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Abstract
In sentence comprehension, it is widely assumed (Gibson
2000, Lewis & Vasishth, 2005) that the distance between lin-
guistic co-dependents affects the latency of dependency reso-
lution: the longer the distance, the longer the retrieval time (the
distance-based account). An alternative theory of dependency
resolution difficulty is the direct-access model (McElree et al.,
2003); this model assumes that retrieval times are a mixture
of two distributions: one distribution represents successful re-
trieval and the other represents an initial failure to retrieve the
correct dependent, followed by a reanalysis that leads to suc-
cessful retrieval. The time needed for a successful retrieval
is independent of the dependency distance (cf. the distance-
based account), but reanalyses cost extra time, and the propor-
tion of failures increases with increasing dependency distance.
We implemented a series of increasingly complex hierarchical
Bayesian models to compare the distance-based account and
the direct-access model; the latter was implemented as a hier-
archical finite mixture model with heterogeneous variances for
the two mixture distributions. We evaluated the models using
two published data-sets on Chinese relative clauses which have
been used to argue in favour of the distance account, but this
account has found little support in subsequent work (e.g., Jäger
et al., 2015). The hierarchical finite mixture model, i.e., an im-
plementation of direct-access, is shown to provide a superior
account of the data than the distance account.
Keywords: Bayesian hierarchical Finite Mixture Models; Psy-
cholinguistics; Sentence Comprehension; Chinese Relative
Clauses; Direct-Access Model

Introduction
In sentence comprehension research, dependency completion
is assumed by many theories to be a key event. For exam-
ple, in a sentence like The man slept, in order to understand
who did what, the subject noun is retrieval at the verb. One
well-known generalization is that dependency distance partly
determines comprehension difficulty as measured by read-
ing times or question-response accuracy. For example, the
Dependency Locality Theory discussed in Gibson and Wu
(2013), and the cue-based retrieval account of Lewis and Va-
sishth (2005) both assume that the longer the distance be-
tween two co-dependents such as a subject and a verb, the

greater the retrieval difficulty at the moment of dependency
completion. We will call this the distance account.

As an example, consider the self-paced reading study in
Gibson and Wu (2013). The dependent variable here was the
reading time at the head noun (official) in Chinese subject and
object relative clauses. As shown in (1), in Chinese subject
relatives, the distance is larger between the head noun and
the gap it is coindexed with (the coindexing is marked with
the subscript i), compared to object relatives.1 For simplic-
ity, we operationalize distance here as the number of words
intervening between the gap inside the relative clause and the
head noun.

(1) a. Subject relative
[GAPi
GAP

yaoqing
invite

fuhao
tycoon

de]
DE

guanyuani
official

xinhuaibugui
have bad intentions

‘The official who invited the tycoon has bad in-
tentions.

b. Object relative
[fuhao
tycoon

yaoqing
invite

GAPi
GAP

de]
DE

guanyuani
official

xinhuaibugui
have bad intentions

‘The official who the tycoon invited has bad in-
tentions.

In the Gibson and Wu study, reading times were recorded
using self-paced reading in the two conditions (subject rela-
tive, coded −1/2, and object relative, coded +1/2), with 37
subjects and 15 items, presented in a standard Latin square

1The dependency could be equally well be between the relative
clause verb and the head noun; nothing hinges on assuming a gap-
head noun dependency.
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design. The experiment originally had 16 items, but one item
was removed in the published analysis due to a mistake in the
item.

The distance account’s predictions can be evaluated by fit-
ting the hierarchical linear model shown in (1). Assume that
(i) i indexes participants, i = 1, . . . , I and j indexes items,
j = 1, . . . ,J; (ii) yi j is the reading time in milliseconds for
the i-th participant reading the j-th item; and (iii) the predic-
tor X is sum-coded (±1/2). Then, the data yi j (reading times
in milliseconds) are defined to be generated by the following
model:

yi j = β0 +β1Xi j +bi + c j + εi j (1)

where bi ∼ Normal(0,σ2
b), c j ∼ Normal(0,σ2

c) and εi j ∼
Normal(0,σ2

e). The terms bi and c j are called varying in-
tercepts for participants and items respectively; they repre-
sent by-subject and by-item adjustments to the fixed-effect
intercept β0. Their variances, σ2

b and σ2
c represent between-

participant (respectively item) variance.2 This model is ef-
fectively a statement about how the data are assumed to be
generated. If the distance account is correct, we would ex-
pect to find evidence that the slope β1 is statistically signifi-
cantly different from zero; specifically, reading times for sub-
ject relatives are expected to be longer than those for object
relatives. As shown in Table 1, this prediction is borne out.
Subject relatives are estimated to be read 120 ms slower than
object relatives, apparently consistent with the predictions of
the distance-based account.

Estimate Std. Error t value
(Intercept) 548.43 51.56 10.64

Xsubj-rel:−1/2 -120.39 48.01 -2.51*

Table 1: A linear mixed model using raw reading times in
milliseconds as dependent variable, corresponding to the re-
ported results in Gibson and Wu 2013.

In summary, the theoretical interpretation of this finding,
originally presented in Gibson and Wu (2013), is that in Chi-
nese, subject relatives are harder to process than object rel-
atives because the gap inside the relative clause is more dis-
tant from the head noun in subject vs. object relatives. This
makes it more difficult to complete the gap-head noun depen-
dency in subject relatives. This distance-based explanation of
processing difficulty is plausible given the considerable inde-
pendent evidence from languages such as English, German,
Hindi, Persian and Russian that dependency distance can af-
fect reading time (see review in Safavi, Husain, and Vasishth
(2016)).

2This so-called crossed participants and items varying intercepts
linear mixed model can be made more complex by adding vary-
ing slopes for the factor X by participant and by item, but for ease
of exposition we do not consider these more complex models in
the present paper. Such complex models would anyway be over-
parameterized given the amount of data available.
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Figure 1: Boxplots showing the distribution of reading times
by condition of the Gibson and Wu (2013) data.

However, not only has recent work on Chinese relatives
(Jäger, Chen, Li, Lin, & Vasishth, 2015) cast doubt on de-
pendency distance account, even in the data considered by
Gibson and Wu, the distributions of the reading times for
the two conditions show an interesting asymmetry that cannot
be straightforwardly explained by the distance account. The
reading times in subject relatives are much more spread out
than in object relatives. This is shown in Figure 1. Although
this spread was ignored in the original analysis, a standard
response to heterogeneous variances (heteroscedasticity) is to
delete “outliers” based on some criterion; a common criterion
is to delete all data lying beyond ±2.5SD in each condition.
This procedure assumes that the data points identified as ex-
treme are irrelevant to the question being investigated. An al-
ternative approach is to not delete data but to downweight the
extreme values by applying a variance stabilizing transform
(Box & Cox, 1964). Taking a log-transform of the reading
time data, or a reciprocal transform, can reduce the hetero-
geneity in variance; see Vasishth, Chen, Li, and Guo (2013)
for analyses of the Gibson and Wu data using a transforma-
tion.

However, it is possible that the heteroscedasticity in subject
and object relatives in the Gibson and Wu data reflects a sys-
tematic difference in the underlying generative processes of
reading times in the two relative clause types. We investigate
this question by modelling the extreme values.

Using the probabilistic programming language Stan (Stan
Development Team, 2016), we show that a hierarchical mix-
ture model provides a better fit to the data (in terms of pre-
dictive accuracy) than several simpler hierarchical models.



The mixture model that we present below can be seen as
a model of extreme values. As Nicenboim and Vasishth
(2016a) pointed out, the underlying generative process is con-
sistent with an implementation of the direct-access model of
McElree, Foraker, and Dyer (2003). We therefore suggest
that, at least for the Chinese relative clause data, the direct-
access model may be a better way to characterize the depen-
dency resolution process than the distance-based account.

Reading times as a mixture distribution: The
direct-access model of McElree et al. (2003)

A finite mixture model assumes that the outcome (here, read-
ing time in milliseconds, yi, i = 1, . . . ,N) is drawn from one
of several distributions.3 Each distribution’s identity is con-
trolled by a categorical mixing distribution. For example, as-
sume that we have K distributions with location parameter
(the mean) µk ∈R and scales (standard deviation) σk ∈ (0,∞).
If they are mixed in proportions λ =< λ1, . . . ,λK >, where
λk ≥ 0 and ∑

K
k=1 λk = 1, for each outcome yi there is a latent

variable zi ∈ {1, . . . ,K} with a categorical distribution param-
eterized by λ : zi ∼ Categorical(λ). The dependent variable
yi (reading time in milliseconds), is then distributed as a Log-
Normal distribution (for further justification, see Nicenboim
and Vasishth (2016b):

yi ∼ LogNormal(µzi ,σ
2
zi
) (2)

As mentioned above, the direct-access model can be seen
as assuming a mixture distribution where successful re-
trieval can be modelled as a Log-Normal distribution: y ∼
LogNormal(µ,σ2

e). Retrieval failure and subsequent reanaly-
sis can be modelled as another Log-Normal distribution with
a different location parameter and possibly also a different
scale parameter: y∼ LogNormal(µ+δ,σ2

e′).
Thus, one can consider the direct-access model as a mix-

ture model with retrieval time as generated from one of two
distributions, where the proportion of trials in which a re-
trieval failure occurs (the mixing proportion) is p:

y∼p ·LogNormal(µ+δ,σ2
e′)

+(1− p) ·LogNormal(µ,σ2
e)

(3)

In order to understand whether the Chinese relative clause
data are best described as being generated by a mixture pro-
cess, we implemented a series of increasingly complex mod-
els and compared the relative fit of these models. All models
were hierarchical, with varying intercepts for participant and
for item.

Model comparison using Pareto-smoothed
importance sampling Leave-One-Out (PSIS-LOO)
cross-validation
Model comparison can be carried out using different meth-
ods; here, we use an approximation of the leave-one-out

3We follow the presentation of mixture models in Stan Develop-
ment Team (2016).

cross-validation (LOO) approach, as discussed in Vehtari,
Gelman, and Gabry (2016b). In essence, LOO compares
the expected predictive performance of alternative models by
subsetting the data into a training set (for estimating param-
eters) by excluding one observation. The difference between
the predicted and observed held-out value can then be used
to quantify model quality by successively holding out each
observation. The sum of the expected log pointwise predic-
tive density, êl pd, can be used as a measure of predictive ac-
curacy, and the difference between the êl pd’s of competing
models can be computed, including the standard deviation of
the sampling distribution of the difference in êl pd. When
comparing a model M0 with another model M1, if M1 has a
higher êl pd, then it has a better predictive performance com-
pared to M0. The quantity êl pd is a Bayesian alternative to
the Akaike Information Criterion (Akaike, 1974). Vehtari and
colleagues developed an efficient computation of LOO using
Pareto-smoothed importance sampling (PSIS-LOO), and this
is what we use here. Details of PSIS-LOO are omitted here
due to space constraints; see Vehtari et al. (2016b) for more.
We used the LOO package, version 1.0.0 (Vehtari, Gelman,
& Gabry, 2016a) to compute the êl pd for each model.

Definitions of the hierarchical mixture models
The different hierarchical models evaluated are shown in Ta-
ble 2. The dependent variable is reading time in millisec-
onds, and the underlying generating distribution for the read-
ing times is a Log-Normal; the varying intercepts for sub-
jects and items are assumed to be normally distributed, as
is standard in linear mixed models. Priors are defined for the
model parameters as follows. All standard deviations are con-
strained to be greater than 0 and have priors Cauchy(0,2.5);
probabilities have priors Beta(1,1); and all coefficients (β
parameters) have priors Cauchy(0,2.5).

In the mixture models, we will call the distribution that cor-
responds to the successful retrieval the success distribution,
and the one corresponding to the retrieval failure followed by
a reanalysis the failure distribution.

We fit six models, described below and shown more for-
mally in Table 2. Other models can be fit too, but are omitted
here due to space restrictions.

• M0: A standard linear mixed model (no mixture). This
corresponds to a test of the distance-based account.

• M1: A mixture only in subject relatives (homogeneous
variance). This model assumes that failures happen only
in subject relatives (SRs).

• M2: A mixture only in subject relatives (heterogeneous
variance). Here, we assume, as in M1, that failures hap-
pen only in SRs, but the variance of the failure distribution
is assumed to be different than the variance of the success
distribution.

• M3: This model assumes that there is no difference in re-
trieval time in ORs vs SRs, but only in the probability of



Model Definition Variables
M0 yi j ∼ LogNormal(β0 +β1Xi j +bi + c j,σ

2
e) bi ∼ Normal(0,σ2

b), c j ∼ Normal(0,σ2
c); and σ2

e
is the variance of the distribution corresponding to
a correct retrieval.

M1 SRs: yi j ∼ p ·LogNormal(βSR +bi + c j +δ,σ2
e) p is the probability of failure.

+(1− p) ·LogNormal(βSR +bi + c j,σ
2
e) βSR and βOR are the means for subject and object

relatives. Thus, diff = βSR−βOR.
ORs: yi j ∼ LogNormal(βOR +bi + c j,σ

2
e) δ is the additional cost in the failure distribution.

M2 SRs: yi j ∼ p ·LogNormal(βSR +bi + c j +δ,σ2
e′) σ2

e′ is the variance of the failure distribution.
+(1− p) ·LogNormal(βSR +bi + c j,σ

2
e)

ORs: yi j ∼ LogNormal(βOR +bi + c j,σ
2
e)

M3 SRs: yi j ∼ pSR ·LogNormal(β+bi + c j +δ,σ2
e) pSR, pOR are failure probabilities in SRs (ORs).

+(1− pSR) ·LogNormal(β+bi + c j,σ
2
e) diffprob is the difference in failure probability

in SR vs OR (diffprob=pSR− pOR).
ORs: yi j ∼ pOR ·LogNormal(β+bi + c j +δ,σ2

e) β is the common mean reading time for subject
and object relatives.

+(1− pOR) ·LogNormal(β+bi + c j,σ
2
e)

M4 SRs: yi j ∼ pSR ·LogNormal(β+bi + c j +δ,σ2
e′) σe′ and σe are the SDs of the two distributions.

+ (1− pSR) ·LogNormal(β+bi + c j,σ
2
e) For other variables, see above.

ORs: yi j ∼ pOR ·LogNormal(β+bi + c j +δ,σ2
e′)

+(1− pOR) ·LogNormal(β+bi + c j,σ
2
e)

M5: See above As model M4, except that separate β parameters
are assumed for SRs and ORs.

Table 2: The model definitions. The best model among these for the Gibson and Wu 2013 data is M4.

successful retrieval. The variances of the success and fail-
ure distributions are assumed to be identical (homogeneous
variances).

• M4: This model also assumes that there is no difference
in retrieval time in ORs vs SRs, but only in the probability
of successful retrieval. Unlike M3, the variances of the
success and failure distributions are assumed to be different
(heterogeneous variances).

• M5: This model assumes that retrieval time in SRs and
ORs is different, and that the variances of the two distribu-
tions are different (heterogeneous variance). Thus, M5 is
like M4, but with the additional assumption that distance
may affect dependency completion time.

The data
The evaluation of these models was carried out using two sep-
arate data-sets. The first was the original study from (Gibson
& Wu, 2013) that was discussed in the introduction. The sec-
ond study was a replication of the Gibson and Wu study that
was published in Vasishth et al. (2013). This second study
served the purpose of validating whether independent evi-
dence can be found for the mixture model selected using the
original Gibson and Wu data.

Results
The original Gibson and Wu study As shown in Table 3,
a comparison of the models M0-M5 using LOO show that

(a) the model M1, which assumes a mixture only in subject
relatives with homogeneous variances in the mixture distri-
butions, is better than the standard linear mixed model M0;
(b) the model M2, which assumes a mixture only in subject
relatives but with heterogeneous variances in the mixture dis-
tributions, is no better than the simpler model M1; (c) M3,
which assumes mixture distributions in both subject and ob-
ject relatives but homogeneous variances, outperforms M2;
(d) M4, which assumes mixture distributions in both subject
and object relatives but heterogeneous variances, outperforms
M3; (e) M4 has a numerically better fit (lower êl pd) than the
more complex model M5, which assumes different means for
SRs and ORs.

Among the models considered, the best model—the one
with the lowest êl pd—is therefore the heterogeneous vari-
ance mixture model M4. Posterior predictive checks also con-
firm that M4 generates simulated data that is consistent with
the observed data, but the simpler model M0 fails to generate
the spread observed in the subject relatives in the Gibson and
Wu 2013 data (details omitted due to space limitations).

Table 4 shows, for the two mixture models M3 and M4, the
posterior estimates of the parameters, along with 95% credi-
ble intervals (these demarcate the range of plausible values of
the parameter with probability 95%). We display only mod-
els M3 and M4 because these two models approximate the
direct-access model of McElree et al. (2003).

From Table 4 we can see that in both M3 and M4, in subject



relatives the failure distribution occurs with a higher probabil-
ity than in object relatives (0.25 vs 0.21). In model M4, the
mean difference in the probability of the failure distribution
is 4%, with a 95% credible interval [-5,13]%. The posterior
probability of this difference being greater than zero is 82%.

Furthermore, since M4 is the selected model, the failure
distribution is better characterized as having a larger variance
(σ̂e′ = 0.64 in M4) than the success distribution (σ̂e = 0.22 in
M4).

comp elpd diff se
M0 vs M1 56.31 15.49
M1 vs M2 1.00 1.96
M2 vs M3 60.87 17.81
M3 vs M4 29.99 9.42
M5 vs M4 -29.79 4.32

Table 3: Comparison of the different models for the Gibson
and Wu 2013 data using PSIS-LOO.

models parameter mean lower upper
m3 beta 5.90 5.79 6.02

delta 1.35 1.26 1.44
diffprob 0.04 -0.02 0.10
prob sr 0.14 0.10 0.19
prob or 0.10 0.07 0.14
sigma e 0.30 0.28 0.32
sigma u 0.25 0.19 0.33
sigma w 0.13 0.08 0.20

m4 beta 5.85 5.75 5.95
delta 0.93 0.72 1.14
diffprob 0.04 -0.05 0.13
prob sr 0.25 0.18 0.34
prob or 0.21 0.14 0.29
sigmap e 0.64 0.53 0.75
sigma e 0.22 0.20 0.25
sigma u 0.24 0.18 0.31
sigma w 0.09 0.05 0.16

Table 4: Parameter estimates from the homogeneous vari-
ance mixture model (M3) and heterogeneous variance mix-
ture model (M4), with 95 percent credible intervals.

The replication of the Gibson and Wu study In this data-
set, there were 40 participants and the same 15 items as in
Gibson and Wu’s data were used. Figure 2 shows the distri-
bution of the data by condition; there seems to a similar skew
as in the original study, although the spread is not as dramatic
as in the original study.

Table 5 shows that M4 is again the best model. Table 6
shows that we obtain parameter estimates in this replication
data-set for model M4 that are similar to those from the orig-
inal Gibson and Wu data. In particular, the mean difference
in the probability of the failure distribution for subject vs. ob-
ject relatives is 7%, with a 95% credible interval [-1,16]%.
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Figure 2: Boxplots showing the distribution of reading times
by condition of the replication of the Gibson and Wu data.

comp elpd diff se
M0 vs M1 67.75 22.00
M1 vs M2 17.56 11.31
M2 vs M3 13.84 28.67
M3 vs M4 55.91 18.24
M5 vs M4 -63.81 13.32

Table 5: Comparison of the different models in the replication
data using PSIS-LOO.

Original data Replication data
param. mean lower upper mean lower upper

beta 5.85 5.76 5.95 5.86 5.78 5.95
delta 0.93 0.74 1.14 0.74 0.55 0.96

diffprob 0.04 -0.05 0.13 0.07 -0.01 0.16
prob sr 0.25 0.18 0.33 0.23 0.15 0.33
prob or 0.21 0.14 0.29 0.16 0.09 0.25

sigmap e 0.64 0.54 0.75 0.69 0.59 0.81
sigma e 0.22 0.20 0.25 0.21 0.18 0.23
sigma u 0.24 0.18 0.31 0.22 0.17 0.29
sigma w 0.09 0.05 0.16 0.07 0.03 0.12

Table 6: The posterior distributions of the parameters from
the mixture model M4 using the original Gibson and Wu 2013
data and the replication data from Vasishth et al. 2013.

The posterior probability of this difference being greater than
zero is 95%. The replication data thus suggest a systematic
difference in retrieval failures occurs in subject versus object
relatives.

Discussion
The model comparison and parameter estimates presented
above suggest that, at least as far as the Chinese relative
clause data are concerned, a better way to characterize the de-
pendency completion process is in terms of the direct-access



model and not the distance account implied by Gibson and
Wu (2013) and Lewis and Vasishth (2005). Specifically, there
is suggestive evidence in the Gibson and Wu (2013) data that
a higher proportion of retrieval failures occurred in subject
relatives compared to the object relatives. In other words,
increased dependency distance may have the effect that it in-
creases the proportion of retrieval failures (followed by re-
analysis).

There is one potential objection to the conclusion above.
It would be important to obtain independent evidence as
to which dependency was eventually created in each trial.
This could be achieved by asking participants multiple-choice
questions to find out which dependency they built in each
trial. Although such data is not available for the present study,
in other work (on number interference) (Nicenboim, Engel-
mann, Suckow, & Vasishth, 2016) did collect this informa-
tion. There, too, we found good evidence for the direct-access
model (Nicenboim & Vasishth, 2016a). In future work on
Chinese relatives, it would be helpful to carry out a similar
study to determine which dependency was completed in each
trial. In the present work, the modelling at least shows how
the extreme values in subject relatives can be accounted for
by assuming a two-mixture process.

Conclusion
The mixture models suggest that, in the specific case of Chi-
nese relative clauses, increased processing difficulty in sub-
ject relatives is not due to dependency distance leading to
longer reading times, as suggested by Gibson and Wu (2013).
Rather, a more plausible explanation for these data is in terms
of the direct-access model of McElree et al. (2003). Under
this view, retrieval times are not affected by the distance be-
tween co-dependents, but a higher proportion of retrieval fail-
ures occur in subject relatives compared to object relatives.
This leads to a mixture distribution in both subject and ob-
ject relatives, but the proportion of the failure distribution is
higher in subject relatives.
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