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A B S T R A C T

Purpose: We compare two signal smoothing and differentiation approaches: a
frequently used approach in the speech community of digital filtering with
approximation of derivatives by finite differences and a spline smoothing
approach widely used in other fields of human movement science.
Method: In particular, we compare the values of a classic set of kinematic
parameters estimated by the two smoothing approaches and assess, via
regressions, how well these reconstructed values conform to known laws about
relations between the parameters.
Results: Substantially smaller regression errors were observed for the spline
smoothing than for the filtering approach.
Conclusion: This result is in broad agreement with reports from other fields of
movement science and underpins the superiority of splines also in the domain
of speech.
Speech scientists are faced with the problem of
reconstructing continuous physiological signals from mea-
surements taken at discrete points in time (e.g., the posi-
tion of speech articulators as they move in space). Recon-
struction of these signals requires a process called smooth-
ing, which aims to recover important patterns in the
measurements while leaving out noise. In speech, smooth-
ing is typically implemented by means of digital low-pass
filters with small cutoffs to eliminate high-frequency noise
(e.g., Abur et al., 2022; Shellikeri et al., 2016; van Lieshout
& Neufeld, 2014). Another separate problem in signal
reconstruction is that of differentiation. Movement data
registration devices typically provide positional information
only, but research studies with such data often require
information about also the velocity and acceleration of
movements (i.e., the first and second derivatives of the posi-
tional signal). The problem of computing derivatives from
noisy signals is far from trivial, and several decades of
research have led to different solutions (see Medved, 2001;
Woltring, 1985; Wood, 1982, for exhaustive overviews).
An easy-to-implement approach widely used in speech
movement science is that of finite differences, which
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approximates derivatives by differences in a signal’s neigh-
boring samples.

In other fields of human movement science, a differ-
ent approach for physiological signal reconstruction,
which relies on smoothing splines (de Boor, 2001; Eubank,
1999; Medved, 2001; Schumaker, 2007; Wahba, 1990),
has gained traction. As in the filtering approach, the
splines approach ensures that the signal and (at least) its
first and second derivatives are reconstructed as continu-
ous curves (in conformity with the smoothness property of
biological signals; cf. Harris & Wolpert, 1998; Sejnowski,
1998). However, instead of handling the processes of sig-
nal smoothing and signal differentiation separately, the
spline smoothing approach addresses both of these prob-
lems at once. Concisely summarized, a smoothing spline is
a piecewise polynomial approximation of noisy data points
for which a single regularization parameter controls the bal-
ance between the smoothness of the approximation and the
goodness of its fit to the data. Based on works by Lyche
et al. (1983) and Craven and Wahba (1978), Woltring (1986)
has developed ways to infer the value of the control parame-
ter from a signal’s expected noise characteristics to obtain a
spline with deviation from the given data by a fixed pre-
dicted mean squared error (e.g., the expected error of the
data registration device). The splines approach is indepen-
dent of the underlying sampling process; in particular, it
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does not depend on the sampling rate and the samples can
be arbitrarily spaced in time (ibidem).

In measuring kinematics, whereas speech scientists
have relied for many years on the digital filtering with
approximation of derivatives by a finite differences
approach, in nonspeech movement science, the spline
smoothing approach has become the norm; see the works
of Wood (1982), Vaughan (1982), D’Amico and Ferrigno
(1992), Gazzani (1994), Walker (1998), and Epps et al.
(2010) for evidence on the superiority of splines in non-
speech movement science. We are not aware of any com-
parison between these two approaches of signal recon-
struction in speech articulatory data. Thus, this research
note is devoted to informing the speech community about
the relative performance of the two approaches as this
information is essential to proper hypothesis testing and
reproducibility in the field of speech movement science.

In light of the extensive literature from nonspeech
movement science on the superiority of splines, we hypothe-
size that the splines will outperform the filtering approach
also in the domain of speech. To test this hypothesis, we
compared the two approaches in signal reconstruction using
speech movements registered with electromagnetic articulo-
graphy (EMA; Gafos & Goldstein, 2012; Rebernik et al.,
2021). Specifically, we collected speech movement data in a
paradigm designed to elicit articulations of high kinematic
variation, a prerequisite for thoroughly assessing potential
differences in the reconstruction of the underlying kinemat-
ics. The registered EMA data were then processed twice,
using the two smoothing approaches under evaluation.
From the resulting smooth articulatory signals, we estimated
values for the kinematic parameters of movement duration,
movement amplitude, peak velocity, and peak acceleration/
deceleration. Substantial differences in the estimates of these
parameters were observed. To assess which of the two
smoothing approaches better capture the kinematic structure
of speech, we compared the performance of the approach-
specific parameter estimates in light of three well-
documented kinematic relations in the speech production
literature. Specifically, via regressions, we assessed how well
the approach-specific parameter values conform to three
known laws about relations between these values. Smaller
regression errors were observed for the splines approach.
This result demonstrates the superiority of the splines over
the filtering and finite-differences approach also in speech.

This research note is structured as follows: in the
Method section, we first present our experimental para-
digm of repeated syllable production designed to elicit
articulatory movements of high kinematic variation. We
then describe how the set of kinematic parameters crucial
to this work were extracted from the articulatory signals
and present the key measure used in this work (relative
�2 Journal of Speech, Language, and Hearing Research 1–13
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percentage difference [RPD]) to quantify the degrees of
difference between the splines and filtering approaches. In
the Results section, we first verify the high kinematic vari-
ation achieved by our experimental paradigm. We then
quantify the degrees of difference in the approach-specific
kinematic parameter estimates and compare their perfor-
mance in regressions of three established kinematic rela-
tions known to exist among them. In the Discussion sec-
tion, we finally summarize the results and contrast our
approach of performance assessment to past accuracy
assessments of data registration devices. We furthermore
address potential problems of using the spline smoothing
approach in existing laboratory protocols. We finish with
the Conclusion section.
Materials and Methods

Five native speakers of German (three females, two
males) and five native speakers of English (three females,
two males) were recruited at the authors’ institution to
participate in an experiment of repeated syllable produc-
tion. Participation in the experiment was paid, and written
informed consent was obtained from each speaker prior to
experimentation. The experiment had been approved by
the Ethics Committee of the University of Potsdam, and
all experimental procedures were performed in compliance
with the approval. The speakers were between 18 and
35 years old (M = 25.6 years; SD = 5.6 years) and with-
out any self-reported past or present speech or hearing
problems. During the experiment, speakers were asked to
produce sequences of repeated /ka/ or /ta/ syllables in time
with an audible metronome. In blocks of four trials, the rate
of the metronome was progressively increased across the
values of 150, 210, 300, 390, and 480 beats per minute
(bpm). The rate of the metronome served as an extrinsic
index of the intended rate of syllable production, covering
the ranges of slow (down to 150 bpm), normal (around
300 bpm), and fast speech rates (up to 480 bpm); see the
works of Gerstenberg et al. (2018), Pellegrino et al. (2003,
2011), and Dellwo and Wagner (2003) for what ranges of
rates are considered normal in German and English. Within
a trial, whose length was fixed to allow for the production of
30 consecutive syllables, the speakers were permitted to begin
and stop articulation at a point of their choice. On average, our
speakers produced 24.7 syllables per trial (SD = 1.6 syllables).
The experiment begun with the production of /ka/ syllables,
across all rates, and went on with /ta/ syllables afterward.

Regarding the two languages of our speakers,
German and English, there was no particular reason for
selection other than providing a solid empirical basis for
our study. In these two languages, the elicited syllables,
/ka/ and /ta/, implicate movements of the two major parts
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



of the tongue, and the low vowel /a/ maximizes the excur-
sion from the consonantal constriction to the vowel. In
combination with the systematic manipulation of metro-
nome rate, our study design thus allowed collection of a
data set with substantial variation in the kinematic param-
eters of position, velocity, and acceleration (as we demon-
strate in the Results section). The presence of high varia-
tion in the data is imperative when comparing the perfor-
mance of smoothing approaches, which attempt to recon-
struct these parameter values. This is even more so when
the performance of these approaches is evaluated with
respect to how well they capture relations among these
parameters: the strength of a relation between two (or
more) parameters is best brought out when the isolated
parameters vary. (In fact, a prerequisite in stating that
there is a relation between any two parameters is the pres-
ence of considerable variation in their values.)

Data registration was conducted using latest genera-
tion EMA (Carstens AG501) providing three-dimensional
positional measures of preselected effectors at the highest
spatiotemporal resolution available to date (device specifi-
cation: 0.3 mm root-mean-square error, 1250 Hz sampling
rate). Besides a number of rigid reference locations (left
and right mastoids, nose bridge) required for head move-
ment correction (using Horn’s method of absolute orienta-
tion; Horn, 1987), we registered the positional trajectories
of the two primary effectors involved in the formation
and release of constrictions in /ka/ and /ta/ syllables. These
are the tongue body effector, tracked by a sensor placed
midsagittally about 5 mm in front of the /k/-closure con-
tact area of the tongue, and the tongue tip effector,
tracked by another sensor placed midsagittally about
10 mm away from the tongue apex.1 Each of the two sen-
sors independently tracked the movements of its associ-
ated effector, yielding a positional signal of tongue body
movements relevant for the production of /ka/ and
another positional signal of tongue tip movements rele-
vant for the production of /ta/ syllables.

The so-registered signals were then processed twice:
first, using a filtering approach with finite differences, and
second, using a spline smoothing approach. In a typical
application of filtering, we used a zero-phase, third-order,
Butterworth, low-pass filter with a cutoff frequency of
1In EMA research, application of the sensors takes substantial time
during the session with the participant. In our lab, approximately
30 min are needed to glue the whole set of sensors to their positions.
Gluing starts with the reference sensors (nose bridge, left and right
mastoids), continues with the tongue sensors (tongue dorsum, tongue
tip), then the upper and lower incisor sensors, and finishes with the
application of two sensors on the lips (upper and lower lips). During
the entire time of application, the experimenter is in continuous con-
versation with the participant, who, in the process, becomes accus-
tomed to speaking with the sensors attached.
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20 Hz. From the filtered positional signals, velocity and
acceleration estimates were determined by a central finite
difference scheme, with an intermediary five-point average
filter for the second derivative. This approach corresponds
to the default smoothing implemented in the analysis soft-
ware mview (authored by Mark Tiede, Haskins Laborato-
ries), a widely used software in assessing and measuring
speech kinematics (another popular software for measuring
speech, SMASH, by Green et al., 2013, makes use of a simi-
lar filtering approach). For the splines approach, we used a
Fortran-to-Matlab port (Kuberski, 2023) of Woltring’s clas-
sical spline smoothing and differentiation code (Woltring,
1986) obtaining heptic-order splines with smooth derivatives
up to the sixth order. For the expected noise present in the
registered signals, we used a fixed predicted mean square
error of 0.5 mm, which is within the range of values given
by the manufacturer of the EMA device and those reported
by other works explicitly devoted to its accuracy (Bilibajkic
et al., 2015; Lezcano et al., 2020; Savariaux et al., 2017;
Sigona et al., 2018; Stella et al., 2013).

Following the process of raw data smoothing by the
two approaches, the resulting signals of the tongue body
(for /ka/) and tongue tip (for /ta/) effectors were separately
divided into movement cycles by means of their local tan-
gential velocity minima within the full three dimensions:
adjacent landmarks of minimal tangential velocity in a signal
defined the principal direction of movements (cf. the body-
spatial reaching axis in Saltzman & Kelso, 1987; and the
constrictional dimension in Saltzman & Munhall, 1989) and
spatial projections of the signal onto the direction vectors
yielded one-dimensional trajectories of movements as typi-
cally employed in studies of speech kinematics (Adams
et al., 1993; Munhall et al., 1985; Ostry et al., 1983, 1987).
The resulting trajectories were then segmented into individ-
ual movements by a 20% peak-velocity criterion. Overall,
the segmentation process yielded 5,144 closing and 5,276
opening movements for /ka/ syllables, and 4,632 closing and
4,723 opening movements for /ta/ syllables.

In a final step, we determined the set of classic kine-
matic parameters for each movement: movement duration
(T) as the temporal difference between onset and offset,
movement amplitude (A) as the positional difference
between onset and offset, peak velocity (v) as the peak
value of the position’s first derivative (velocity) within a
movement, and two values of peak acceleration (a) corre-
sponding to the two peaks in the position’s second deriva-
tive (a first peak in the acceleration phase of a movement
and a second in its deceleration phase). For ease of refer-
ence, we adopted a sign convention for the values of the
kinematic parameters. Whereas amplitudes and peak
velocities of closing movements (motion toward a constric-
tion) were assigned positive values, the same parameters
for opening movements (motion away from a constriction)
Kuberski & Gafos: Comparing Two Smoothing Approaches 3
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Figure 1. Box plots showing the values of the classic kinematic parameters in the filtering approach. From left to right: movement duration,
movement amplitude, peak velocity, peak acceleration, and peak deceleration. The top row shows data /ka/, and the bottom row shows
data of /ta/ syllables. Within each panel, solid boxes correspond to data from closing movements and dashed boxes correspond to data
from opening movements.
were assigned negative values. Similarly, peak acceleration
(peak deceleration) values of closing movements were
assigned positive (negative) values and peak acceleration
(peak deceleration) values of opening movements were
assigned negative (positive) values.

In quantifying differences in the kinematic parame-
ters estimated from the two smoothing approaches, we
used a relative percentage difference (RPD) indicator. For
two estimates, x1 and x2, of the same quantity, RPD is
given by 2×(x1 − x2)/(x1 + x2) multiplied by 100%. The
RPD value thus indicates by how many percent the two
measures, x1 and x2, differ with respect to their mutual
mean.2 Of course, the mere demonstration of any differ-
ences between the two smoothing approaches does not set-
tle the issue of which approach gives estimates closer to
the kinematic reality (i.e., the true underlying values of
the kinematic parameters). In fact, this kinematic reality is
a priori unknown. Crucially, however, even though the true
underlying values of the kinematic parameters may be
unknown, what is known is that these parameters enter into
certain relations with one another, referred to in the field
of speech production as kinematic relations. It is to these
relations that we turned to in evaluating which smoothing
approach does better in reconstructing the kinematic real-
ity. Specifically, for any given relation among the kinematic
�

2To give an example, consider two duration measures, T1 and T2,
estimated for the same movement, one deriving from the filtering and
the other from the spline smoothing approach. Then, the RPD of, for
example, T1 = 95 ms and T2 = 105 ms is −10%, indicating that both
estimates differ in value by 10% of their mutual mean; the negative
sign of the RPD value indicates that T1 is smaller than T2.
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parameters, we fitted a regression model to the approach-
specific parameter values. The performance difference
between the two smoothing approaches was then quantified
by means of standard errors of the regressions (the root-
mean-squares of the regression residuals) and the related
RPD values derived from the regression errors. Smaller
regression errors signify a better fit of the regression model,
and positive (negative) RPD values express the amount of
regression performance by which one of the approaches
outperforms (underperforms) the other.
Results

In a first step of our comparison of the two smooth-
ing approaches, we assessed the amount of variation found
in the kinematic parameters estimated by these approaches.
Figures 1 and 2 visualize the kinematic estimates of move-
ment duration, movement amplitude, peak velocity, and
peak acceleration/deceleration (from left to right). Figure 1
shows the estimates from the filtering approach, and Fig-
ure 2 shows the estimates from the splines approach.
Within the two figures, blue colors represent data of /ka/
syllables and red colors represent data of /ta/ syllables.
Overall, from visual inspection of both figures, it becomes
clear that our paradigm elicited movements of high kine-
matic variation regardless of the smoothing approach
used: across all metronome rates, the kinematic parameter
values cover ranges of about one order of magnitude.
That is, minimal and maximal values within the parameter
ranges differ by a factor of about 10. For comparison, in
a study devoted to exploring the kinematics of various
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Figure 2. Box plots showing the values of the classic kinematic parameters in the splines approach. From left to right: movement duration,
movement amplitude, peak velocity, peak acceleration, and peak deceleration. The top row shows data /ka/ and the bottom row shows data
of /ta/ syllables. Within each panel, solid boxes correspond to data from closing movements and dashed boxes correspond to data from
opening movements.

3The significance of an RPD value depends on the specific context of
the comparison. There is no context-free or domain-general RPD value
beyond which a difference is said to be significant (as is the case also for
other relative measures). RPD values are significant when the difference
they represent is somehow meaningful in the context where that differ-
ence is judged. In our case, the estimation of kinematic parameters from
articulatory signals (i.e., movement duration, movement amplitude, peak
velocity values), differences of several percent between the two smooth-
ing approaches, are certainly meaningful in the context of works that
require for their examination, the establishment of differences in the
kinematic parameter values (e.g., vowel height can show differences of
less than 1 mm in movements of 10 mm amplitude; cf. Cunha & Hoole,
2017; Lee et al., 2015; Ratko et al., 2023).
different speaking conditions, Perkell et al. (2002) reported
kinematic parameters of tongue movements with a range
of about 0.2–0.4 orders of magnitude, corresponding to a
factor of only about two.

Impressionistically, when visually comparing Figures
1 and 2, the ranges of the kinematic parameter estimates
do not appear to be affected by the choice of the smooth-
ing approach. However, when quantitatively comparing
individual parameter values on a per-movement basis (i.e.,
comparing the approach-specific estimates for the same
movements), appreciable differences between the filtering
and the splines approach become apparent. Tables 1 and
2 show grand means of the RPDs between the kinematic
estimates of the two approaches, separated by the direc-
tion of movement and the metronome rate. Table 1 shows
data from /ka/ syllables and Table 2 shows data from /ta/
syllables. In the two tables, negative (positive) RPD values
signify that the related kinematic estimates from the filter-
ing approach are smaller (larger) than the related esti-
mates from the splines approach. Substantial differences
between the estimates from the two approaches can be
observed: for both syllables /ka/ (see Table 1) and /ta/ (see
Table 2), and across all speech rates (columns in the two
tables), magnitudes of the RPD values are in a range of
several percent or higher. In particular, averaged across
all metronome rates and the two movement directions, dif-
ferences in the kinematic parameter estimates attain values
of −2.4% (SD = 1%) for movement duration, −0.7%
(SD = 0.4%) for movement amplitude, 3.4% (SD = 1.7%)
for peak velocity, 6.5% (SD = 5.2%) for peak acceleration,
and 12.0% (SD = 8.3%) for peak deceleration.
Downloaded from: https://pubs.asha.org 2.204.27.253 on 04/08/2024, T
As demonstrated in terms of the RPD values in
Tables 1 and 2, the different signal reconstruction
approaches result in substantially different estimates of the
(same) kinematic parameters.3 However, as anticipated in
the Method section, this result does not settle the issue of
which approach does better in reconstructing the speech
movements of our participants. To address this aim, we
turned to the fact that the kinematic parameters of speech
show coherent relations to one another. Specifically, three
such relations are well-documented in the speech production
literature. The first relation states that peak velocity of a
movement is proportional to its average velocity (v ~ A/T;
Munhall, 1984; Munhall et al., 1985; Ostry & Munhall,
1985; Perkell et al., 2002). The second relation expresses
another proportionality between a movement’s peak velocity
and its amplitude (v ~ A), with a slope dependent on speech
rate (Kelso et al., 1985; Kühnert & Hoole, 2004; Ostry &
Munhall, 1985; Vatikiotis-Bateson & Kelso, 1993). The third
relation states that peak acceleration of a movement is
Kuberski & Gafos: Comparing Two Smoothing Approaches 5
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Table 1. Differences in the kinematic parameter estimates of /ka/ syllables (relative percentage difference, in %).

/ka/ syllables

Metronome rate in bpm

150 210 300 390 480

Duration T Closing −2.9 −2.4 −1.9 −0.5 −0.4
Opening −2.3 −2.4 −2.4 −2.6 −1.9

Amplitude A Closing −1.0 −0.9 −1.0 −0.4 −0.3
Opening −0.6 −0.7 −0.9 −0.6 −0.4

Peak velocity v Closing 2.2 2.3 2.5 0.9 0.9

Opening 2.5 2.1 2.8 3.0 3.3

Peak acceleration a Closing 2.7 1.4 0.8 2.6 4.0

Opening 11.3 8.2 5.0 3.9 1.4

Peak deceleration a Closing 23.7 17.1 9.3 4.1 1.2

Opening 9.1 6.3 3.4 4.2 5.5

Note. Negative (positive) values signify that the estimates of the filtering approach are smaller (larger) than the estimates of the splines
approach.
proportional to the movement’s amplitude (a ~ A, closely
related to Hooke’s law), also with a slope dependent on
speech rate (Kelso et al., 1985).

Figures 3 and 4 show scatter plots of the three kine-
matic relations. Figure 3 depicts these relations using
parameter values from the filtering approach and Figure 4
using parameter values from the splines approach. In the
two figures, the different experimental conditions are
color-coded, with data from /ka/ syllables indicated by
blue and data from /ta/ syllables indicated by red colors;
fainter (darker) shades in the figures correspond to slower
(faster) metronome rates. Due to our sign convention for
the kinematic parameters introduced earlier, data from
movements of different directions and data of acceleration
and deceleration phases separate into different quadrants
of the shown coordinate systems (as indicated by the
labels in the figures’ quadrants). Inspection of the two fig-
ures reveals clear systematicities, as expected from the
three just-outlined kinematic relations: the left column
depicts the proportionality between peak velocity v and
Table 2. Differences in the kinematic parameter estimates of /ta/ syllables

/ta/ syllables

�

150

Duration T Closing −2.6 −
Opening −2.7 −

Amplitude A Closing −0.9 −
Opening −0.9 −

Peak velocity v Closing 5.5

Opening 4.6

Peak acceleration a Closing 11.6

Opening 18.8

Peak deceleration a Closing 28.9

Opening 19.4

Note. Negative (positive) values signify that the estimates of the filtering app

6 Journal of Speech, Language, and Hearing Research 1–13
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average velocity A/T, the middle column depicts the rate-
dependent proportionality between peak velocity v and
movement amplitude A, and the right column shows the
other rate-dependent proportionality between peak accel-
eration a and movement amplitude A.

Merely visually comparing Figures 3 and 4 does not
suggest a qualitative difference between the filtering and
the splines approach in capturing the structure of the three
relations. Yet, a proper evaluation of the two smoothing
approaches requires a statistical assessment of how well
the data derived from these approaches reflect the kine-
matic relations (which we know must exist in the data).
Thus, we conducted regressions based on the functional
form of the three relations (v ~ A/T, v ~ A, and a ~ A)
with speech rate–dependent slopes (as color-coded in
Figures 3 and 4) and the respectively related quantities (T,
A, v, and a) reconstructed from the two smoothing
approaches. The resulting correlation strengths (R2, using
gnuplot’s fit functionality; Williams & Kelly, 2021) were
in the range of about 0.75–0.98. All p values resided
(relative percentage difference, in %).

Metronome rate in bpm

210 300 390 480

4.0 −4.4 −3.9 −3.2
2.6 −2.3 −1.8 −1.6
1.7 −1.7 −0.4 −0.1
0.8 −0.8 −0.2 −0.1
6.1 6.1 5.8 6.1

3.4 2.9 2.3 3.1

6.3 4.2 7.0 14.7

13.6 8.3 2.4 0.8

26.2 21.4 14.6 6.7

9.7 5.8 8.9 14.8

roach are smaller (larger) than the estimates of the splines approach.
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Figure 3. Scatter plots showing the three kinematic relations in the filtering approach. From left to right: v ~ A/T, v ~ A, and a ~ A. The top
row shows data of /ka/ and the bottom row shows data of /ta/ syllables; speech rate is color coded, with fainter (darker) shades correspond-
ing to movements of slower (faster) rates. decel. = deceleration; accel. = accelaration.
below .001, and the regressions showed solid residual sta-
tistics, both indicating strong evidence for the presence of
the three kinematic relations regardless of the smoothing
approach used.4 To quantitatively compare the relative
performance of the two approaches, we turn to the stan-
dard errors of the regressions (the root-mean-squares of
the regression residuals), as well as the related RPD values
derived from the regression errors. Smaller regression
4To evaluate the applicability of regression models for the three
kinematic relations, we inspected distributions of the regression
residuals and quantified the amount of their heteroscedasticity by a
Breusch–Pagan test (i.e., R2 values of an auxiliary regression
between the squared residuals and the regressors, with smaller values
indicating less heteroscedasticity). For both smoothing approaches
(filtering and splines), normality of the regression residuals was visu-
ally attested. For the filtering approach, the Breusch–Pagan test
returned auxiliary R2 values in the range of .012–.233 with an aver-
age of .097. The same test carried out for the splines approach
yielded values in the range of .003–.304 with an average of .101. All
p values resided below .001. Thus, for both smoothing approaches,
the regression models of the three kinematic relations met the
requirements for statistical evaluation.

Downloaded from: https://pubs.asha.org 2.204.27.253 on 04/08/2024, T
errors signify a better fit to the regression model, and neg-
ative (positive) RPD values express the amount of regres-
sion performance by which the splines approach outper-
forms (underperforms) the filtering approach. Table 3
shows these results, separated by the type of the kinematic
relation, the syllable produced, and the direction of move-
ment. The values shown in Table 3 make clear that for
almost all regressions conducted, the regression errors of
the splines are substantially smaller than those of the fil-
tering approach, with RPD values in the range of −11.2%
to −42.8% and an average of −26.2%. There is only one
case (in the a ~ A relation of /ta/ opening movements) in
which the filtering approach shows a numerically lower
error than that of the splines. However, the difference in
regression errors is only about 3%, which seems negligible
given the fact that in all other cases, splines outperform
the filtering approach with much higher RPD magnitudes.

In a final step of our assessment of the two smooth-
ing approaches, we considered potential differences in
their performance with respect to the two languages of
our participants (German and English). Specifically, we
Kuberski & Gafos: Comparing Two Smoothing Approaches 7
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Figure 4. Scatter plots showing the three kinematic relations in the spline smoothing approach. From left to right: v ~ A/T, v ~ A, and a ~ A.
The top row shows data of /ka/ and the bottom row shows data of /ta/ syllables; speech rate is color coded, with fainter (darker) shades
corresponding to movements of slower (faster) rates. decel. = deceleration; accel. = accelaration.
performed the above reported regression procedure again
and evaluated the same statistical metrics as before, but
this time, separately for the German and English subsets
of the data. In the resulting correlation strengths of the
three kinematic relations, we found no substantial differ-
ences between the two languages: R2 values of the regres-
sions of the German subset were in the range of .71–.98,
and R2 values of the English subset were in the range
of .70–.98. For both languages, all regressions yielded
p values below .001 and the related residuals showed no
conflict with the regression assumptions.5 We likewise
�

5Normality of the regression residuals was visually attested, for both
languages (German and English) and both smoothing approaches (fil-
tering and splines). For German, the Breusch–Pagan test of heterosce-
dasticity returned auxiliary R2 values in the range of .021–.216 (filter-
ing) and .010–.284 (splines), with averages of .085 (filtering) and .113
(splines). For English, the same test returned values in the range of
.012–.270 (filtering) and .017–.322 (splines), with averages of .108 (fil-
tering) and .110 (splines). Thus, overall, the regression models of the
three kinematic relations met the requirements for statistical
evaluation.
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found no substantial differences between the two lan-
guages regarding the two performance measures of stan-
dard regression error and RPD expressed in Table 4
(German subset) and Table 5 (English subset). For both
languages, the regression errors of the splines are substan-
tially smaller than those of the filtering approach. Corre-
sponding RPD values are in the range of −9.0% to
−63.8%, with an average of −25.3% for the German subset
and an average of −30.2% for the English subset. Overall,
the correlation strengths of the three kinematic relations
show no dependence on language and the splines approach
overwhelmingly outperforms the filtering approach in terms
of regression errors.
Discussion

In nonspeech areas of human movement science,
reconstructing movement signals from measurement devices
has employed, for nearly four decades now, a splines
approach, with the speech community lagging somewhat
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Table 3. Full data set: standard errors of the regressions for the three kinematic relations (v ~ A/T, v ~ A, and a ~ A) and the related relative
percentage difference (RPD) values between the splines and the filtering approach.

Full data set

v ~ A/T v ~ A

Error RPD in % RPD in % RPD in % RPD in %

a ~ A
(acceleration phase)

a ~ A
deceleration phase)

Error in
1/s

Error in
1/s2

Error in
1/s2

/ka/ closing Filter 0.074 −20.9 0.838 −26.5 260.4 −33.2 140.9 −11.2
Spline 0.060 0.642 186.3 125.9

/ka/ opening Filter 0.069 −17.3 0.707 −23.2 123.8 −13.2 164.3 −23.8
Spline 0.058 0.560 108.5 129.4

/ta/ closing Filter 0.097 −39.5 1.154 −44.9 318.1 −42.8 161.0 −34.5
Spline 0.065 0.731 206.0 113.6

/ta/ opening Filter 0.084 −35.0 0.972 −32.7 183.0 3.1 345.7 −24.5
Spline 0.059 0.699 188.8 270.2

Note. Smaller errors signify a better fit to the regression model, and negative (positive) RPD values express the amount of regression per-
formance by which the splines approach outperforms (underperforms) the filtering approach.
behind in keeping with the more antiquated digital filtering
and finite differences approach. In an aim to inform the
speech community about the existence and performance of
the splines approach, we compared kinematic parameter
values extracted from the two approaches using data of
speech movements from /ka/ and /ta/ syllables spoken under
different rates by speakers of German and English.

In comparing the two smoothing approaches, we
first evaluated differences in their estimates of a classic set
of kinematic parameters. Although the ranges of the kine-
matic parameter estimates are not affected by the choice of
the smoothing approach (see Figures 1 and 2), juxtaposing
individual kinematic parameters on a per-movement basis
revealed substantial differences in the estimated values of
the two approaches. Quantified using the RPD metric,
which is appropriate in our case given the multiplicity of
kinematic parameters and their expression in different
Table 4. German subset: standard errors of the regressions for the three
tive percentage difference (RPD) values between the splines and the filter

German subset

v ~ A/T v ~

Error RPD in % Error in 1/s

/ka/ closing Filter 0.075 −17.4 0.822

Spline 0.063 0.638

/ka/ opening Filter 0.081 −9.0 0.756

Spline 0.074 0.651

/ta/ closing Filter 0.098 −54.5 1.180

Spline 0.056 0.636

/ta/ opening Filter 0.087 −43.4 0.961

Spline 0.056 0.605

Note. Smaller errors signify a better fit to the regression model, and ne
formance by which the splines approach outperforms (underperforms) the
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physical dimensions, estimated parameter differences are in
the range of several percent and higher (see Tables 2 and
3). A notable characteristic of this RPD comparison is that
higher order derivatives are estimated with higher differ-
ences between the two approaches. To wit, movement
amplitude (zeroth-order derivative) values attain RPD mag-
nitudes of about 1%, peak velocity (first-order derivative)
values attain RPDs of about 3%, and peak acceleration
and peak deceleration (second-order derivative) values
attain even higher RPDs of about 9%. This pattern in the
results is not unexpected. Derivatives of noisy signals are
highly sensitive to the signal’s noise characteristics (the
higher the order of differentiation, the more so), and these
characteristics behave very different in the two smoothing
approaches: whereas the noise characteristics in the filtering
approach progressively change with each order of differen-
tiation (because of the repeated iteration of filtering and
finite differences, each effectively acting as a low-pass/high-
kinematic relations (v ~ A/T, v ~ A, and a ~ A) and the related rela-
ing approach.

A

RPD in % RPD in % RPD in %

a ~ A
(acceleration phase)

a ~ A
(deceleration phase)

Error in 1/
s2

Error in 1/
s2

−25.2 230.4 −39.7 132.2 −14.1
154.1 114.8

−14.9 122.0 −19.4 120.8 −25.9
100.4 93.1

−59.9 276.1 −63.8 135.0 −22.8
142.5 107.4

−45.5 152.9 21.0 310.0 −48.6
188.8 188.8

gative (positive) RPD values express the amount of regression per-
filtering approach.
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Table 5. English subset: standard errors of the regressions for the three kinematic relations (v ~ A/T, v ~ A, and a ~ A) and the related rela-
tive percentage difference (RPD) values between the splines and the filtering approach.

English subset

v ~ A/T v ~ A

Error RPD in % Error in 1/s RPD in % RPD in % RPD in %

a ~ A
(acceleration phase)

a ~ A
(deceleration phase)

Error in
1/s2

Error in
/1/s2

/ka/ closing Filter 0.074 −24.2 0.850 −29.6 279.3 −30.7 138.6 −13.6
Spline 0.058 0.631 205.0 120.9

/ka/ opening Filter 0.055 −29.2 0.665 −33.3 122.6 −12.6 178.8 −24.4
Spline 0.041 0.475 108.1 139.9

/ta/ closing Filter 0.096 −27.2 1.119 −31.4 353.1 −33.5 182.3 −41.5
Spline 0.073 0.815 251.9 119.7

/ta/ opening Filter 0.081 −26.6 0.982 −23.7 205.1 −10.4 372.3 −12.9
Spline 0.062 0.774 184.9 327.2

Note. Smaller errors signify a better fit to the regression model, and negative (positive) RPD values express the amount of regression per-
formance by which the splines approach outperforms (underperforms) the filtering approach.
pass filter modifying the noise left in the signal for the next
step), the noise characteristics in the spline smoothing
approach are held constant across the different orders of
differentiation (splines handle the two processes of smooth-
ing and differentiation at once, using only a single fixed
root-mean-square error in characterizing the noise). The
demonstration of such differences is an important result in
itself; various hypotheses in speech science require for their
examination, the establishment of differences in kinematic
parameter values, and, as demonstrated in terms of the
RPD metric here, the different signal reconstruction
approaches result in appreciably different parameter values.

Another important aspect of our study is that,
beyond having established substantial differences between
the two smoothing approaches, we also addressed the
issue of which approach provides better kinematic param-
eter estimates. Here, we harnessed the fact that the kine-
matic parameters in speech and any other skilled action
are not independent from one another (Sejnowski, 1998).
Specifically, laws or mutual relations hold between the
parameters such that if one parameter changes in some
way, the rest of the parameters must adjust to that change
in attestation of the reciprocity dictated by the existence
of their relation. In harnessing the presence of these laws
for our purposes, at issue is not the extent of the differ-
ences in isolated parameter values across the two
approaches, but rather how tightly related, within each
approach, the parameter values are as per the functional
form of the law dictating their relation. Take, for exam-
ple, the v ~ A/T relation. The more tightly the cloud of
estimated parameter values (for the three parameters of
peak velocity, movement amplitude, and movement dura-
tion that enter into this relation) hugs the linear relation-
ship expressed by this law, the better the signal reconstruc-
tion approach. It is this degree of conformity to mutual
relations among the parameters that we have judged in
�10 Journal of Speech, Language, and Hearing Research 1–13
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our results using regression errors and their RPD values.
Any deficiencies of a smoothing approach should erode
the quality of the regression by introducing irregular vari-
ation in the isolated parameters that is not caused by the
correlation represented by the kinematic relation at hand.
Overall, our results indicate that the splines approach
clearly outperforms the filtering approach in that its
parameter estimates consistently conform better to the
correlations expressed by the three kinematic relations
under evaluation. This is evidenced by the smaller regres-
sion errors presented in Tables 3–5, with average RPD
values in the range of −25.3% to −30.2%. There are only
two out of 48 cases across the three tables where the filter-
ing approach shows a numerically lower regression error
than that of the splines. Given the small proportion they
represent within the set of all regressions performed, we
regard these two isolated cases as outliers.

We turn next to highlight a distinction between this
work and prior assessments of signal reconstruction
approaches in speech. So far, to our knowledge, other
work on the reconstruction of articulatory kinematics
(e.g., Berry, 2011; Bilibajkic et al., 2015; Kröger et al.,
2008; Kroos, 2012; Lezcano et al., 2020; Savariaux et al.,
2017; Sigona et al., 2018; Stella et al., 2013) has focused
primarily on issues of accuracy of the devices used to reg-
ister articulatory data (e.g., the Carstens AG device series,
and the NDI Wave and Aurora systems). For that reason,
these works have used artificially generated movements
(e.g., disc rotations) and evaluated how accurately the pre-
determined characteristics of these movements show
through in reconstructed signals from the different devices.
Our contribution departs from this line of work. Instead
of assessing device accuracy, our work compares smooth-
ing approaches for speech signals after they have been reg-
istered with any device. Though it is certainly possible,
also for our purposes, to make use of artificially generated
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



movements and our choice of not doing so may be seen as
a limitation of this work, we note that the kinematic laws
that govern simple mechanical systems (e.g., rotating
discs) are of a different nature from those that govern
movements of complex biological systems (e.g., human
tongues). We are not aware of any laws or theory in the
literature that can be used to relate the performance of
different signal reconstruction approaches across artifi-
cially generated and natural speech movements, and ulti-
mately, the most important scenario that matters to
speech science is that of movements generated by humans
where the trajectories are those of moving tongues as
opposed to, for example, moving discs. Thus, in compar-
ing different approaches to signal reconstruction, we opted
for using natural speech and specifically the structure of
empirically well-documented kinematic relations in speech
instead of a structure induced by artificial movements.

Finally, in anticipation of reservations with using
splines in day-to-day laboratory work, we close by
addressing potential limitations of splines. One potential
drawback of using the splines approach is computational
expense. Longer data processing run times are to be
expected when using this method. Observations with our
data sets indicate that processing signals with the splines
approach may extend computational time by a factor of
three to five compared to the filtering approach. However,
whereas longer processing might have been an issue in the
1980s, during a time when the splines approach gained
traction in biological signal processing, nowadays, this is
hardly an issue: present-day laptop computers easily out-
perform supercomputers from that time in terms of rele-
vant measures such as memory access, power consump-
tion, floating point performance, and so forth. Further-
more, in analysis pipelines, smoothing is typically applied
only once, followed by an extended period of data labeling
and quantification whose time dwarfs the time for process-
ing signals with the splines approach. Overall, we see no
limitations in switching from a filtering to a splines
approach, except perhaps for concomitant issues associated
with changing code in existing data processing pipelines.
Conclusions

Using speech movement data registered with EMA,
we compared two approaches of reconstructing articula-
tory signals, a digital filtering with approximation of
derivatives by finite differences approach and a spline
smoothing approach. In particular, we compared values of
the kinematic parameters of movement duration, movement
amplitude, peak velocity, peak acceleration, and peak
deceleration, as estimated from these approaches. We fur-
thermore assessed, within each approach separately, how
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well the approach-specific parameter values conform to
empirically known laws about how these parameters should
be related to one another. The kinematic parameter
estimates show significant differences between the two
approaches, with RPDs in the range of several percent
and higher. In the regression performance of the two
approaches, we observed substantially smaller regression
errors for the splines than for the filtering approach, as evi-
denced by RPD values in the range of −25% to −30%. This
result is in broad agreement with several reports from other
fields of movement science and underpins the superiority of
the splines approach also in the domain of speech.
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