I don’t
know”, which represents a failed retrieval) respectively. Let w;;, and RT;; denote the
response selected and the reading times at the auxiliary verb (hatte) for subject i to the
item j. Then we assume that reading times have the following distribution:

RT; ; ~ 1 + lognormal (b — QG je—w, O) (23)

where 1); is a by-subject shift, b is an arbitrary threshold (set to 10), and «; j c—y rep-
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resents the rate of accumulation of the “winner” accumulator. The rest of the accumulators
that did not win the race must have been slower in that specific trial. From this it follows
that the accumulators that lost the race have a potential RT; ;v .+, which is larger than
the observed value RT; ;.

If all the answers are selected at least once (and if not, we can safely remove the
accumulator since its rate of accumulation is so low that it never wins), the race turns into
a problem of censored data, where the reading times, RT; jvc cw, below a lower bound,
RT; j c—w, never occur. In order to calculate the posterior of the rate of accumulation, o, of
all the accumulators, we cannot ignore the censored data (pp. 224-227 Gelman, Carlin, et
al., 2014). However, it is not necessary to impute values, and the values can be integrated
out (Stan Development Team, 2016b, pp. 107-110; Gelman, Carlin, et al., 2014, pp. 224-
227). Each censored data point has a probability of

Pr [RTn,Vc,cyéw > RTn,Czw] = / lOgnormal(RTn,Vc,ciw - ¢|b — Qe ctw> U) : dRTn,Vc,c#w
Tn,c:w
(24)
l Tn c=w — - b - C,CFW
:1_®(OQ(R ; V) — ( QAye,c# )) (25)
g

where ®() is the cumulative distribution function of the standard normal distribution.
Since the shifts of the distribution, v;, must be positive, to ensure convergence of the model
we exponentiate a term that is associated with a general shift of the whole reading times
distribution, ¢', and a term that represents the by-participants adjustment, v/:

¥ = exp(¥’ + ) (26)

with the following priors for the by-participant component:

Y; ~ normal (0, ) (27)
Ty ~ normal(0,10); with 7, >0 (28)

In addition, each v; must be smaller than the shortest reading time of each participant
i (recall that the shift is the lower bound of the distribution). We satisfied the constraint
on the upper bound with the following prior on the general shift. ~We show in Eq. (29)
the parameter 1)’ back-transformed from unit-scale; notice that the standard deviation of
the normal prior is in log-scale (multiplied by ten to have a weaker prior), because this
parameter is exponentiated in (28) and forms the shift of the distribution.

Y ~ normal(0,10 - log(mean(RT))); with ¢/ < U (29)

where a normal distribution is truncated on the upper limit, U, which is the smallest
difference between log(RT') and }.

We assume that the rates of accumulation depend on the experimental condition (high
or low interference) and that the rates may be affected by participants and by items. We
can express this in matrix notation for each accumulator as follows:
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a. = XB,+ Xu, + Xv, (30)

Here X is the Nyps X Npgrs model matrix, with the number of parameters (so-called
fixed effects), Npars, being two: intercept and condition. Each B, is a vector of length
Npars with the estimates of the fixed-effect parameters for the accumulator associated with
the choice ¢. Each u. and v, are the by-participants and by-item adjustments to the
fixed effects estimates (so-called random-effects) for the accumulator c¢. We used weakly
informative priors for all the parameters (some estimates were reparametrized in the Stan
implementation, see Listing 1 for details).

Here, (o are the intercepts of the fixed effects for choice ¢, log(mean(RT:)) is the
logarithm of the mean of the reading times when option ¢ was selected, and (3 . represents
the slopes of the fixed effects (i.e., the effect of interference).

All the random-effects, u., and v., were assumed to be sampled from two multivari-
ate normal distributions with means of zero. The prior of the standard deviations of the
random effects was normal(0,10). We placed 1kj priors on the random effects correlation
matrices with shape parameter n = 2 (see Lewandowski, Kurowicka, & Joe, 2009; Sorensen,
Hohenstein, & Vasishth, 2016).

Listing 1: Stan code for the activation-based model

functions {
vector mean_of_X_by_ Y (vector X, int[] Y){
int N_rows;
int N_groups;
N_rows = num_elements (X);
if (N_rows!= num_elements (Y))
reject ("X and Y don't have the same length");
N_groups = max(Y);
{ # matrix with a column for each group of Y,
#and 1 if Y belong to the group:
matrix[N_rows, N_groups] matrix_1;
for(r in 1:N_rows)
for(g in 1:N_groups)
matrix_1[r,g] = (g == YI[r]);
return( ((X' x* matrix_1) // sum of Xs per group
// divided by matrix_1"T % matrix_1 (number of times each group appears):
/ crossprod (matrix_1))");
}
}
real psi_max(vector u_psi, int[] subj, vector RT) {
// This function ensures that psi is correctly truncated on the correct
// upper limit, U in Eq. (29)
real psi_max;

psi_max = positive_infinity();
for (i in l:num_elements (RT))
psi_max = fmin(psi_max, log(RT[i]) - u_psil[subjlill]);

return (psi_max);

}

real race(int winner, real RT, row_vector alpha, real b, real sigma, real psi)

{
real log_lik;
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int N_choices;
real rate;
real shifted_RT;

N_choices = cols(alpha);
shifted _RT = RT - psi;

log_1lik = O;
for(c in 1:N_choices) {
if (c == winner) {
// loglik due to distribution of observed RTs; Eqg. (23)
log_lik = log_lik + lognormal_lpdf (shifted_RT|b - alphalc], sigma);
} else {
// loglik due to censored RTs of loser candidates; Eg. (24)
log_lik = log_lik + lognormal_lccdf (shifted_RT|b - alphalc], sigma);

}
return (log_lik);
}
}
data {
int<lower = 0> N_obs;
int<lower=1> N_subij;
int<lower=1> N_item;

int<lower = 1> N_choices;
int<lower = 1, upper = N_choices> winner[N_obs]; // response selected
vector<lower = 0>[N_obs] RT;

// for fixed effects

int N_coef; //intercept + predictors
matrix [N_obs,N_coef] x;

// for random effects by subject:
int<lower=0> N_coef_u;
int<lower=1> subj[N_obs];

matrix [N_obs,N_coef_u] x_u;

// for random effects by items:
int<lower=0> N_coef_w;
int<lower=1> item[N_obs];

matrix [N_obs,N_coef_w] x_w;

}
transformed data {
real b;
real min_RT;
real logmean_RT;
row_vector [N_choices] logmean_RT_w;
matrix [N_obs,N_coef-1] x_betas;
int N_tau_u;
int N_tau_w;

b = 10;

min_RT = min (RT);

logmean_RT = log(mean (RT));

logmean_RT_w = (log(mean_of_X by Y(RT, winner)))';
x_betas = x[,2:N_coef]; // x without intercept
N_tau_u = N_coef_u * N_choices;
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}

N_tau_w = N_coef_w * N_choices;

parameters {

}

row_vector [N_choices] beta_Oraw;
vector<lower = 0> [N_tau_u] tau_u;
cholesky_factor_corr[N_tau_u] L_u;
matrix[N_tau_u, N_subj] z_u;
vector<lower = 0> [N_tau_w] tau_w;
cholesky_factor_corr[N_tau_w] L_w;
matrix [N_tau_w, N_item] z_w;
real<lower = 0> sigma;

vector [N_subj] u_psi;

real<lower = 0> tau_psi;

real<upper = psi_max(u_psi, subj, RT) / logmean_RT> psi_p_raw;
matrix [N_coef-1,N_choices] beta;

transformed parameters {

}

real psi_p;

vector [N_obs] psi;
matrix[N_coef_u,N_choices] u[N_subijl;
matrix [N_coef_w,N_choices] w[N_item];
matrix [N_obs, N_choices] alpha;
row_vector [N_choices] beta_0;

matrix [N_tau_u, N_subj] u_long;

matrix[N_tau_w, N_item] w_long;

// Optimization through Cholesky Fact:

u_long = diag_pre_multiply(tau_u, L_u) //matrix[N_choices,N_choices]
* Z_U;

w_long = diag_pre_multiply(tau_w, L_w) //matrix[N_choices,N_choices]
* Z_W;

for (i in 1:N_subj)

i] = to_matrix(u_longl[,1i],N_coef_u,N_choices,0);

J in 1:N_item)

uli
j] = to_matrix(w_longl[, j],N_coef_w,N_choices,0);

[
for (
w [
}
// Unit-scaling:
beta_0 = b - beta_Oraw .x logmean_RT_w;
psi_p = psi_p_raw * logmean_RT;
// Fixed effects in alpha; Eq. (30):
alpha = rep_matrix(beta_0, N_obs) + x_betas * beta;
for (n in 1:N_obs) {
// Shift adjustment for every observation; Eg. (30):
psiln] = exp(psi_p + u_psilsubjlnl]);
// Add random effects
for (uu in 1:N_coef_u)
alphal[n] = alphaln] + x_uln, uu] % ul[subjln], uul;
for (ww in 1:N_coef_w)
alpha[n] = alphaln] + x_w[n, ww] * wl[item[n], ww];

model {

vector [N_obs] log_lik;
beta_Oraw ~ normal (0, 10);
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to_vector (beta) ~ normal (0, 10);
tau_u ~ normal (0, 10);

L_u ~ lkj_corr_cholesky(2.0);
to_vector(z_u) ~ normal (0, 10);
tau_w ~ normal (0, 10);

L_w ~ lkj_corr_cholesky(2.0);

to_vector(z_w) ~ normal (0, 1);
sigma ~ normal (0, 10);
psi_p_raw ~ normal (0, 10);

u_psi ~ normal(0, tau_psi); // Eq. (27)
tau_psi ~ normal (0, 10); // Egq. (28)
for (n in 1:N_obs)
log_lik[n] = race(winner[n], RT[n], alphaln], b, sigma, psiln]);
target += log_lik;

Appendix B
Implementation of the direct-access model in Stan
The code (shown in Listing 2) was fit to the same data as the activation-based model. As
before, to improve clarity, we ignore that each subject did not respond to each item and we
assume a centered parametrization.

Let 1 =1,..., Ngupj, 7 = 1, ..., Nitems, and ¢ = 1, ..., Nepoices index participants, items,
and choices respectively, where choice 1 is the correct response and choice Nepoices (Which
maps to 4) is the response associated with a retrieval failure. Let w;;, and RT;; denote
the response selected and the reading times at the auxiliary verb (hatte) for subject i to the
item j.

We implemented the assumptions of the direct-access model, by letting w have a dis-
crete distribution that follows a one-inflated categorical model, where additional probability
mass is added to the outcome 1 (correct response) due to backtracking with probability 6,
as follows:

P(wn = 1|0i,j7 9b) = 911.’]- + (1 — Glm.) - O (31)
P(wy, = s16;,5,0p) = 0, ;- (1 —6), with s > 1 (32)
where @ is a vector of N_peices TOWS that represents the probability of each option.
If the answer given is wrong, we assume that there is no backtracking and then reading
times are distributed in the following way:

RT; jyww>1 ~ Yi + lognormal(Tga,i 5, o) (33)

where v; is a by-subject shift, Ty, represents the time needed for the direct access or
failure together with extra processes

If the answer given is right, reading times are assumed to have a mixture distribution.
This is so because there are two “paths” to reach a correct response (see Figure 4): (i) The
chunk that is retrieved is the correct one (at the first try), and this means that there is
direct access and reading times should belong to a distribution similar to the previous one
as shown in Eq. (33); or (ii) an incorrect chunk (or no chunk) is retrieved but is backtracked,
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and this means that reading times should belong to a distribution with a larger location
than Ty, j, namely, Tyq; ; + tp4 7. Thus RTs should be distributed in the following way:

lognormal(Tya . 5,0); if y = 1|Categorical (y|0; ;)
RT; jaw=1 ~i + . : :
lognormal(Tya;j + tpij,0); if y # 1 and z = 1|Categorical(y|0;,;) and Bernoulli(z|65)

(34)

where, from Eq. (31), the first component of the mixture defined in (34) is the prob-
ability of a correct retrieval at the first attempt conditional on obtaining one as a response
(wy, = 1), and occurs with probability:

0.,
35
01, +(1—01,,) 0y (35)

and the second component of the mixture (34) represents the probability of backtrack-
ing when there is an error, this is formulated as the probability of an incorrect retrieval in
the first attempt conditional on obtaining one as a response (w, = 1):

5]

911‘,;’ i) (36)

Furthermore, the categorical model was fit including a hierarchical structure in 6’,
where €’ is a vector with Nepoices TOWs with its last row set to zero, so that softmaz(6’) = 6.5
This way we ensure the identifiability of Categorical(softmaz(0")).

We assume that the probability of each choice depend on the experimental condition
(high or low interference) and that the probabilities may be affected by participants and by
items. In matrix notation, the first Nojpices — 1 Tows of 8 are structured as the activations

in the activation-based model:

0. =XB.+ Xu, + Xv, (37)

As for the activation-based model, we used weakly informative priors for all the
estimates. The priors for the fixed effects were set with the added constraint that (g1,
the intercept of the probability of the correct choice (the first choice) in logit-space, was
constrained to be larger than [y 2 3, the intercept associated with the incorrect responses,
and zero (which is the value associated with the last choice):

Bo,2..3 ~ normal(0, 10) (38)
Boa ~ normal(0,10) + mazx(Fo,2..3,0) (39)
Oy ~ beta(1,1) (40)

In addition, we assumed a hierarchical structure to the parameters associated with
latencies:

cap(y)

SF eepton

5The softmax function is defined as in Stan Development Team (2016b) by softmaz(y) =
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T4a,ij = Po,Tda + UTdai + VTda,j (41)
Tyi,j = Bore + uthi + vrej (42)

with the following priors on the intercepts:

Bo.7da ~ normal(0,10 - log(mean(RT))) (43)
Bo. b ~ normal(0, 10) (44)

All the random-effects, uc, Uigq, Uth, Ve, Vida, Vs Were assumed to be sampled from
four multivariate normal distributions with means of zero: (i) for the subject adjustment
on probabilities of retrieval, (ii) for a similar adjustment for items, (iii) for the subject
adjustment on latencies, and (iv) for a similar adjustment for items. As before we placed
1kj priors on the random effects correlation matrices with shape parameter n = 2.

Listing 2: Stan code for the direct-access model

functions {

real psi_max(vector u_psi, int[] subj, vector RT) {
real psi_max;
psi_max = positive_infinity();
for (i in l:num_elements (RT))
psi_max = fmin(psi_max, log(RT[i]) - u_psil[subjl[il]);

return (psi_max);
}
real da(int winner, real RT, row_vector thetap, real theta_b, real T_da,
real T_b, real sigma, real psi) {
vector [num_elements (thetap)] thetapT;
// theta = softmax (thetapT)

real log_P_wl; // log(P(w = 1 | theta, theta_b)); Eg. (31)
real log_P_da_gwl; // log(Prob of direct access given winner = 1); Eqg. (35)
real log_theta_b_gwl; // log(Prob of backtracking given winner = 1); Eqg. (36)

thetapT = thetap';

// Eg. (31) in log:
log_P_wl = log_sum_exp (categorical_logit_lpmf (1 | thetapT),
log(theta_b)+ loglm_exp(categorical_logit_lpmf (1|thetapT)));
// Eg. (35) in log:
log_P_da_gwl = categorical_logit_lpmf (1l | thetapT) - log_P_wl;
// Eg. (36) in log:
log_theta_b_gwl = log(theta_b) +
loglm_exp (categorical_logit_lpmf (1 | thetapT)) - log_P_wl;
if (winner==1) {
return (log_P_wl + // Increment on likelihood due to winner=1
// Increment on likelihood due to RT:
log_sum_exp (log_P_da_gwl + lognormal_lpdf(RT - psi| T_da, sigma),
log_theta_b_gwl + lognormal_lpdf(RT - psi | T_da + T_b, sigma) ));
} else {
return (loglm(theta_b) + //
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categorical_logit_lpmf (winner | thetapT) + // Eq.

// Increment on likelihood due to RTs; Eg. (33):
lognormal_lpdf (RT - psi | T_da, sigma));

}

data {
int<lower = 0> N_obs;
int<lower = 1> N_choices;
int<lower = 1,upper = N_choices> winner[N_obs];
vector<lower = 0>[N_obs] RT;

int N_coef;
matrix [N_obs,N_coef] x;

int<lower = 0> N_coef_u;
int<lower = 1> subj[N_obs];
int<lower = 1> N_subj;
matrix [N_obs, N_coef_u] x_u;
int<lower = 0> N_coef_w;
int<lower = 1> item[N_obs];
int<lower = 1> N_item;

matrix [N_obs, N_coef_w] x_w;
}
transformed data {
real<lower = 0> min_RT;
real logmean_RT;
matrix[N_obs, N_coef - 1] x_betas;
int N_tau_u;
int N_tau_w;

min_RT = min (RT);

logmean_RT = log(mean (RT));

x_betas = x[, 2:N_coef]; // intercept removed
N_tau_u = N_coef_u * (N_choices - 1);

N_tau_w = N_coef_w % (N_choices - 1);

}

parameters{
real<lower = 0> sigma;
real<lower = 0> beta_0_Tdaraw;
real<lower = 0> beta_0_Tb;
row_vector [N_choices-2] thetap_incorrect;
real<lower = 0> thetap_added;
matrix [N_coef-1,N_choices—-1] beta;
vector<lower = 0> [N_tau_u] tau_u;
cholesky_factor_corr[N_tau_u] L_u;
matrix [N_tau_u, N_subj] z_u;
vector<lower = 0> [2] tau_u_RT;
cholesky_factor_corr[2] L_u_RT;
matrix[2, N_subj]l z_u_RT;
vector<lower = 0> [N_tau_w] tau_w;
cholesky_factor_corr[N_tau_w] L_w;
matrix [N_tau_w, N_item] z_w;
vector<lower = 0> [2] tau_w_RT;
cholesky_factor_corr[2] L_w_RT;
matrix[2, N_item] z_w_RT;
real<lower = 0, upper = 1> theta_b;

(32)
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vector [N_subj] u_psi;
real<lower = 0> tau_psi;
real<upper = psi_max(u_psi, subj, RT) / logmean_RT> psi_p_raw;
}
transformed parameters({
real<lower=0> beta_0_Tda;
vector [N_obs] T_da;
vector [N_obs] T_b;
vector [N_obs] psi;
matrix[2, N_subj]l u_RT;
[
[

matrix [N_coef_u,N_choices - 1] u[N_subijl;
matrix[2, N_item] w_RT;
matrix [N_coef_w,N_choices - 1] w[N_item];

real psi_p;
matrix [N_obs, N_choices] thetap;
row_vector [N_choices-1] beta_0;

matrix [N_tau_u, N_subj] u_long;

matrix [N_tau_w, N_item] w_long;

// Optimization through Cholesky Fact:

u_RT = diag_pre_multiply(tau_u_RT, L_u_RT) * z_u_RT;

w_RT = diag_pre_multiply(tau_w_RT, L_w_RT) * z_w_RT;

u_long = diag_pre_multiply(tau_u, L_u) //matrix[N_tau_u,N_tau_u]
* Z_U;

w_long = diag_pre_multiply(tau_w, L_w) //matrix[N_tau_w,N_tau_w]
* Z_W;

for (i in 1:N_subj)

uli] = to_matrix(u_long[,i],N_coef_u, (N_choices-1),0);
for (j in 1:N_item)
w[j] = to_matrix(w_longl[,j],N_coef_w, (N_choices-1),0);
}
beta_0[1] = thetap_added + fmax (max (thetap_incorrect), 0); // Eq. (39)

beta_0[2:] = thetap_incorrect; //Egq. (38)
beta_0_Tda = beta_0_Tdaraw * logmean_RT; // Eqg. (43)
psi_p = psi_p_raw * logmean_RT;
// Adds so called fixed effects; first summand of Eg. (37)
thetap([,1:N_choices-1] = rep_matrix(beta_0, N_obs) + x_betas * beta ;
thetap[,N_choices] = rep_vector (0, N_obs);
for (n in 1:N_obs) {
psiln] = exp(psi_p + u_psi[subjn]]);
T_daln] = beta_0_Tda + u_RT[1l,subj[n]] + w_RT[1l,item[n]]; // Eq. (41)
T_b[n] = beta_0_Tb + u_RT[2,subj[n]] + w_RT[2,item[n]]; // Eq. (42)
//adds so called random effects; second two summands of Eq. (37)
for (uu in 1:N_coef_u)
thetap[n, 1:N_choices - 1] = thetapl[n,l:N_choices - 1] + x_ul[n, uu] =*
ul[subjln], uul;
for (ww in 1:N_coef_w)
thetap[n, 1:N_choices - 1] = thetapl[n,1l:N_choices - 1] + x_w[n, ww] =*
wlitem[n], ww];

model {
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vector [N_obs] log_lik;

sigma ~ normal (0, 10);

thetap_added ~ normal (0, 10); // First summand of Eq. (39)

thetap_incorrect ~ normal(0, 10); //Eg. (38)

to_vector (beta) ~ normal (0, 1);

psi_p_raw ~ normal (0, 10);

u_psi ~ normal(0, tau_psi); // Eq. (27)

tau_psi ~ normal (0, 10); // Eqg. (28)

to_vector (z_u_RT) ~ normal(0, 1);

to_vector(z_u) ~ normal (0, 1);

tau_u_RT ~ normal (0, 10);

tau_u ~ normal (0, 10);

L_u_RT ~ 1lkj_corr_cholesky(2.0);

L_u ~ lkj_corr_cholesky(2.0);

to_vector (z_w_RT) ~ normal(0, 1);

to_vector(z_w) ~ normal (0, 1);

tau_w_RT ~ normal (0, 10);

tau_w ~ normal (0, 10);

L_w_RT ~ 1lkj_corr_cholesky(2.0);

L_w ~ lkj_corr_cholesky(2.0);

theta_b ~ beta(l, 1); // Eq. (40)

beta_0_Tdaraw ~ normal (0, 10);

beta_0_Tb ~ normal (0, 10); // Eg. (44)

for (n in 1:N_obs)

log_lik[n] = da(winner([n], RT[n], thetap[n], theta_b, T_daln], T_b[n], sigma

psilnl);

target += log_lik;

Appendix C
Recovery of the parameters
We show here the ability of the models to recover the parameters generated from fake
datasets. We used three fake datasets, one for testing each of the models we discussed in
the paper: the activation-based model, the direct-access model, and the activation-based
model with different variances. The procedure for each dataset and corresponding model is
as follows:

1. We extract the point estimates of a given model.

2. We generated a dataset assuming that the given model is the true generating process,
and the true value of the parameters are the means of the posteriors from 1.

3. We fit the model to its corresponding dataset.
4. We extract the posteriors of the estimated parameters.

5. We show graphically the discrepancy between the estimated posteriors and the true
values.

Figures C1, C2, and C3 show the true values, and the mean and 95% CrI of the
posterior distribution for the parameters of the activation-based model, direct-access model,
and activation-based model with different variances respectively.
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Recovery of parameters for the activation—based model
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Figure C1. Discrepancies between estimated and true value of the parameters of the
activation-based model. Black points indicate the mean of the posteriors and the black
horizontal lines indicate the 95% Crls, the stars indicate the true value of the parameters.
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Recovery of parameters for the direct—access model
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Figure C2. Discrepancies between estimated and true value of the parameters of the direct-
access model. Black points indicate the mean of the posteriors and the black horizontal
lines indicate the 95% Crls, the stars indicate the true value of the parameters.



MODELS OF RETRIEVAL

60

Recovery of parameters for the activation—-based model with different variances
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Figure C8. Discrepancies between estimated and true value

activation-based model with different variances.

of the parameters of the

Black points indicate the mean of the

posteriors and the black horizontal lines indicate the 95% Crls, the stars indicate the true

value of the parameters.



