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Do speech movements obey the same laws as movements from
other domains of motor control?

• Speed-curvature power law (also 1/3-power law)

• connects kinematic properties with geometrical characteristics

• Fitts’ law (spatially constrained speed-accuracy trade-o�)

• connects kinematic properties with task characteristics

• both laws are e�ector-independent: movements of hand, arm, legs,
eyes, etc. (Hicheur et al., 2005; Plamondon and Alimi, 1997)

• both laws also hold for perception of action (Viviani, 2002; Grosjean
et al., 2007)

What are the implications for models of speech?
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Experimental paradigm

• paradigm of repetitive speech (cf. Kelso et al., 1985; Ostry et al.,
1987; Patel et al., 1999)

• systematic speech rate control by audible metronome

• speech rate from extremely slow to extremely fast (30–570 bpm)

• sequences of syllables of the form /CV…/

• speci�cally: sequences of [tatata…] and [kakaka…]

• about 4000 syllables of [ta] and [ka] each

• six native speakers of German and English
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Experimental paradigm

• phase portraits of tongue back state variables (displacement x ,
velocity ẋ ) in sequences of [taka…]

• speech:

• non-speech (trumpet double tonguing):
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Experimental paradigm

• electromagnetic articulometry (EMA, Carstens AG501)

• high precision displacement data of selected articulators

• tongue tip for [t] and tongue back for [k] constrictions

• segmentation of continuous motion by zero velocity criterion
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Kinematic relations

• standard model of speech gestures (linear oscillator with critical
damping, Fowler et al., 1980; Browman and Goldstein, 1986; Saltzman
and Munhall, 1989)

ẍ = −kx − bẋ , b = 2ζ
p

k, ζ = 1 (1)

• analytical solution reveals kinematic relations

v∗ ∝
p

kA and
v∗

A
∝
π

T
(2)

• direct proportionality of peak velocity v∗ and amplitude A

• inverse proportionality of v∗/A and duration T

• empirical evidence repeatedly reported, e.g., in Ostry et al. (1983),
Munhall et al. (1985), and Vatikiotis-Bateson and Kelso (1990)
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ẍ = −kx − bẋ , b = 2ζ
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Kinematic relations

• broad consistency with theoretical predictions and empirical reports

• divergence of A-v∗ correlation at larger amplitudes (slower rates)
considered in Sorensen and Gafos (2016)
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Speed-curvature power law

• relation between kinematics and geometry of movement known for
a variety of motor actions (Hicheur et al., 2005)

• the faster the speed of movement, the less curved its path (Viviani
and Terzuolo, 1982)

• instantaneous speed v is a power function of curvature κ (Lacquaniti
et al., 1983)

v = kκ−β (3)

• velocity gain factor k segregates geometrical subunits

• exponent β is consistently found to be close to the value of 1/3
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Speed-curvature power law
• consider linear relation in log-log-transformed data

v = kκ−β ⇒ log v = log k − β log κ (4)

• clear evidence for the power law in speech
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Speed-curvature power law

• consistent with the two earlier reports by Tasko and Westbury (2004)
and Perrier and Fuchs (2008)

• new: signi�cant rate dependency of the power law exponent β

• closest match with commonly found value of 1/3 at metronome rate of
300 bpm (fast speech rate)
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Speed-curvature power law
Why an exponent of 1/3?

• movements can hardly be reduced to a single dimension (e.g., y-axis)

• traces form (at least) two-dimensional spatial loops (cf. Mooshammer
et al., 1995; Birkholz et al., 2011)

• our result: the faster the rate, the more elliptical the shape

• Bennequin et al. (2009): elliptical shapes show analytically constant
equi-a�ne speed with a power law exponent of precisely 1/3
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Fitts’ law

• trade-o� relation between speed and accuracy of aimed movement
(Fitts, 1954; Fitts and Peterson, 1964)

• connects kinematics of movement (amplitude A and duration T )
with task property (target extent W )

T = a + b ID, ID = log2

� A
W
+ 1

�

(5)

• crucial requirements of Fitts’ paradigm (Plamondon and Alimi, 1997):

1. movements must be performed under temporal pressure

2. manipulate amplitude and target size (experimental conditions)

How to achieve this in speech?
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Fitts’ law

• systematic speech rate control conforms closely to Fitts’ paradigm:

1. varying temporal pressure dependent on metronome rate

2. wide range of amplitudes and su�cient spread of widths
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Fitts’ law

• computation of amplitudes A is straightforward: three-dimensional
distance between movement endpoints

• endpoint distributions determine an a posteriori de�ned e�ective
target width (Wobbrock et al., 2011)

W =
p

2πeσ, σ =

√

√

∑N
i=1

�

(x − x̄)2 + (y − ȳ)2 + (z − z̄)2
	

1 − N
(6)

• both quantities A and W determine Fitts’ index of di�culty

ID = log2

� A
W
+ 1

�

(7)

• observations of movement duration T should reveal the linearity
of Fitts’ law

T = a + b ID (8)
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Fitts’ law

• statistics on contiguous subsets of rates yields critical rates

• fast rates (≥150–210 bpm, dark shades) abide to Fitts’ law

• slowest rates (<150–210 bpm, bright shades) do not
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Fitts’ law

What are the implications for models of speech?

• Crossman and Goodeve (1983): Fitts’ law holds true for any model
implying exponential decay of distance to the target

• all (non-trivial) solutions of the standard model possess an exponen-
tial signature

ẍ = −kx − bẋ , b = 2ζ
p

k, ζ > 0 ⇒ Fitts’ law

But, what about the absence of Fitts’ law at slower rates?

• the model fails at those rates (<150–210 bpm) where one would expect
it to apply

• other models with di�erent dynamics exist but have not been investi-
gated yetKröger et al., 1995; Sorensen and Gafos, 2016)
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• other models with di�erent dynamics exist but have not been investi-
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