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Abstract: Evaluating any model underlying the control of speech requires segmenting the continuous flow of speech effectors
into sequences of movements. A virtually universal practice in this segmentation is to use a velocity-based threshold which
identifies a movement onset or offset as the time at which the velocity of the relevant effector breaches some threshold per-
centage of the maximal velocity. Depending on the threshold choice, more or less of the movement’s trajectory is left in for
model regression. This paper makes explicit how the choice of this threshold modulates the regression performance of a
dynamical model hypothesized to govern speech movements. VC 2023 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Modern linguistic theory and all models of speech agree that linguistic messages such as syllables or whole sentences are
constructed out of combinations or sequences of discrete units (Chomsky, 2000; von Humboldt, 1836) or, in spoken lan-
guages, phonemes actuated as vocal tract gestures. Even though a sequence of units suggests that all properties of these
units are located at the same point in time, the sequences generated in biological movements, be it of the vocal tract, the
face, or the limbs in other activities, have an important characteristic. The units composing these sequences are coarticu-
lated (€Ohman, 1966) or interwoven in a continuous flow of smooth transitions from one unit to the next. This continuity
burdens experimenters and modelers concerned with recovering the dynamics of individual units with the task of segment-
ing the continuous flow of effectors into sequences of movements (corresponding to the hypothesized units).

Whether speaking, pointing, running, or dancing, the continuous flow of effectors is typically captured by a
number of sensors attached to the human body whose position is tracked over time by an external device. In the resulting
data, the movement of a single effector is said to initiate, when the velocity (i.e., the rate of change of position) of the sen-
sor attached to that effector exceeds some minimal value, and likewise the movement of the effector is said to end when
the sensor’s velocity falls below some (potentially different) minimal value (Hogan and Sternad, 2007). Accordingly, it has
become standard to consider velocity as the primary source of information in carrying out the segmentation, with the vir-
tually universal practice of using a velocity-based threshold parameter for identifying the onset or offset of a movement as
the time at which the instantaneous velocity of a relevant effector breaches some threshold percentage of its maximal
velocity. Notwithstanding the universality of this practice, a review of the literature indicates widespread quantitative dif-
ferences regarding the value of the threshold parameter, with the consequences of these differences for model evaluation
remaining, to our knowledge, so far unexplored.

In speech, an often used value for the segmentation threshold is 20% (e.g., Bombien et al., 2013; Hoole et al.,
1994; Parrell and Narayanan, 2014; Shaw and Chen, 2019; Shaw et al., 2011), with deviations from this value not uncom-
mon. To give some examples: Pouplier et al. (2020) uses 206 5% (as appropriate) for tongue movements in German and
Georgian consonant-consonant-vowel sequences, Chitoran et al. (2008) makes use of 15% or 20% for tongue and lip
movements in Georgian stop-stop sequences, and Lee et al. (2015) reduces the threshold to 10% for tongue movements in
Korean liquids. Yet others (e.g., Kuberski and Gafos, 2019; Munhall et al., 1985; M€ucke et al., 2012) use a threshold of 0%
(no threshold), conceivably, to not cut away relevant information contained in the regions near the movement endpoints.
For cogent discussion of potential problems with the threshold method and a proposal for using different sources of infor-
mation than velocity for the process of segmentation, see Liu et al. (2022).

A similar variety in the choice of thresholds is evident in the fields of general motor control. For example, Hug
(2011) calls a range of 15%–25% (or 1, 2, or 3 standard deviations) typical for onset detection in kinematic muscle activity
data (EMG) and Baum and Li (2003) makes use of 10% (alternatively, 20% if more appropriate after visual inspection) in
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EMG data of the lower extremities in cycling. Coderre et al. (2010) mentions 5% to be typical for arm movements in
reaching tasks and Buchanan et al. (2003) likewise uses 5% for data of hand tapping and elbow flexion-extension motions.
In a study explicitly focusing on transitions between individual point-to-point arm movements, Sternad et al. (2013) con-
sidered threshold values of 1%, 3%, and 5%.

Despite the variety in segmentation practices, with threshold values ranging from 0% to 25% within and across
fields, what is undoubtedly common in all these studies is the ultimate aim of understanding the underlying model con-
trolling the so-segmented movements.1 It is to this aim that our presented study is devoted. More specifically, our aim is
to make explicit how the performance of the dynamical model in Task Dynamics (Saltzman, 1986; Saltzman and Kelso,
1987; Saltzman and Munhall, 1989) depends on the threshold value used in segmentation. Among other dynamical model
candidates (see, e.g., Parrell et al., 2019, for an overview), we chose here the model proposed in Task Dynamics, which is
that of the damped linear oscillator, €x ¼ �kðx � x0Þ � b _x , because of its explicitness on how to relate movement data to
model parameters and because of its time honored presence in the field of speech. As the first explicit dynamical formula-
tion seeking to characterize some of the most important general aspects of the control and coordination of movements
(e.g., task-specific invariance of effector trajectories, equifinality of movements, self-adjustment under perturbation; Fowler
et al., 1980; Kelso et al., 1983; Saltzman and Kelso, 1987), the linear model is still considered a plausible candidate in
increasing our understanding of speech. Recently, for example, on the basis of high-density intracranial electrocorticogra-
phy, (ECoG) signals (Chartier et al., 2018, p. 1048) estimated speech effector positions from the recorded neural activity in
the human sensorimotor cortex and, by considering characteristics of the estimated data in the position-velocity plane
(also known as phase plane, see Sec. 4) as well as the linearity in the peak velocity-displacement relation concluded that
the so-estimated movements exhibited damped oscillatory dynamics in accordance with the linear model in Task
Dynamics.

In the following three sections, we first describe our approach of registering articulatory movement data (Sec. 2)
to be segmented by six different threshold values (0%, 5%, 10%, 15%, 20%, and 25%) drawn from the entire range of val-
ues found in the literature. We then turn to a statistical assessment (Sec. 3) of the linear model’s fit to the so-segmented
data. Finally, we explain (Sec. 4) why thresholding modulates model performance in the ways revealed in our results, by
considering dynamical tools of analysis, and outline implications for future work.

2. Methods

Five native speakers of German (three female, two male) and five native speakers of English (three female, two male) were
recruited at the authors’ institution to participate in an experiment of repeated syllable production. The speakers produced
repeated /ka/ and /ta/ syllables at a rate indicated by the beats of an audible metronome. In blocks of four trials for each
rate, the speakers were exposed to the beat of a metronome (with a duration allowing for the production of 30 consecutive
syllables) and begun articulation at a point of their choice. The rate of the metronome was set to 90, 150, 210, 300, 390,
and 480 beats per minute (bpm), covering slow, normal, and fast speech rates. Data registration was conducted using
Electromagnetic Articulography (EMA; Carstens AG501, Carstens Medizinelektronik GmbH, Bovenden, Germany).
Relevant for the purposes of this work were the movements (after head movement correction) of a sensor placed on the
tongue body and a sensor placed on the tip of the tongue, the two primary effectors involved in the formation and release
of constrictions in /ka/ and /ta/ syllables. The registered raw data were processed using a heptic-order spline smoothing
approach with a fixed predicted mean square error, obtained by a FORTRAN-to-MATLAB software port of Woltring’s classical
spline smoothing code (Kuberski, 2023; Woltring, 1986).

The resulting tongue body (for /ka/) and tongue tip (for /ta/) signals were then segmented into individual move-
ments by means of local tangential velocity extrema identified using the full three dimensions. As per its definition, tan-
gential velocity was computed by the square root of the sum of squares of the horizontal, vertical, and lateral velocity
components in three dimensions. Timestamps at which the tangential velocity of a relevant effector was minimal served as
(pre-threshold) locations for a movement’s endpoints. The maximal value of tangential velocity between any two consecu-
tive minima was next used to apply the segmentation threshold and adjust the threshold-specific onset and offset locations
accordingly. In particular, the difference between the maximal and minimal value multiplied by the threshold value was
used as the offset in velocity an effector had to breach (exceed or fall below) to be regarded as the onset or offset of move-
ment. Overall, for each considered threshold value, the segmentation process yielded speech movement data of about 5000
/ka/ and 5000 /ta/ syllables, across all speakers and metronome rates.

In the context of our ultimate aim, which is dynamical model evaluation, it is important to note that the so-
obtained movement data represented motion in three-dimensional space. Yet the formulation of the linear model takes
place in a lower-dimensional so-called task space, consisting of only one dimension along the major line of action, referred
to as constriction degree (Saltzman, 1986; Saltzman and Munhall, 1989) or reaching axis (Saltzman and Kelso, 1987).2

Thus, to evaluate the performance of the model, we projected the segmented three-dimensional effector trajectories onto
their individual constriction degree axes as indicated by the large gray arrows in Fig. 1. In accordance with the framework
of Task Dynamics in which the linear model is formulated, we determined the constriction degree axes (i.e., the major
lines of action) by the end point-to-end point vectors of the movements (ibidem).
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3. Results

We now turn to evaluate the linear model, €x ¼ f ðx; _x; x0Þ, where f ðx; _x; x0Þ ¼ �kðx � x0Þ � b _x , with an eye to assessing
how different segmentation thresholds affect the regression performance of that model. To do so, we first obtained time
series for each movement in position xi, velocity _xi, and acceleration €xi, with i ¼ 1;…;N , using N¼ 250 Chebyshev nodes
in time. Chebyshev sampling (e.g., Mason and Handscomb, 2002; Rivlin, 2020) is typically used in polynomial regressions
to minimize the effect of Runge’s phenomenon because of its characteristic, nonuniform spacing of samples with an
increased resolution at the edges of the sampling interval. In addition, the use of Chebyshev nodes yields time series
approximately evenly spaced along the phase space trajectories of movements to be regressed.

Fitting data to the linear model requires choosing a value for the parameter x0 in the equation of that model;
this x0 represents the target of the movement. For plosive consonants, like [k] and [t], it is relatively uncontroversial that
effectors such as the tongue body and tongue tip must be controlled by some dynamical system responsible for the forma-
tion of their respective constrictions or so-called closing movements (from the previous vowel to the consonant). For these
closing movements, it is also relatively uncontroversial to set the target parameter x0 to these movements’ offset position
xN, so that the overall regression model for each movement reads (with the remaining parameters, stiffness k and damping
b, let free to vary)

€x1
€x2

..

.

€xN

0
BBBB@

1
CCCCA
¼ �k

x1 � xN
x2 � xN

..

.

xN � xN

0
BBBB@

1
CCCCA
� b

_x1
_x2

..

.

_xN

0
BBBB@

1
CCCCA
:

Though it is conceivable that the same dynamical model considered here may be in control also for opening movements
(from the consonant to the next vowel), when it comes to vowels, there are approaches to the notion of target which use
combinations of orosensory parameters or (also) acoustic dimensions (e.g., Guenther, 1995). In other words, for these
opening movements, the task may not be specified (solely) in terms of body space positional coordinates. Hence, we chose
to focus our assessment of the linear model to closing movements only, because of the relatively uncontroversial position
that if the linear model applies to speech movements, then it ought to apply to (at least) formations of the closing move-
ments for plosives, and because of the equally relatively uncontroversial assumption about what constitutes a target for
these movements.

In applying a conventional statistical measure for the performance of a regression, we computed R-squared val-
ues of the regression results f̂ ðx; _x; x0Þ via R2 ¼ 1� RSS=TSS, with the residual sum of squares RSS ¼

PN
i ½€xi

�f̂ ðxi; _xi; x0Þ�2 and the total sum of squares TSS ¼
PN

i ½€xi � €x �2, where �€x ¼ 1=N
PN

i €xi was the average of the response
variable (in our case, acceleration). Grand mean performances of the ten speakers were computed by first averaging the
different experimental conditions for each speaker, then averaging across the entire group of speakers.3

Let us first evaluate the overall regression performance of the linear model by inspection of the so-obtained
grand mean performance values given in Table 1. The table lists average R-squared values for both syllables /ka/ and /ta/,

Fig. 1. A midsagittal superposition of the movements of two sensors attached to the tongue body and tongue tip, the two effectors implicated
in the production of two sequences of /ka/ and /ta/ syllables, produced by one of our speakers at slow speech rate (150 bpm metronome).
Shown are two task-spatial coordinate systems exemplifying the major lines of action along the tongue body (TB, for /ka/) and tongue tip
(TT, for /ta/) constriction degree axes. Spatial projection of the three-dimensional movement data onto these axes (indicated by the large gray
arrows) yields a one-dimensional representation of effector motion as required by the formulation of any one-dimensional model such as that
in Task Dynamics.
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separated by segmentation thresholds (columns) and experimental conditions (metronome rates, rows). It turns out that,
across all experimental conditions, regressions of the linear model performed fairly well, with R-squared values in the
range of 0.682 to 0.841 for /ka/ and between 0.713 and 0.856 for /ta/ syllables (see the final row in Table 1). Interpretation
of these performance ranges as proportions of the explained variance yields ranges of about 68%–84% for /ka/ and
71%–86% for /ta/ syllables, both indicating that a considerable amount of variance in the empirical data is explained by
the linear model.

We focus next on the individual segmentation thresholds expressed by the different columns of Table 1.
Inspection of the R-squared values in the table makes clear that, for any fixed experimental condition (metronome rate,
rows), increases in the threshold value (i.e., moving rightwards in the table) come along with increases in regression per-
formance. In other words, there is a systematic gain in the regression performance of the linear model as a function of
increasing the segmentation threshold. In a way that would speak to researchers (ultimately) interested in assessing their
dynamical model assumptions given speech movement data, we thus proceeded to evaluate this gain by comparing R-
squared values of the different thresholds in relation to the pairwise increments in their values. Specifically, we aimed at
providing an answer to the question: to what extent and significance does increasing the segmentation threshold by 5%
(e.g., using 25% instead of 20%, or 20% instead of 15%, etc.), or any other such percentage, affect the performance of the
hypothesized underlying model? Figure 2 visualizes the answers to this question by showing the two characteristics of

Table 1. R-squared values of the linear model regression of /ka/ and /ta/ syllables separated by segmentation thresholds (columns) and experi-
mental conditions (metronome rate, rows).

/ka/ 0% 5% 10% 15% 20% 25%

90 bpm 0.427 0.478 0.512 0.546 0.583 0.624
150 bpm 0.526 0.574 0.606 0.637 0.667 0.699
210 bpm 0.655 0.690 0.711 0.733 0.756 0.780
300 bpm 0.784 0.822 0.841 0.858 0.875 0.890
390 bpm 0.799 0.851 0.875 0.894 0.911 0.926
480 bpm 0.779 0.843 0.871 0.894 0.913 0.929
All rates 0.682 0.737 0.766 0.792 0.817 0.841

/ta/ 0% 5% 10% 15% 20% 25%

90 bpm 0.477 0.537 0.569 0.597 0.625 0.668
150 bpm 0.636 0.665 0.688 0.712 0.737 0.763
210 bpm 0.715 0.760 0.786 0.809 0.830 0.851
300 bpm 0.793 0.835 0.857 0.877 0.894 0.909
390 bpm 0.807 0.848 0.869 0.887 0.903 0.918
480 bpm 0.763 0.818 0.845 0.868 0.889 0.907
All rates 0.713 0.761 0.788 0.812 0.834 0.856

Fig. 2. Performance gain in regressions of the linear model (right ordinates, in percentage point of the explained variance) and their statistical
significance (left ordinates, in standard z-score) as a function of metronome rate (abscissae) and increments in segmentation thresholding
(0%, 5%, 10%, 15%, 20%, and 25%, color-coded). The z-scores larger than 1.96 (dotted lines) indicate statistical significance at an alpha-level
of 0.05 (95% confidence).
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concern as a function of all possible threshold increments in our study (0%, 5%, 10%, 15%, 20%, and 25%, color-coded) as
well as all experimental conditions (metronome rate, abscissae). In particular, these two characteristics are, first, the
amount of performance gain in percentage point of the explained variance (right ordinates) and second, the statistical sig-
nificance of the gain in standard z-score (left ordinates).4 To give an example of the observed effect of thresholding on
model performance, let us chose a critical z-score of 1.96 for an alpha-level of 0.05 (i.e., 95% confidence) indicated by the
dotted lines in Fig. 2. For this conventional choice, increments in the segmentation threshold larger than about 15% (e.g.,
choosing a threshold of 15% over one of 0%, but also 20% over 0%, or 25% over 0%) generally lead to a significant differ-
ence in the regression performance. This can be inferred from the figure by inspecting which of the differently color-
coded threshold contours tend to reside above the critical z-score, which are the three darkest contour lines associated
with the three highest threshold increments of 15%, 20%, and 25%. Likewise, the performance gains of these three highest
threshold increments reach substantial values: expressed in proportions of the explained variance, they range from about
3% to 24% point. That is, a regression performance of (for example) 50% explained variance, determined by a 0%-
threshold segmentation, can be significantly boosted up to about 75% explained variance just by increasing the threshold
to 25%. This observation holds true for both syllables (/ka/ and /ta/) and all experimental conditions (metronome rates).
Thus, overall, there is no question that changes from a lower to a higher threshold come with an increase in regression
performance. Moreover, the larger the threshold increment is, the larger is the gain in model performance as well as its
statistical significance.

4. Discussion

Any evaluation of a dynamical model underlying the control and organization of movements requires segmenting a con-
tinuous flow of some effector into a sequence of movements. Since the beginnings of the availability of techniques like x-
ray, magnetometer, etc., for obtaining quantitative records of articulatory motion, a virtually universal practice in speech is
to use a velocity-based threshold which enables the researcher to declare the occurrence of a movement onset or offset as
the first time at which the velocity of the relevant effector breaches some threshold percentage of the maximal velocity.
Depending on the value of the threshold, more or less of the movement’s trajectory is left in for fitting to the model,
which is assumed to be underlying. Here, using one dynamical model, the linear model, hypothesized to govern speech,
we have made explicit how the choice of this threshold modulates the resulting regression performance.

The systematicity in the patterning of our results (significant gains in the regression performance when using
higher and higher segmentation thresholds) demands an explanation. An understanding of this systematicity can be
obtained by considering what information in the movement trajectories is eliminated as one progressively increases the
segmentation threshold. Figure 3 shows an example of unsegmented data of the tongue body effector during production of
three consecutive /ka/ syllables at normal speech rate. The left panel of the figure shows the so-called phase plane of the
data, that is, the trajectory of the effector’s velocity _x as a function of its position x. In this representation, positive peak
positions of the trajectory correspond to the consonant closure /k/ and negative peaks to the maximum opening for the
vowel /a/. The arrows in the panel denote the direction of motion (time) in the plane. Thus, one cycle in the phase plane
corresponds to one syllable in the repetition of many, with the closing movements (from /a/ to /k/) in the top and the
opening movements (from /k/ to /a/) in the bottom half plane. In the same panel, we superimposed indications of how
the trajectory data are affected by the different thresholds: regions shaded in gray cover those parts of the trajectory which

Fig. 3. A typical sequence of /ka/ syllables, produced by one of our speakers at normal speech rate (210 bpm metronome), portrayed in the
phase plane (left) and in the Hooke plane (right). Arrows indicate the direction of time (closings: from /a/ to /k/, openings: from /k/ to /a/).
Regions shaded in gray schematically indicate those parts of the data which are affected by velocity thresholding: the darker the shade (the
higher the threshold), the larger the amount of data excluded from the trajectory.
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are cut off during the segmentations process, with darker shades corresponding to higher thresholds (bigger cuts) and
fainter shades to lower thresholds (smaller cuts). This illustration seems to suggest that the different segmentation thresh-
olds can have only a marginal effect on the performance of the linear model: no matter the amount of data excised by a
particular threshold, the overall shape of the movements remains intact, which appears to predict comparable regression
performances across different thresholds.

However, this picture changes entirely, if one considers another diagnostic regularly entertained in the fields of
dynamics. The right panel of Fig. 3 shows data of the same three /ka/ syllables in the so-called Hooke plane, a representa-
tion which renders the effector’s acceleration €x as a function of its position x. In this panel, as in the phase plane panel
before, positive peak positions of the trajectory correspond to the consonant closure /k/ and negative peaks to the maxi-
mum opening for the vowel /a/, with arrows indicating the direction of time. Representing the data in the Hooke plane
makes apparent a clear non-linear relation between the values of acceleration and position: the shape of the Hooke trajec-
tory is similar to that of the letter N, thus, strongly indicating the presence of a cubic term (in x) in the underlying
dynamics. [Note that the linear model, €x ¼ �kðx � x0Þ � b _x , by definition, renders acceleration €x as a linear function in
position x.] Comparable N-shaped Hooke trajectories have been repeatedly observed in the past, in speech and non-speech
movements, and brought into focus in, for example, Kelso et al. (1985), Kelso (1986), Mottet and Bootsma (1999),
Buchanan et al. (2003), and Sorensen and Gafos (2016), all of which eventually considered additional, non-linear terms in
the dynamical model governing these movements. Crucially here, the indicators of non-linearity (the two bends in the
Hooke trajectory, one close to the /k/ and another one close to the /a/ target), brought out in the Hooke plane but not in
the phase plane, are located precisely in those (gray-shaded) regions eliminated by segmentation. This, in turn, explains
the significant gain in the regression performance of the linear model when using higher and higher segmentation thresh-
olds: the higher the threshold (i.e., the darker the shade in the figure), the greater the non-linear portion of the Hooke tra-
jectory excluded by segmentation, yielding an almost exact linear relation between acceleration and position at the highest
threshold of 25%. It is precisely at this value of threshold where the linear model reaches maximal performance (cf. Table
1, final column).

Overall, our results and their attendant explanation disclose the extent to which thresholding has an effect on
the regression performance of the linear model hypothesized to govern speech in Task Dynamics. The present approach
can be applied in principle to other experimental speech paradigms as well as to other models that are sufficiently explicit
to allow for evaluation using movement data. In the analysis of our repetitive speech movement data, we applied a con-
ventional to non-repetitive speech segmentation procedure; thus, it is likely that the results presented here would general-
ize to data from non-repetitive tasks. Regarding extending our approach beyond the linear model, other promising models
for the control and organization of human movements (e.g., Birkholz et al., 2011; Sorensen and Gafos, 2016, in speech;
Beek et al., 1995; Huys et al., 2008; Jirsa and Kelso, 2005; Kay et al., 1987; Mottet and Bootsma, 1999; Sch€oner, 1990, in
non-speech motor control) should be considered. Common to these alternative models is that they extend the linear model
equation in Task Dynamics to more advanced equations by inclusion of additional, non-linear terms. For example, in
speech, Sorensen and Gafos (2016) propose to include the cubic term ðx � x0Þ3 to the model equation, improving confor-
mity between model predictions and kinematic properties of observed speech movements and resulting in a more accurate
modeling of trajectory shapes in the Hooke plane. In general motor control, Sch€oner (1990) includes several non-linear
(both in x and _x) terms which likewise improve model predictions but also allow one to generate movements governed by
qualitatively distinct dynamics (not just fixed point but also limit cycle dynamics). It remains to be seen how such revised
models that admit non-linearities perform under different segmentation thresholds.
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