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Abstract

We provide an introductory review of Bayesian data analytical meth-

ods, with a focus on applications for linguistics, psychology, psycholin-

guistics, and cognitive science. The empirically oriented researcher will

benefit from making Bayesian methods part of their statistical toolkit

due to the many advantages of this framework, among them easier in-

terpretation of results relative to research hypotheses, and flexible model

specification. We present an informal introduction to the foundational

ideas behind Bayesian data analysis, using, as an example, a linear mixed

models analysis of data from a typical psycholinguistics experiment. We

discuss hypothesis testing using the Bayes factor, and model selection

using cross-validation. We close with some examples illustrating the flex-

ibility of model specification in the Bayesian framework. Suggestions for

further reading are also provided.

1 Introduction

In Part I of this review, we presented the main foundational ideas of frequentist
statistics, with a focus on their applications in linguistics and related areas in
cognitive science. Our main goal there was to try to clarify the underlying ideas
in frequentist methodology. We discussed the meaning of the p-value, and of
Type I and II errors and Type S and M errors. We also discussed some common
misinterpretations associated with hypothesis testing in this framework.

There is no question that frequentist data-analytic methods such as the t-
test, ANOVA, etc. are and will remain an important part of the toolkit of the
experimentally inclined linguist. There is, however, another framework that is
not yet part of the standard statistics curriculum in linguistics, but can be of
great value: Bayesian data analysis. Learning to use this framework for data
analysis is easier than it seems; in fact, most of us already think like Bayesians
when we carry out our frequentist analyses. One example of this is the (incor-
rect) interpretation of the p-value as the probability of the null hypothesis being
true. If we are faced with a p-value of 0.06 (i.e., a value just above the threshold
of statistical significance), we often resort to expressions of gradedness, saying
that “the result was marginally significant”, or “the results did not reach the
conventional level of significance”, or even “a non-significant trend towards sig-
nificance.”1 This desire to take the non-significant result as meaningful comes

1For a list of over 500 remarkably imaginative variants on this phrasing, see
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about because of an irresistable temptation to (erroneously) give a Bayesian in-
terpretation to the p-value as the probability of the null hypothesis being true.
As discussed in Part I, the p-value is the probability that the statistic is at least
as extreme as the one observed given that the null is true. When we misinter-
pret the p-value in terms of the probability of the null being true, a p-value of
0.06 doesn’t seem much different from 0.04. Several studies have shown that
such interpretations of the p-value are not uncommon (among many others:
Haller and Krauss (2002); Lecoutre et al. (2003)). The interpretation of fre-
quentist confidence intervals also suffers from similar problems (Hoekstra et al.,
2014). Given that the Bayesian interpretation is the more natural one that we
converge to anyway, why not simply do a Bayesian analysis? One reason that
Bayesian methods have not become mainstream may be that, until recently,
it was quite difficult to carry out a Bayesian analysis except in very limited
situations. With the increase in computing power, and the arrival of several
probabilistic programming languages, it has become quite easy to carry out
relatively complicated analyses.

The objective of this paper is to provide a non-technical but practically ori-
ented review of some of the tools currently available for Bayesian data analysis.
Since the linear mixed model (LMM) is so important for linguistics and re-
lated areas, we focus on this model and mention some extensions of LMMs.
We assume here that the reader has fitted frequentist linear mixed models
(Bates et al., 2015b). The review could also be used to achieve a better un-
derstanding of papers that use Bayesian methods for statistical inference.

We start the review by outlining what we consider to be the main advantages
of adopting Bayesian data-analytic methods. Then we informally outline the
basic idea behind Bayesian statistics: the use of Bayes’ theorem to incorporate
prior information to our results. Next, we review several ways to verify the
plausibility of a research hypothesis with a simple example from psycholinguis-
tics using Bayesian linear mixed models. In the second part of the paper, we
discuss some example applications involving standard and less standard (but
very useful) models. In the final section, we suggest some further readings that
provide a more detailed presentation.

2 Why bother to learn Bayesian data analysis?

Statisticians have been arguing for decades about the relative merits of the
frequentist vs Bayesian statistical methods. We feel that both approaches, used
as intended, have their merits, but that the importance of Bayesian approaches
remains greatly underappreciated in linguistics and related disciplines.

We see two main advantages to using Bayesian methods for data analysis.
First, Bayesian methods allow us to directly answer the question we are in-
terested in: How plausible is our hypothesis given the data? We can answer
this question by quantifying our uncertainty about the parameters of interest.
Second, and perhaps more importantly, it is easier to flexibly define hierarchi-
cal models (also known as mixed effects or multilevel models) in the Bayesian
framework than in the frequentist framework. Hierarchical models, whether fre-
quentist or Bayesian, are highly relevant for the repeated measures designs used

https://mchankins.wordpress.com/2013/04/21/still-not-significant-2/.

2



in linguistics and psycholinguistics, because they take both between- and within-
group variances into account, and because they pool information via “shrink-
age” (see Gelman et al. (2012)). These properties have the desirable effects that
we avoid overfitting the data, and we avoid averaging and losing valuable in-
formation about group-level variability (Gelman and Hill (2007) provide more
details). For example, both subjects and items contribute independent sources
of variance in a standard linguistics repeated measures design. In a hierarchical
model, both these sources of variance can be included simultaneously. By con-
trast, in repeated measures ANOVA, one has to aggregate by items (subjects),
which artificially eliminates the variability between items (subjects). This ag-
gregation leads to artificially small standard errors of the effect of interest, which
leads to an increase in Type I error.

The frequentist linear mixed model standardly used in psycholinguistics is
generally fit with the lme4 package (Bates et al., 2015b) in R. However, if we
want to include the maximal random effects structure justified by the design
(Schielzeth and Forstmeier, 2009; Barr et al., 2013), these models tend to not
converge or to give unrealistic estimates of the correlations between random
effects (Bates et al., 2015a). In contrast, the maximal random effects structure
can be fit without problems using Bayesian methods, as discussed later in this
review (also see Chung et al., 2013; Bates et al., 2015a; Sorensen et al., 2015).
In addition, Bayesian methods can allow us to hierarchically extend virtually
any model: non-linear models (which are not generalized linear models) and
even the highly complex models of cognitive processes (Lee, 2011; Shiffrin et al.,
2008). See also the discussion about hierarchical models in the section entitled
Examples of applications of Bayesian methods.

3 Bayesian data analysis: An informal introduc-

tion

In linguistics, we are usually interested in determining whether there is an effect
of a particular factor on some dependent variable; an example from psycholin-
guistics is the difference in processing difficulty between subject and object
relative clauses as measured by reading times. In the frequentist paradigm, we
assume that there is some unknown point value µ that represents the difference
in reading time between the two relative clause types; the goal is to reject the
null hypothesis that this true µ has the value 0. In the Bayesian framework, our
goal is to obtain an estimate of µ given the data along with an uncertainty esti-
mate (such as a credible interval, discussed in detail below) that gives us a range
over which we can be reasonably sure that the true parameter value lies. We ob-
tain these estimates given the data and given our prior knowledge/information
about plausible values of µ. We elaborate on this idea in the next section when
we present a practical example, but the essential point is that the distribution
of µ (called the posterior distribution) can be expressed in terms of the prior
and likelihood:2

2The term likelihood may be unfamiliar. For example, if we have n independent data points,
x1, . . . , xn which are assumed to be generated from a Normal distribution with parameters
µ and σ and a probability density function f(·), the joint probability of these data points is
the product f(x1) × f(x2)× · · · × f(xn). The value of this product is a function of different
values of µ and σ, and it is common to call this product the Likelihood function, and it is
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Posterior ∝ Prior× Likelihood (1)

To repeat, given some prior information about the parameter of interest,
and the likelihood, we can compute the posterior distribution of the parame-
ter. The focus is not on rejecting a null hypothesis but on what the posterior
distribution tells us about the plausible values of the parameter of interest. Re-
call that frequentist significance testing is focused on calculating the p-value
P (statistic | µ = 0), that is, the probability of observing a test statistic (such
as a t-value) at least as extreme as the one we observed given that the null
hypothesis that µ = 0 is true. By contrast, Bayesian statistics allows us to talk
about plausible values of the parameter µ given the data, through the posterior
distribution of the parameter. Another important point is that the posterior is
essentially a weighted mean of the prior and the likelihood. The implications of
this statement are made clear graphically in Figure 1. Here, we see the effect
of two types of prior distributions on binomial data given 10 or 100 observa-
tions. Two points are worth noting. First, when the prior is spread out over
a wide range and assign equal probability to all possible values, the posterior
distribution ends up closer to the likelihood; this alignment to the likelihood is
more pronounced when we have more data (larger sample size). Second, when
we have weakly informative priors, with sparse data, the posterior is closer to
the prior, but with more data, the posterior is again closer to the likelihood.
What this implies is that when we have little data, it is worth investing time
in developing priors informed by prior knowledge; but when we have a lot of
data, the likelihood will dominate in determining the posterior (we return to
this point later, with an example). Indeed, in large-sample situations, we will
usually find that the Bayesian posterior and the frequentist mean, along with
their uncertainty estimates, are nearly identical or very similar (even though
their meaning is quite different—see the discussion below on Bayesian credible
intervals).

Bayes’ theorem is just a mathematical rule that allows us to calculate any
posterior distribution. In practice, however, this is true for a very limited num-
ber of cases, and, in fact, the posterior of many of the models that we are
interested in cannot be derived analytically. Fortunately, the posterior distri-
bution can be approximated with numerical techniques such as Markov Chain
Monte Carlo (MCMC). Many of the probabilistic programming languages freely
available today (see the final section for a listing) allow us define our models
without having to acquire expert knowledge about the relevant numerical tech-
niques.

It is all very well to talk about Bayesian methods in the abstract, but how
can they be used by linguists and psycholinguists? To answer this question,
consider a concrete example from psycholinguistics. We feel that it is easier to
show an example that the reader can relate to in order to convey a feeling for
how a Bayesian analysis would work; for further study, excellent introductory
textbooks are available (we give some suggestions in the final section).

often written L(x1, . . . , xn;µ, σ2). The essential idea here is that the likelihood tells us the
joint probability of the data for different values of the parameters.
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Figure 1: Posterior distributions given different likelihoods and priors for bino-
mial data.
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4 An example of statistical inference using Bayesian

methods

In contrast to significance testing in frequentist statistics, Bayesian inference is
not necessarily about dichotomous decisions (reject null or fail to reject null),
but rather about the evidence for and against different hypotheses. We illustrate
one way to carry out statistical inference using a Bayesian linear mixed model
with the data from Gibson and Wu (2013), which has a simple two-condition
repeated measures design. Gibson and Wu (2013) compared reading times at
the head noun for subject and object relative clauses and argued for facilitation
in the case of object relative clauses (providing a counter-example to the cross-
linguistic generalization that subject relative clauses are easier to process than
object relative clauses; also see Hsiao and Gibson (2003)). We will assume, as
we have done elsewhere (Sorensen et al., 2015), that the dependent variable,
reading times, has a lognormal distribution, and thus we will use log reading
times as the dependent variable.3 We fit the linear mixed model with the full
random effects structure justified by the design (Barr et al., 2013), and we code
object relative clauses with 1 and subject relative clauses with −1. With this
sum contrast coding, Gibson and Wu’s prediction that object relative clauses
are easier than subject relative clauses in Chinese would, if correct, result in an
effect with a negative sign (i.e. shorter reading times for the condition coded as
1). In the Gibson and Wu dataset, we have 37 participants and 15 items; due
to some missing data, we have a total of 547 data points. The conditions were
presented to participants in a counterbalanced manner using a Latin square.

The researcher familiar with lme4 (for details see Bates and Sarkar (2007)
and lme4 documentation: Bates et al. (2015b)) will not find the transition to
the Bayesian approach difficult. In lme4 syntax, the model we would fit would
be

lmer(log(rt) ~ cond + (cond|subj)+(cond|item))

We can fit an analogous Bayesian linear mixed model with the stan lmer

function from the rstanarm package (Gabry and Goodrich, 2016); see the code
in Listing 1. The main novelty in the syntax is the specification of the priors
for each parameter. Some other details need to be specified, such as the desired
number of chains and iterations that the MCMC algorithm requires to converge
to the posterior distribution of the parameter of interest. To speed up compu-
tation, the number of processors (cores) available in their computer can also be
specified. In the example shown in Listing 1, we have left other parameters of
the MCMC algorithm at the default values, but they may need some fine tuning
in case of non-convergence (this is announced by a warning message).

A comparison of the estimates from the lme4 “maximal” LMM and the
analogous Bayesian LMM are shown in Table 1. An important point to notice
is that correlations between the varying intercepts and slopes in the fitted model
using the lmer function are on the boundary; although this does not register a
convergence failure warning in lmer, such boundary values constitute a failure
to estimate the correlations (Bates et al., 2015a). This failure to estimate the
correlations is due to the sparsity of data: we have only 37 subjects and even

3Notice, however, that this is not necessarily the best characterization of latencies; see
Ratcliff (1993); Rouder (2005); Nicenboim et al. (2015).
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1 library(rstanarm)

2 dgw <- read.table("gibsonwu2012data.txt")

3 dgw_hn <- subset(dgw, subset = region == "headnoun")

4 dgw_hn$cond <- ifelse(dgw_hn$type == "obj-ext", 1, -1)

5 m1 <- stan_lmer(formula = log(rt) ˜ cond + (cond | subj) + (con d | item),
6 prior_intercept = normal(0, 10),
7 prior = normal(0, 1),
8 prior_covariance = decov(regularization = 2),
9 data = dgw_hn,

10 chains = 4,
11 iter = 2000,
12 cores = 4)

13 #summary(m1) # Very long summary with all the parameters in t he model

Listing 1: Code for fitting a linear mixed model with stan lmer. A major
difference from lme4 syntax is that priors are specified for (a) the intercept, (b)
the slope, and (c) the variance-covariancematrices the random effects for subject
and item. The other specifications, regarding chains and iterations, relate to
the how samples are taken from the posterior distribution, and specifying the
number of cores can speed up computation.

fewer items (15) and are asking too much of the lmer function. In the Bayesian
LMM, the prior specified on the correlation matrix of the random effects ensures
that if there is insufficient data, the posterior will have a mean correlation near 0
with a wide uncertainty associated with it (this is the case in the items intercept-
slope correlation), and if there is more data, the posterior will be a compromise
between the prior and the likelihood, although the uncertainty associated with
this estimate may still be high (this is the case in the subjects intercept-slope
correlation). See Sorensen et al. (2015) for more discussion on this point.

5 Prior specification

Since priors are an important part of the model, it is worth saying a few words
about them. In order to fit a Bayesian model, we need to specify a prior dis-
tribution on each parameter; these priors express our initial state of knowledge
about the possible values that the parameter can have. It is possible to spec-
ify completely uninformative priors, such as flat priors, but these are far from
ideal since they concentrate too much probability mass outside of any reason-
able posterior values. This can have the consequence that without enough data,
this prior will dominate in determining the posterior mean and the uncertainty
associated with it (Gelman, 2006). Priors that give some minimal amount of
information improve inference and are called regularizing or weakly informative
priors (see also Chung et al. (2013); Gelman et al. (2008)).

In the typical psycholinguistic experiment, different weakly informative pri-
ors generally don’t have much of an effect on the posterior, but it is a good
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Table 1: Comparison of the frequentist and Bayesian model estimates for the
Gibson and Wu data-set. The estimates for both the coefficients and the vari-
ance components are comparable, but notice that the correlations between vary-
ing intercepts and slopes are quite different in the frequentist and Bayesian
models. The stan lmer packages provides the median and the standard devi-
ation of the median absolute difference (MAD) for the fixed effects, but one
could equally well compute the mean and standard error, to mirror the lme4
convention.

lmer stan lmer

Random effects Random effects
Groups Name Std.Dev. Corr Std.Dev. Corr
subj (Intercept) 0.2448 0.2425

cond 0.0595 -1.00 0.0762 -0.521
item (Intercept) 0.1820 0.1829

cond 0.0002 1.00 0.0475 0.012
Residual 0.5143 0.5131

Fixed effects Fixed effects
Estimate Std. Error t value Median MAD-SD

(Intercept) 6.06180 0.0657 92.24 6.0641 0.0658
cond -0.03625 0.0242 -1.50 -0.0364 0.0301

idea to do a sensitivity analysis by evaluating the effect of different priors on
the posterior; see Vasishth et al. (2013); Levshina (2016) for examples from lin-
guistics. Another use of priors is to include valuable prior knowledge about
the parameters into our model; these informative priors could come from ac-
tual prior experiments (the posterior from previous experiments) or from meta-
analyses (Vasishth et al., 2013), or from expert judgements (O’Hagan et al.,
2006; Vasishth, 2015). Such a use of priors is not widespread even among
Bayesian statisticians, but could be a powerful tool for incorporating prior
knowledge into a new data analysis. For example, starting with relatively in-
formative priors could be a huge improvement over starting every new study on
relative clauses with the assumption that we know nothing about the topic.

Returning to the practical issue of prior specification in R functions like,
stan lmer, it is a good idea to specify the priors explicitly; the default priors
assumed by the function may not be appropriate for your specific data. For
example, in our example above, if we set the prior for the intercept as a normal
distribution with a mean of zero and a standard deviation of ten, Normal(0,10),4

we are assuming that we are 68% sure that the grand mean in log-scale will be
between −10 (very near zero milliseconds) and 10 (≈ 22 seconds). This prior
is extremely vague, and can be changed but it won’t affect the results much.
However, notice that had we not log-transformed the dependent variable, we
would be assuming that we are 68% sure that the grand mean is between -10
and 10 milliseconds, and 95% sure that it is between -20 and 20 milliseconds!
We are guaranteed to not get sensible estimates if we do that.

4This happens to be the default value in this version of rstanarm, but this might change
in future versions.
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We start the analysis by setting Normal(0,1) as the prior for the effect of
subject vs. object relative clauses. This means that we assume that we are 68%
certain that the difference between the conditions should be less than 1300 ms.5

In reality, the range is likely to be much smaller, but we will start with this prior.
We will exemplify the effect of the priors by changing the prior of the estimate
for the effect of the experimental condition in the next section. The reader may
notice that there is also a prior for the covariance matrix of the random effects
(Chung et al., 2013); the regularization parameter in this prior specification to a
value larger than one can help to get conservative estimates of the intercept-slope
correlations when we don’t have enough data; recall the discussion regarding
Table 1 above. For further examples, see Bates et al. (2015a) and the vignettes
in the RePsychLing package (https://github.com/dmbates/RePsychLing). A
more in-depth discussion is beyond the scope of this paper, and the reader is
referred to the tutorial by Sorensen et al. (2015) and a more general discussion
by Chung et al. (2013).6

6 The posterior and statistical inference

As mentioned earlier, the result of a Bayesian analysis is a posterior distribu-
tion, that is, a distribution showing the relative plausibilities of each possible
value of the parameter of interest, conditional on the data, the priors, and the
model. Every parameter of the model (fixed effects, random effects, shape of
the distribution) will have a posterior distribution. Typically, software such
as the rstanarm package in R will deliver samples from the posterior that we
can use for inference. In our running example, we will focus on the posterior
distribution of the effect of object relative clauses in comparison with subject
relative clauses; see Figure 2.

To communicate our results, we need to summarize and interpret the pos-
terior distribution. We can report point estimates of the posterior probability
such as the mean or the median (in some cases also the mode of the distribu-
tion, known as the maximum a posteriori or MAP, is also reported). When the
posterior distribution is symmetrical and approximately normal in shape, the
mean and median almost converge to the same point (see Figure 2). In this case
it won’t matter which one we report, since they only differ in the fourth decimal
digit; see Listing 2.

It is also important to summarize the amount of posterior probability that
lies below or above some parameter value. In Gibson and Wu’s data, since the
research question amounts to whether the parameter is positive or negative, and
Gibson and Wu predict that it will be negative, we can compute the posterior
probability that the difference between object and subject relative clauses is less
than zero, P (β̂) < 0. This probability is 0.89; see Listing 3 and also Figure 3(a).

5The mean reading time at the critical region is 550ms, and since we assumed a lognormal
distribution, to calculate the ms, we need to find out exp(log(550)+1)−exp(log(550)−1), which
is 1300; the 68% is the probability mass between [-1,1] in the standard normal distribution.

6We left the priors of other parameters such as the standard deviation of the distribution,
or residuals in lme4 terms, and the scale of the random effects at their default values. These
priors shouldn’t be ignored when doing a real analysis! The user should verify that they make
sense.
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14 samples_m1 <- as.data.frame(m1) # It saves all the samples f rom the model.

15 posterior_condition <- samples_m1$cond

16 options(digits = 4)

17 mean(posterior_condition)

## [1] -0.0358

19 median(posterior_condition)

## [1] -0.03573

Listing 2: Code for summarizing point estimates.

21 mean(posterior_condition < 0) # Posterior probability tha t lies below zero.

## [1] 0.89

Listing 3: Code for finding the mass of the posterior probability that lies below
zero.

There is nothing special about zero; and since the difference between English
object and subject relative clauses is, in general, quite large, and Gibson and Wu
predict that in Chinese the same processes as in English give an advantage to
object relatives over subject relative clauses, we could be interested, instead, in
knowing the probability that the advantage of object relative clauses is at least
20 ms. This advantage can be translated into approximately −0.02 from the
grand mean in log-scale; we can inspect the posterior distribution and find out
that this, P (β̂) < −0.02, is 0.67; see also Figure 3(b).

6.1 The 95% credible interval

It is possible (and desirable) to report an interval of posterior probability, that is,
two parameter values that contain between them a specified amount of posterior
probability. This type of interval is also known as credible interval. A credible
interval demarcates the range within which we can be certain with a certain
probability that the “true value” of a parameter lies. It is the true value not out
there “in nature”, but true in the model’s logical world (see also the interesting
distinction between small and large worlds in McElreath (2015)).

The Bayesian credible interval is different from the frequentist confidence
interval because the credible interval can be interpreted with the data at hand,
while the frequentist counterpart is a property of the statistical procedure.
The statistical procedure only indicates that frequentist confidence intervals
across a series of hypothetical data sets produced by the same underlying pro-
cess will contain the true parameter value in a certain proportion of the cases
(Hoekstra et al., 2014; Morey et al., 2015).

The two most common types of Bayesian credible intervals are the percentile
interval and highest posterior density interval (HPDI; Box and Tiao, 1992). In
the first one, we assign equal probability mass to each tail. This is the most

10
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Figure 2: Posterior distribution of the difference between object and subject
relative clauses given a prior distribution Normal(0,1).
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Figure 3: The posterior probability that the difference between object and sub-
ject relative clauses is less than zero (a), and less than −0.02 (b).
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23 options(digits = 4)

24 posterior_interval(m1, par = "cond", prob = 0.95) # 95% Perc entile Interval

## 2.5% 97.5%
## cond -0.09553 0.02427

27 library(SPIn) # For calculating the HPDI

28 bootSPIn(posterior_condition)$spin # 95% HPDI

## [1] -0.09563 0.02355

Listing 4: Code for 95% Percentile Interval and HPDI.

common way to report credible intervals, because non-Bayesian intervals are
usually percentile intervals. As with frequentist confidence intervals, it is com-
mon to report 95% intervals (see Figure 4). The second option is to report the
HDPI, that is the narrowest interval containing the specified probability mass.
This interval will show the parameter values most consistent with the data, but
it can be noisy and depends on the sampling process (Liu et al., 2013). When
the posterior is symmetrical and normal looking, it is very similar to the per-
centile interval: In the case of Gibson and Wu’s data, the difference between
them is in the second or third decimal digit; see Listing 4.

6.2 Investigating the effect of prior specification on pos-
teriors

So far we dealt with a very weakly informative prior; what would happen with
more informative ones? Let us start by choosing a reasonable alternative prior,
such as Normal(0, 0.21) or Normal(0, 0.11); these assume that the difference
between conditions will be around 200 or 100 ms, and can be positive or neg-
ative; see the top row of Figure 5. Alternatively, we could have chosen unre-
alistically tightly constrained priors, such as (a) Normal(0.02, 0.02), which as-
sumes a difference four time larger between subject and object relative clauses
than what the data shows; (b) Normal(0.05, 0.02), which assumes that ob-
ject relative clauses are slower than subject relative clauses also in Chinese;
or (c) Normal(−0.05, 0.02), which assumes an unusually precise prior informa-
tion about the effect. With such unreasonable priors, we will get unreasonable
posteriors; see the bottom row of Figure 5. This is because as we increase the
precision of the priors we have more influence on the posterior distribution.
Figure 5 and Table 2 illustrate how the prior influences the posterior.

At this point, the reader may well ask: why do I have to decide on a “reason-
able” prior? What is reasonable anyway? Isn’t this injecting an uncomfortable
level of subjectivity into the analysis? Here, one should consider that the way
we actually reason about research follows this methodology, albeit informally.
When we review the literature on a particular topic, we report some pattern of
results, often classifying them as “significant” and “non-significant” effects. For
example, if we are reviewing the literature on English relative clauses, we might

13
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Figure 4: 95% Credible Interval for the effect in the Gibson and Wu analysis.

conclude that most studies have shown a subject relative advantage. However,
if we stop to consider what the average magnitude of the reported effects is, we
already have much more information than the binary classification of significant
or not significant. For the relative clause example, in self-paced reading studies,
at the critical region (which is the relative clause verb in English), we see 67
milliseconds (SE approximately 20) (Grodner and Gibson, 2005); 450 ms, 250
ms, 500 ms, and 200 ms (approximate SE 50 ms) in experiments 1-4 respec-
tively of Gordon et al. (2001); 20 ms in King and Just (1991) (their figure 6).
In eye-tracking studies reporting first-pass reading time during reading, we see
48 ms (no information provided to derive standard error) in Staub (2010); and
12 ms (no SE provided) in Traxler et al. (2002). Normally we pay no attention
to this information when conducting a new analysis; but using this information
is precisely what the Bayesian framework allows us to do. In effect, it allows us
to formally build on what we already know.

6.3 Inference using the credible interval

So we have checked that the posterior is not too sensitive to different weakly
informative priors. What inferences can we draw from the model? Are object
relative clauses easier than subject relative clauses in Chinese? We do have
some evidence, although it is rather weak. Although we do not need to make an
accept/reject decision, for situations where we really want to make a decision,
Kruschke et al. (2012) suggest that, since the 95% credible intervals created
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Figure 5: Posterior distributions given different type of priors. The first row
shows different weakly informative priors, while the second row shows unrea-
sonably constrained priors.
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Table 2: Summary of posterior distributions of the coefficients for the object
relative advantage in the Gibson and Wu data, assuming different priors. The
first three priors can be considered weakly informative and reasonable, but the
last three are overly constrained and we can see that as a consequence they
dominate the posterior, in the sense that the posterior is largely determined by
the prior.

Prior 95% CrI P (β̂) < 0 β̂
Normal(0, 1) −0.1 0.02 0.88 −0.04
Normal(0, 0.21) −0.09 0.02 0.88 −0.03
Normal(0, 0.11) −0.08 0.02 0.86 −0.03
Normal(−0.18, 0.02) −0.2 −0.15 1 −0.17
Normal(0.05, 0.02) 0.01 0.06 0 0.04
Normal(−0.05, 0.02) −0.07 −0.02 1 −0.04

using HDPI include the most credible values of the parameter, they can be used
as a decision tool: One simple decision rule is that any value outside the 95%
HDPI is rejected (also see Dienes (2011)). Note also that in symmetric posterior
distributions, the percentile interval will have a range similar to the HPDI and
can equally well be used.

A more sophisticated decision rule according to Kruschke et al. (2012) also
allows us to accept a null result. A region of practical equivalence (ROPE)
around the null value can be established; we assume that values in that interval,
for example [−0.005, 0.005], are practically zero. We would reject the null value
if the 95% HPDI falls completely outside the ROPE (because none of the most
credible values is practically equivalent to the null value). In addition, we would
accept the null value if the 95% HPDI is completely inside the ROPE, because
the most credible values are practically equivalent to the null value. The crucial
thing is that 95% HPDI gets narrower as the sample size gets larger.

6.4 Reporting the results of the Gibson and Wu analysis

So how can we report the analysis of the Gibson and Wu experiment, and what
can we conclude from it? After providing all the relevant details about the linear
mixed model, including the priors, we would report the mean of the estimate of
the effect, its credible interval, and the probability of a negative effect.

In the present case, we would report that (i) the prior for the intercept
is Normal(µ = 0, σ = 10), (ii) the prior for the effect of interest (the object-
subject difference) is Normal(0, 1), and (iii) the regularization on the covariance
matrix of random effects is 2. We would also report that four chains were run
for 2000 iterations each. We would also mention that a sensitivity analysis using
weakly informative priors showed that the posterior is not overly influenced by
the prior specification.

The results of the stan lmer based analysis are repeated below for conve-
nience (see Table 1 for a comparison with lmer output). If the variance compo-
nents and correlations of the random effects are also of theoretical interest (this
could be the case if individual differences are relevant theoretically), then the
credible intervals for these can also be reported.

The effect of interest is the difference between the object and subject relative
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Table 3: Summary of the Bayesian linear mixed model estimates for the Gibson
and Wu data-set. The stan lmer packages provides the median and the standard
deviation of the median absolute difference (MAD) of the fixed effects, but one
could equally well compute the mean and standard error, to mirror the lme4
convention.

Random effects
Groups Name Std.Dev. Corr
subj (Intercept) 0.2425

cond 0.0762 -0.521
item (Intercept) 0.1829

cond 0.0475 0.012
Residual 0.5131

Fixed effects
Median MAD-SD

(Intercept) 6.0641 0.0658
cond -0.0364 0.0301

clause reading times, and this can be summarized in terms of the estimated
mean of the posterior, and the credible intervals: (β̂ = −0.04, 95% CrI =

[−0.1, 0.02]). The posterior probability of this effect being less than zero, P (β̂) <
0, is 0.89. It has the correct sign following Gibson and Wu’s prediction, but the
evidence that it is negative is not very strong.

It would also be very helpful to the reader of a published result to have
access to the original data and the code that led to the analysis; this allows the
researcher to independently check the analyses himself or herself, possibly with
different prior specifications, and to build on the published work by using the
information gained from the published result. Trying out different priors would
be specially helpful to the expert researcher who has a different opinion (based
on their own knowledge about the topic) on what the true effect might be.

6.5 Hypothesis testing using the Bayes factor

The Bayes factor (BF) provides a way to quantify the evidence for the model
under which the observed data are most likely relative to another model. This is
accomplished by computing the ratio of the marginal likelihoods of two models
M0 and M1, which correspond to research hypotheses H0 and H1 (we will use
the words model and hypothesis interchangeably below):

BF01 =
p(D|M0)

p(D|M1)
(2)

BF01 then indicates the extent to which the data supports M0 overM1. The
marginal likelihood of a model, p(D|M), is the probability of the data D given
the model M . For example, if we toss a coin five times and get four heads, we
can compute the probability of getting four heads by using the probability mass
function for the binomial distribution:
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(

n

k

)

pk(1− p)(n−k) (3)

Here, we have five trials (n=5), four heads (k=4), and some probability p of
gettings a heads. If the parameter p of the binomial is believed to be 0.5, we
can compute the the probability of getting exactly four heads:

(

5

4

)

0.54(1− 0.5)(5−4) = 0.16 (4)

This is the marginal likelihood under a particular model (the assumption that
the parameter p = 0.5).

As mentioned above, the Bayes factor is a ratio: if we want to compare
the null hypothesis, H0, with a specific alternative hypothesis, H1, the ratio
we would compute is BF01 = p(D|H0)/p(D|H1). An outcome smaller than
one will mean more evidence for H1 than for H0. Crucially, the Bayes factor
can provide evidence in favor of the null hypothesis: This is the case when
the outcome of the calculation is bigger than one (see Gallistel (2009)). For
example, suppose our null hypothesis is that our coin is fair, i.e., p = 0.5, and
the alternative is that p = 0.8. For the five coin tosses with four successes, the
marginal likelihoods under the two hypotheses are 0.16 (for p=0.5), and 0.41
(for p=0.8). If we take the ratio of these two values, then we have a Bayes
factor of 0.38. This is weak evidence in favor of the alternative hypothesis that
p = 0.8. Alternatively, if we had two heads in five tosses, then the situation
would have been different: the marginal likelihoods under the two hypotheses
would then be 0.31 (for p=0.5), and 0.05 (for p=0.8), and the Bayes factor
would be 6.1, whick is weak evidence in favor of the null hypothesis. A scale has
been proposed to interpret Bayes factors according to the strength of evidence
in favor of one model (corresponding to some hypothesis) over another (see
Lee and Wagenmakers (2014), citing Jeffreys (1961)). On this scale, a Bayes
factor of 10-30 would constitute strong evidence in favor of Model 1 over Model
2; larger values than 10 are very strong evidence, and smaller values constitute
weaker evidence. Obviously, values smaller than 1 would then favor Model 2.

These examples with coin tosses are simple, but the approach can be scaled
up to the situation where we have a prior defined for our parameter(s); in this
case, the marginal likelihood would be computed by taking a sum over the
likelihoods, weighted by the probability assigned to each possible value of the
parameter. To take a simplified example, assume that our prior is in the five-
trial coin-toss example above is that p = 0.1 with probability 0.4 and p = 0.8
with probability 0.6, then the marginal likelihood when we have four heads is:

0.4×

(

5

4

)

0.14(1− 0.1)(5−4) + 0.6×

(

5

4

)

0.84(1− 0.8)(5−4) (5)

As discussed earlier, in reasonably large samples, the posterior distribution
is not overly influenced by weakly informative priors. In constrast, the Bayes
factor is sensitive to the priors (Liu and Aitkin, 2008). When priors are defined
to allow a broad range of values, the result will be a lower marginal likeli-
hood (which in turns influences the Bayes factor, as we saw in the examples
above). This sensitivity of the Bayes factor to priors can be considered a li-
ability (Lee and Wagenmakers, 2014, chapter 7.5). However, the dependency
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30 library(polspline)

31 fit_posterior <- logspline(posterior_condition)

32 posterior <- dlogspline(0, fit_posterior) # Height of the p osterior at 0

33 prior <- dnorm(0, 0, 1) # Height of the prior at 0

34 (BF01 <- posterior/prior) #BF01 shows clear support for H0

## [1] 15.67

Listing 5: Code for calculating the Bayes factor for the Gibson and Wu data.

on the prior can be studied explicitly with a sensitivity analysis, in which one
varies the prior and studies the fluctuations of the Bayes factor.

A challenge with the Bayes factor is that, when sample sizes are moderate
or the models are relatively complicated, the marginal likelihood is often quite
difficult to estimate using sampling (Carlin and Louis, 2008, 196). Neverthe-
less, there are tools for computing the Bayes factor corresponding to t-tests
(Rouder et al., 2009), and the R package BayesFactor and the JASP software
package also provide functions for computing Bayes factor for repeated mea-
sures ANOVA designs. There is also another method, called the Savage-Dickey
density ratio method that can be used directly with Bayesian linear mixed mod-
els. We present below a practical example of computing Bayes factor using this
method.

6.6 An example: Computing Bayes factor in the Gibson
and Wu data

The Savage–Dickey density ratio method (Dickey et al., 1970) is a straightfor-
ward way to compute the Bayes factor for nested models. The method consists
of dividing the height of the posterior for a certain parameter by the height of
the prior of the same parameter, at the point of interest (see Wagenmakers et al.
(2010) for a complete tutorial and the mathematical proof). Critically, we can
use the height of an approximation of the posterior distribution from the sam-
ples obtained from the numerical method employed (such as MCMC). In our
case, we could calculate the evidence in favor or against our predictor (condi-
tion) being zero The model with the experimental condition and the null model
will have several parameters in common that are not of interest (such as the in-
tercept of the fixed effects and random effects, the standard deviation, etc.), but
these parameters won’t influence the calculation of the Savage–Dickey density
ratio (Wagenmakers et al., 2010).

Listing 5 illustrates how to perform the calculation for the Gibson and Wu
example. We see that the comparison clearly favors the null hypothesis: it
is showing 15.67 times more evidence for the null than for any other value.
However, this might be because when priors allow a broad range of values, and
thus are too uninformative, the alternative hypothesis to the null, H1, (that the
effect is different from zero) is penalized for assigning too much prior mass to
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values that are too unlikely (while all the prior mass of the null hypothesis, H0,
is concentrated in zero). Without a proper specification of priors, H0 would
always be more likely than H1.

Table 4 shows the Bayes factor under different weakly informative priors:
the first column represents the numerator of a Bayes factor, while the second
column the denominator. The priors in Table 4 represent our prior beliefs on
the plausibility of different values of the effect of object vs. subject relative
clauses. The table shows that as we provide tighter and more realistic priors,
the evidence in favor of H0 decreases, which means that we don’t have enough
evidence to accept the null hypothesis. But notice that this doesn’t mean that
we can accept H1 either.

Table 4: Bayes factor under different weakly informative priors.

H0 H1 Prior
3.63 1 Normal(0, 0.21)
2.14 1 Normal(0, 0.11)

In sum, the Bayes factor can be a useful tool, but it should be borne in mind
that it will always be affected by the prior, so a sensitivity analysis is a good
idea when reporting the Bayes factor. According to Dienes (2011), its calcula-
tion depends on answering a question about which there may be disagreement
among researchers: “What way of assigning probability distributions of effect
sizes as predicted by theories would be accepted by protagonists on all sides
of a debate?” One of the clearest advantages of the Bayes factor is that once
the minimal magnitude of an expected effect is agreed upon, evidence can be
gathered in favor of the null hypothesis.

6.7 Model selection using cross-validation

Another way to make a decision about the hypothesis that object relative clauses
are easier than subject relative clauses in Chinese is to treat the hypothesis as a
model that can be compared with other models such as the null. We will focus
on cross-validation; for other approaches, see Shiffrin et al. (2008).

The question whether object relative clauses are easier than subject relative
clauses in Chinese can be also be phrased in terms of evaluating the model on its
ability to make predictions about future or unseen observations, in comparison
with, for example, a null model (or another model). However, it may not be
the most suitable way to compare nested linear mixed models when the effects
being investigated are small (Wang and Gelman, 2014; Gelman et al., 2014b).

This approach to model selection is based on finding the most “useful model”
for characterizing future data, and not necessarily the true model: the true
model is not guaranteed to produce the best predictions, and a false model is not
guaranteed to produce poor predictions (Wang and Gelman, 2014). The ideal
measure of a model’s fit would be its (out-of-sample) predictive performance
for new observations that are produced by the same data-generating process.
When the future observations are not available the predictive performance can
be estimated by calculating the expected predictive performance (Gelman et al.,
2014b; Vehtari and Ojanen, 2012).
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The cross-validation techniques that we review below are based on compar-
ing the expected predictive performance of a model with its actual performance
(but see Vehtari and Ojanen (2012) and Piironen and Vehtari (2015) for a more
complete review). We will focus on Bayesian leave-one-out cross-validation
(LOO-CV; Geisser and Eddy (1979)) and three approximations: (a) k-fold-
cross-validation (k-fold-CV; Vehtari and Ojanen, 2012), (b) Pareto smoothed
importance sampling (PSIS-LOO; Vehtari and Gelman, 2015), and (c) the widely
applicable information criterion (or Watanabe-Akaike information criterion: WAIC;
Watanabe (2009, 2010)). The latter two are implemented in the R package loo
(Vehtari et al., 2015b), but they should be used with care, since they are af-
fected by highly influential observations. When highly influential observations
are present, k-fold-CV is recommended (the code for implementing k-fold-CV
in Stan is available in Vehtari et al., 2015a).

The basic idea of cross-validation is to split the data such that each subset
is used as a validation set, while the the remaining sets (the training set) are
used for estimating the parameters. LOO-CV method depicts the case when the
training set only excludes one observation. The main advantage of this methods
is its robustness, since the training set is as similar as possible to the real data,
while the same observations are never used simultaneously for training and
evaluating the predictions. A major disadvantage is the computational burden
(Vehtari and Ojanen, 2012), since we need to fit a model as many times as the
number of observations.

The k-fold-CV (Vehtari and Ojanen, 2012) can be used to reduce the com-
putation time by reducing the number of models we need to fit. In the k-fold-CV
approach, the data are split into k subsets (or folds), where k is generally around
ten. Each subset is in turn used as the validation set, while the remaining data
are used for parameter estimation. A further reduction in computation time
can be achieved with PSIS-LOO (Vehtari and Gelman, 2015), which is faster
compared to LOO-CV, and does not require fitting the model multiple times
(Vehtari and Gelman, 2015; Vehtari et al., 2015a).

Information criteria are commonly used for selecting Bayesian models, since
they are directly related to assessing the predictive performance of the models.
In addition, WAIC is asymptotically equal to LOO (Watanabe, 2010). The dis-
tinguishing feature of WAIC in comparison with AIC (Akaike Information Crite-
rion; Akaike (1974)), DIC (Deviance Information Criterion; Spiegelhalter et al.
(2002)), and BIC (Bayesian Information Criterion; Schwarz (1978), which also
has a different goal than the other measures discussed here), is that WAIC is
point-wise: the uncertainty is calculated point-by-point in the data over the
entire posterior distribution (Gelman et al., 2014b). This is important because
some observations are harder to predict than others. In addition, AIC does not
work well with strong priors, and while DIC can take into account informative
priors, and it is the measure of choice in many Bayesian applications, it may give
unexpected results when the posterior distribution is not well summarized by
its mean (for example, if the posterior is substantially skewed). For a complete
comparison between AIC, DIC, and WAIC, see (Gelman et al., 2014b).

Cross validation techniques are ideally suited for comparing highly different
models, and may be a fully Bayesian replacement for AIC or DIC. However,
even with moderate sample size, it can be difficult to compare nested hier-
archical models (such as linear mixed models) based on predictive accuracy
(Wang and Gelman, 2014). An experimental manipulation can produce a tiny
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change in predictive accuracy, which can be nearly indistinguishable from noise,
but it can be still useful for evaluating a psycholinguistic theory. This means
that unless we are dealing with huge effects or with a very large sample size,
the null model would always be almost as good as the model with the predictor
of interest, as far as predictive accuracy is concerned, while the complexity of
the model with the predictor of interest is penalized (Wang and Gelman, 2014;
Gelman et al., 2014b).

6.7.1 Some closing remarks on inference

In the previous sections, we have presented Bayesian methods as a useful and
important alternative to null hypothesis significance testing (NHST) for statis-
tical inference. In contrast to NHST, where a sharp binary decision is made
between rejecting or failing to reject the null hypothesis, we can now directly
talk about the strength of the evidence for a certain effect. We pointed out that
the 95% Bayesian credible interval as a possible way to summarize the evidence.
The credible interval has a very intuitive interpretation (which researchers often
ascribe mistakenly to frequentist confidence intervals): it gives the range over
which we can be 95% certain that the true value of the effect lies, given of course
the data, the priors, and the model. We also pointed out that the mass of the
probability of the posterior distribution below (or above) zero can give valuable
information about the plausibility of a negative (or positive) effect.

As a rule of thumb, we can interpret the evidence as strong if zero lies outside
the 95% credible interval (Kruschke et al., 2012). If zero is included within the
interval, there might still be weak evidence for an effect, if the probability of the
estimate being less than (or greater than) zero is large enough. Our interpre-
tation of the evidence should also take into account that the range of possible
magnitudes of the effect makes sense theoretically; for example, if we find an
effect of less than one millisecond, we shouldn’t interpret it as strong evidence,
just because its credible interval doesn’t include zero. A difference of less than
one millisecond would likely have no theoretical relevance in psycholinguistics
or linguistics.

Given the results from the Bayesian analysis of the Gibson and Wu data, we
could claim that there is some weak evidence for the claim that object relative
clauses are easier than subject relative clauses in Chinese, depending on what we
make of the magnitude of the effect on this experiment in comparison with other
similar experiments. Importantly, we wouldn’t be able to claim that we have
evidence for no effect. This is a common problem in the way that null hypothesis
significance testing is used in linguistics and psycholinguistics; a failure to find
an effect is presented as evidence for the null hypothesis that the parameter is 0
(also see Part I of this review for more discussion). The effect is also considered
to be zero even if repeated experiments consistently show, say, a negative sign
of the effect that do not reach statistical significance. In such a situation, if
theory suggests “no effect”, we could (and should) establish an interval around
zero that would be practically equivalent to “no effect”, the region of practical
equivalence or ROPE, and find that the 95% credible interval of the estimate of
the effect falls completely inside it. Alternatively, one could identify the smallest
effect we would expect, and then use Bayes factors.

In the final section below, we review some examples that use Bayesian tools,
and mention some of the possibilities for fitting more complex and interesting
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models. Any of these example applications can serve as a starting point for the
researcher.

7 Examples of applications of Bayesian Methods

It has become relatively straightforward to fit complex Bayesian models due
to the increase in computing power and the appearance of probabilistic pro-
gramming languages, such as WinBUGS (Lunn et al., 2000), JAGS (Plummer,
2012), and Stan (Stan Development Team, 2015). Even though these statisti-
cal packages allow the user to define models without having to deal with the
complexities of the sampling process, some background statistical knowledge is
needed before one can define the models.

There are some alternatives that allow Bayesian inference in R without hav-
ing to fully specify the model “by hand”. The packages rstanarm (Gabry and Goodrich,
2016) and brms (Buerkner, 2015) emulates many popular R model-fitting func-
tions, such as (g)lmer, using Stan for the back-end estimation and sampling, and
can be useful for a smooth transition between frequentist linear mixed models
and Bayesian ones. In addition, the BayesFactor (Morey and Rouder, 2015)
package emulates other standard frequentist tests (t-test, ANOVA, linear mod-
els, etc.), and provides the Bayes factor given some pre-specified priors. For
a simpler option, JASP (Love et al., 2015) provides a graphical user interface,
and is an alternative to SPSS.

For linear mixed models, one strength of Bayesian methods is that we can
fit models with a full random structure that would not converge with frequen-
tist methods or would yield overestimates of correlations between the ran-
dom effects (Bates et al., 2015a). This can be achieved by using appropriate
weakly informative priors for the correlation matrices (so-called LKJ priors,
and see also Sorensen et al. (2015) for a tutorial). Some examples of papers
using Bayesian linear mixed models in psycholinguistics are Frank et al. (2015);
Hofmeister and Vasishth (2014); Husain et al. (2014). However, the major ad-
vantage of Bayesian methods lies in the possibility of moving beyond linear
models. These become relevant for modeling distributions of reaction and read-
ing times (RTs), which are limited on the left by some amount of time (i.e., the
shift of the distribution), and are highly right skewed. RTs can be reciprocal-
or log-transformed to incorporate them in linear mixed models, but these trans-
formations still assume a shift of 0 ms. Rouder (2005) suggests then the shifted
log-normal hierarchical model as a suitable model for RTs. This type of model
is not linear but can be fit straightforwardly, and can be used for inferences
in experiments with self-paced reading tasks (Nicenboim et al., 2015). Another
potential use of non-linear hierarchical models that to our knowledge has not
been applied in psycholinguistics or linguistics is ordered probit hierarchical
models for acceptability judgments or any type of rating task that uses a scale
(Kruschke, 2015, Chapter 23). A further interesting application is that one
can synthesize evidence from existing studies by carrying out a meta-analysis
(Vasishth et al., 2013). Meta-analysis is not widely used in linguistics and psy-
cholinguistics, but it can serve a very important role in literature reviews.

Bayesian cognitive modeling is another extremely fruitful use of Bayesian
methods, and some of the methods discussed in Lee (2011) and Lee and Wagenmakers
(2014) could easily be adapted for psycholinguistics. It is important to note the
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distinction between using Bayesian methods for modeling cognitive processes,
assuming that (some aspect of) the mind is Bayesian, and using Bayesian meth-
ods for modeling cognitive processes without necessarily assuming a Bayesian
mind. Some examples of the former category are Bayesian/noisy channels ap-
proaches to parsing (for a review see Traxler (2014)) or to word learning (see,
for example, Xu and Tenenbaum (2007)); and the belief update models pre-
sented by Mysĺın and Levy (2016) and Kleinschmidt et al. (2012). Indeed, even
though Kleinschmidt et al. (2012) model adaptation as a Bayesian belief up-
date, the model itself was fit using frequentist methods. An example of the
second category, i.e., using Bayesian methods for modeling without assuming
that the mind is Bayesian, is Logačev and Vasishth (2016). Here, the focus is
on evaluating different models of parsing in the face of ambiguities.

In addition, there is a class of models that is mostly used in two-forced
choice tasks and that have the strength of integrating accuracy and reaction
times instead of wrongly treating them as independent outcomes. This class of
models is based on the idea that response selection can be modeled by a process
that accumulates evidence until a threshold in reached. This could be applied
in deciding whether a string of letters is a word or a non-word, whether a word
is the right completion of a sentence, whether a sentence is grammatical or not,
and so forth. One of the most widely applied evidence accumulation model is
the Ratcliff diffusion model (see Ratcliff and Rouder (1998)), but several other
models based on the similar ideas exist, such as the Ballistic and linear Ballistic
accumulator (Brown and Heathcote, 2005, 2008). The implementation of these
models with frequentist methods is notoriously complicated, and in order to
fit all their parameters they require a large number of trials. Bayesian meth-
ods allow extending these models hierarchically, with all the benefits that this
implies, that is, the ability to take into account within- and between-subjects
and between-items variability, and to do partial pooling. Vandekerckhove et al.
(2011), for example, provide an implementation in WinBUGS of a hierarchical
diffusion model. The linear ballistic accumulator has also been implemented
in WinBUGS (Donkin et al., 2009), and it could be extended in the same way
as the hierarchical diffusion model was. Another Bayesian model based on the
accumulation of evidence is the lognormal race model (Rouder et al., 2014), not
as feature rich as the diffusion model and the linear ballistic accumulator, but
its approach can generalize to any number of choices (including just one choice).

Finally, another advantage that Bayesian methods can provide is the use
of informative priors in situations where data are scarce but we have previous
knowledge about the effects. This is the idea behind the Small N Accept-
ability Paradigm for Linguistic Acceptability Judgments (SNAP Judgments;
Mahowald et al. (2015)), which allows us to obtain quantitative and statistically
valid data in syntax and semantics research in situations where it would be dif-
ficult to consult with many native speakers. And finally, the use of informative
priors could be a significant advantage in studies with impaired participants
(such as aphasics), where it is difficult to have a large sample size.

8 Concluding remarks

Carrying out Bayesian data analysis clearly requires thought and effort; even if
one uses convenient packages like rstanarm, several decisions have to be made:
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we have to define priors, carry out sensitivity analyses, and decide how to in-
terpret the results. By comparison, fitting a linear mixed model using lme4 is
much easier: just write a single line of code and extract the t-value(s) or the
like. To add insult to injury, the overhead in terms of time and effort of fitting
a Bayesian model seems unjustified given that, for large sample sizes, the esti-
mates for the fixed effects from a Bayesian model and the corresponding lme4

model will be quite similar (if not identical), especially with weakly informa-
tive priors (for examples from psycholinguistics, see Bates et al. (2015a)). Why
bother to use Bayesian methods then? One compelling reason is that although
p-values answer a question, they answer the wrong question. Once one realizes
that the p-value doesn’t provide any direct evidence for the research question,
the motivation to compute it fades. Another reason is that since we already tend
to interpret the result of frequentist analyses in a Bayesian manner, we might
as well carry out a Bayesian analysis. Finally, as discussed earlier, Bayesian
probabilistic programming languages provide a degree of flexibility in defining
models that is difficult to match with frequentist tools.

9 Further reading

For a first introduction to Bayesian methods we suggest McElreath (2015) and
Kruschke (2015). Lynch (2007) is also excellent but assumes some calculus.
For a more advanced treatment of the topic, see Gelman et al. (2014a). Linear
mixed models are covered from both the frequentist and Bayesian perspective
by Gelman and Hill (2007). For an accessible introduction of Bayesian methods
for cognitive modeling see Lee and Wagenmakers (2014).
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