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Linear model kinematics (1)

• using the standard model of speech gestures (Saltzman and Munhall, 1989) we can model a
(one-dimensional) single articulator movement by the linear second order system

ẍ = −k x − b ẋ , b = 2ζ
p

k

• model parameters stiffness k and damping b can be defined in terms of a dimensionless damping
ratio ζ ≥ 0 and natural frequencyω0 =

p
k

• we can solve the differential equation yielding expressions for displacement, velocity and accel-
eration (dependent on damping ratio)

• e.g., for critical damping (ζ = 1) with initial conditions (x0, ẋ0)

x(t ) = e−ω0 t (x0 + [ω0 x0 + ẋ0]t )

⇒ ẋ(t ) = e−ω0 t (ẋ0 −ω0[ω0 x0 + ẋ0]t )

⇒ ẍ(t ) = e−ω0 t �−2ω0 ẋ0 −ω
2
0 x0 +ω

2
0[ω0 x0 + ẋ0]t

�



Linear model kinematics (1)

• using the standard model of speech gestures (Saltzman and Munhall, 1989) we can model a
(one-dimensional) single articulator movement by the linear second order system
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Linear model kinematics (2)

• example curves of displacement x(t ), velocity ẋ(t ) and acceleration ẍ(t ) for the critically
damped linear system (x0 = −10 mm, ẋ0 = 0 mm/s, k = 225 s−2)

• a simple model of an articulatory movement defines the kinematic variables:

1. peak velocity v∗ at instant of zero acceleration

2. movement onset and offset at instants of a certain fraction of peak velocity

3. movement amplitude A and duration T follow straight forward

4. as well as relative time to peak velocity (RTTP)
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Linear model kinematics (3)

• analytical treatment of the standard model leads to the kinematic relations:
v∗

A
=

cπ
T

and v∗ = cω0A

• constant of proportionality c depends on damping ratio ζ and is maximal (c = 1/2) in undamped
case (simple harmonic oscillator)

• numerical simulation reveals further a maximal value of 0.5 for relative time to peak velocity

• predicted extremal values can be exploited for model consistency checks with experimental data
(e.g., Fuchs et al., 2011)
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Harvard-Haskins database

• the Harvard-Haskins database of regularly timed speech (Patel et al., 1999) contains articulatory
data of self-paced tongue, lips and jaw movements in /baCa. . ./ sequences at approx. 2 Hz

• the principal component analysis of jaw movements in /baba. . ./ (3 native English speakers, 4
trials, 11 syllables each) shows the following kinematic characteristics:

• aside from the asymmetry between opening (red) and closing movements (blue)

1. kinematic relations (left and middle) are in general agreement with the standard model
predictions

2. high relative time to peak velocity values (> 0.5, right) cannot be rendered by it
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Beyond linear �xed point dynamics

• some improvements to fixed point dynamics of the standard model in speech domain:

1. explicit time dependencies/nonautonomy (e.g., gestural force field by Kröger et al., 1995)

ẍ = −ω2 x − 2ω ẋ , gestural force functionω(t )

2. additional nonlinear terms (e.g., soft spring model by Sorensen and Gafos, 2016)

ẍ = −k x − b ẋ + d x3

• there exist other models from general motor control with qualitatively different dynamics:

3. nonlinear oscillator by Schöner (1990) (ω = ω0 + “behavioral information”)

ẍ = −(a2 +ω2)x + 2aẋ − 4b x2 ẋ + 2ab x3 − b 2 x5

4. excitable system by Jirsa and Kelso (2005) with timing constant τ and external input I






ẋ = (x + y − 1
3

x3)τ

ẏ = −(x − a + b y − I )/τ

• 1 and 2 here can be treated equivalently in terms of kinematic relations

• 3 and 4 have not been applied to speech yet
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Stability and bifurcation

• all these systems are second order systems; a two-dimensional phase space is conjectured to be
sufficient to render both discrete and cyclic movements (Vatikiotis-Bateson and Kelso, 1990)

• some of these models admit limit cycle dynamics (which have not been applied to speech yet)

• fixed point and limit cycle attractors differ with respect to their topology (Strogatz, 2014):

• fixed point dynamics characterizes targeted, discrete movements, whereas limit cycle dynamics
characterizes stationary, periodic movements

• systems containing multiple attractors show the phenomenon of bifurcation, that is a qualitative
change in model behaviour on change of some model parameter

• there are hints that (speech) rate is such a bifurcation parameter (Tuller and Kelso, 1991; Goldstein
et al., 2007; Huys et al., 2008)



Stability and bifurcation

• all these systems are second order systems; a two-dimensional phase space is conjectured to be
sufficient to render both discrete and cyclic movements (Vatikiotis-Bateson and Kelso, 1990)

• some of these models admit limit cycle dynamics (which have not been applied to speech yet)

• fixed point and limit cycle attractors differ with respect to their topology (Strogatz, 2014):

• fixed point dynamics characterizes targeted, discrete movements, whereas limit cycle dynamics
characterizes stationary, periodic movements

• systems containing multiple attractors show the phenomenon of bifurcation, that is a qualitative
change in model behaviour on change of some model parameter

• there are hints that (speech) rate is such a bifurcation parameter (Tuller and Kelso, 1991; Goldstein
et al., 2007; Huys et al., 2008)



Stability and bifurcation

• all these systems are second order systems; a two-dimensional phase space is conjectured to be
sufficient to render both discrete and cyclic movements (Vatikiotis-Bateson and Kelso, 1990)

• some of these models admit limit cycle dynamics (which have not been applied to speech yet)

• fixed point and limit cycle attractors differ with respect to their topology (Strogatz, 2014):

• fixed point dynamics characterizes targeted, discrete movements, whereas limit cycle dynamics
characterizes stationary, periodic movements

• systems containing multiple attractors show the phenomenon of bifurcation, that is a qualitative
change in model behaviour on change of some model parameter

• there are hints that (speech) rate is such a bifurcation parameter (Tuller and Kelso, 1991; Goldstein
et al., 2007; Huys et al., 2008)



Potsdam KORSA pilot
• repetitive speech paradigm using systematically controlled speech rate (by metronome)

• pilot EMA data of tongue and jaw movements in repetitions of CV and CVC sequences

• native English speaker, 4 trials, each 15-30 syllables; here: tongue tip in /tata. . ./:

• properties show a qualitative change at 210 bpm:
multimodal −→ unimodal velocity profiles
two classes −→ single class of movements
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Conclusion: evidence for limit cycle

• example of tongue tip trajectory at the critical rate of 210 bpm

• evidence for two distinct timing mechanisms:

1. dynamics at low rates (below critical) conform to fixed point dynamics

2. dynamics at high rates (above critical) are cyclic and not governed by fixed points

• the qualitative change can be identified as bifurcation with speech rate as bifurcation parameter

• further investigations have to verify the topological structure (limit cycle)
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