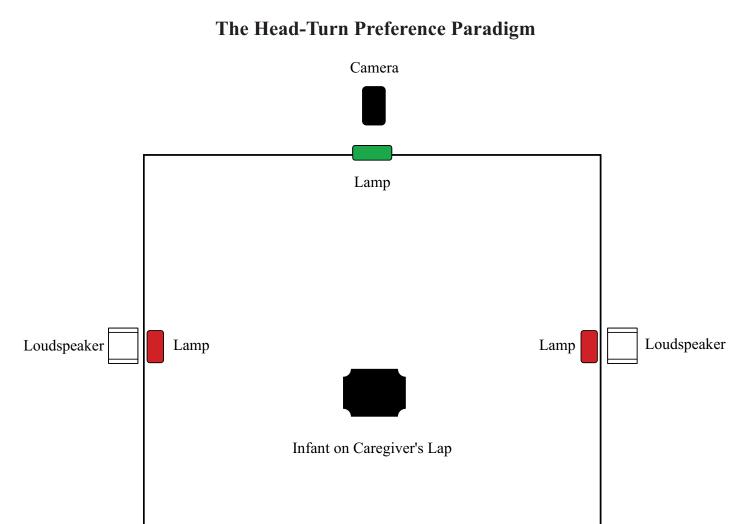


1. Background

Adults are able to discriminate syllable strings generated by a finite state grammar (FSG) from those generated by a phrase structure grammar (PSG) in an artificial grammar learning (AGL) task [1,2]. Infants have been shown to learn local as well as nonadjacent dependencies presented in an artificial language [3,4]. The capacity of learning local dependencies is sufficient for acquiring a FSG whereas the capacity to detect non-adjacent dependencies should enable them to learn a simple PSG.

Given infants' sensitivity to various cues we expected them to show learning effects for both grammar types – similar to adults. However, considering young infants' limited processing capacity it seems conceivable to find differences in comparison to adults. Our research questions are:

- Can infants discriminate two types of grammars?
- Does the familiarisation grammar play a role?
- Does age affect performance?


2. Participants

2 age groups of 152 infants (74 girls, 78 boys):

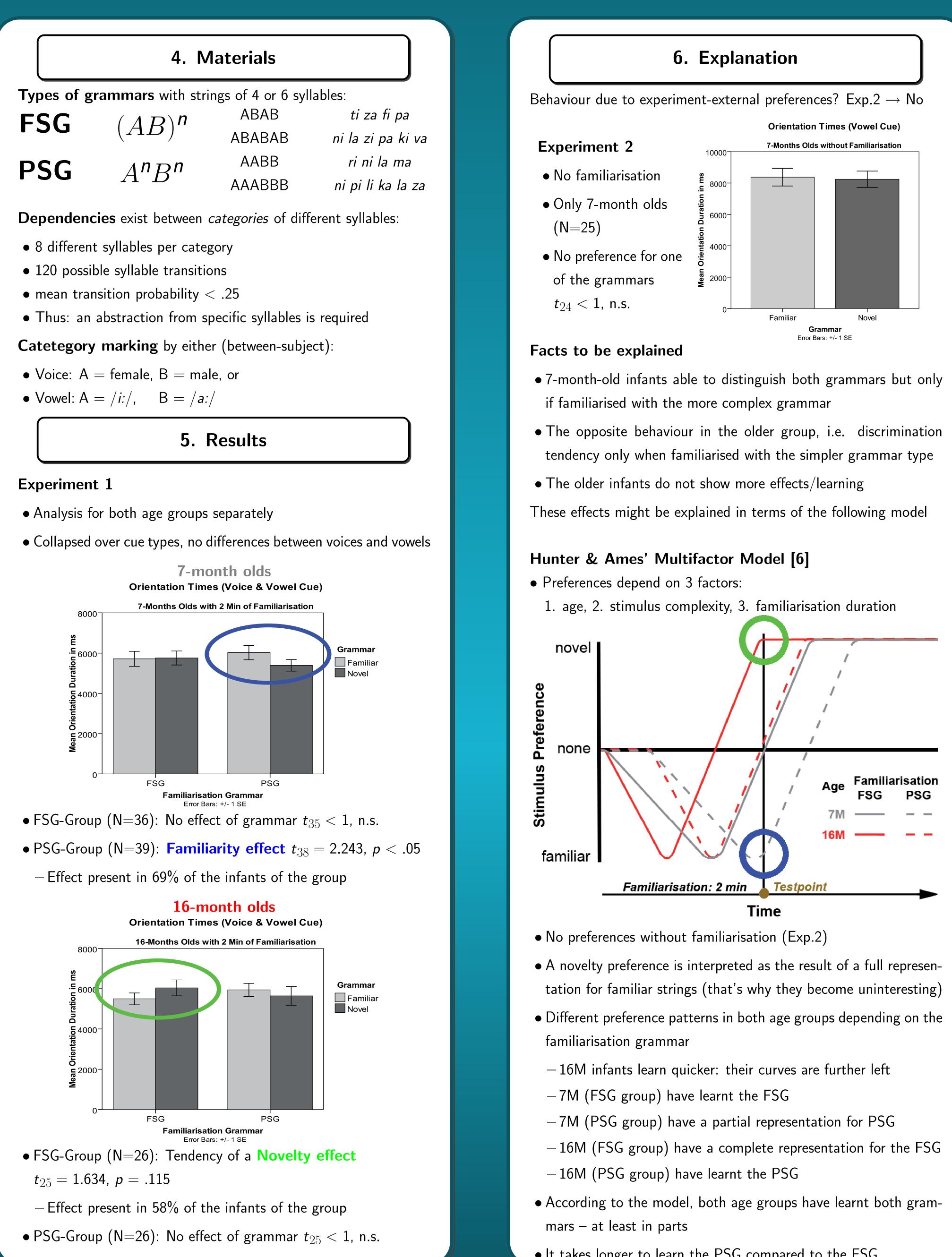
• 7 months (N=100): Ø 7;12 (m;d) min 6;28 max 8;00 • 16 months (N=52): Ø 16;14 min 15;17 max 17;01

Headturn Preference Procedure [5]:

Presentation:

- Familiarisation in one of 3 groups:
- -FSG group (N=62): 32 FSG strings (\approx 2 min) -PSG group (N=65): 32 PSG strings (\approx 2 min)
- -No familiarisation (N=25, Experiment 2)
- Test Phase: Per grammar 7 blocks of 4 strings
- -Max. duration: 3 min 40 sec
- All strings are new

Dependent variable:


• Orientation Time (OT) towards the side of the stimulus

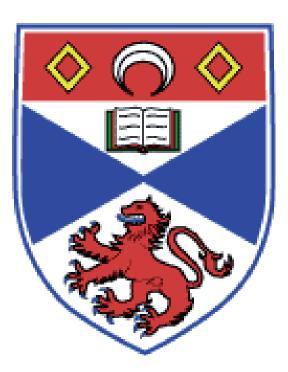
Acquisition of Local and Non-Adjacent Syntactic Dependencies in 7- and 16-Month-Old Infants

Barbara Höhle⁽¹⁾, Tom Fritzsche⁽¹⁾ & W. Tecumseh Fitch⁽²⁾

(1) Institute of Linguistics, University of Potsdam, tomfri@uni-potsdam.de (2) School of Psychology, University of St Andrews

ICIS 2008 – Vancouver, Canada

• It takes longer to learn the PSG compared to the FSG


tion there were none. strings.

The type of representation that infants build as well as further predictions of Hunter & Ames' model have to be assessed in the future.

a nonhuman primate. Science **303**: 377-380. [2] Perruchet, P. & Rey, A. (2005) Does the mastery of center-embedded linguistic structures distinguish humans from nonhuman primates? *Psychonomic Bulletin and Review* **12**(2): 307-313.

infants. Science 274: 1926-28. **13**(5): 431-436.

guage by Structural Complexity (028395)

7. Conclusion

Infants as young as 7 months are able to distinguish FSG from PSG strings. In this way, they behave like adults in a judgement task using the voice-cue stimuli [7]. Preferences cannot be attributed to extra-experimental factors since without familiarisa-

These findings suggest that the infants tested did learn some characteristics of their familiarisation grammar (FSG or PSG), even though they could not rely on statistical cues like transition probabilities. Furthermore, the fact that the cue type (voice or vowel) had no influence suggests that they abstracted away from surface structure and processed syllables as categories.

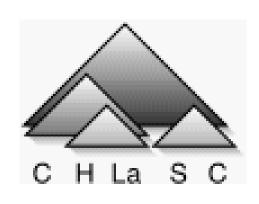
This interpretation depends on the model of Hunter & Ames, which also takes into account the factors age and stimulus complexity and predicts null-effects exactly where we observed them. Although PSG strings include non-adjacent dependencies there is no direct evidence that infants did learn these dependencies. Nevertheless, the distribution of effects suggests that the rules underlying the PSG strings were harder to learn than those underlying the FSG strings. This asymmetry has also been found in studies with adults [7,8]. Identifying PSG strings thus requires more than just the detection of local well-formedness that is enough for FSG

8. References

[1] Fitch, W.T. & Hauser, M.D. (2004) Computational constraints on syntactic processing in

[3] Saffran, J.R., Aslin, R.N. & Newport, E.L. (1996) Statistical learning by 8-month-old

[4] Gómez, R.L. (2002) Variability and detection of invariant structure. *Psychological Science*


[5] Kemler Nelson, D.G., Jusczyk, P.W., Mandel, D.R., Myers, J., Turk, A. & Gerken, L. (1995) The head-turn preference procedure for testing auditory perception. *Infant Behavior* and Development **18**: 111-116.

[6] Hunter, M.A. & Ames, E.W. (1988) A multifactor model of infant preferences for novel and familiar stimuli. In C. Rovee-Collier & L.P. Lipsitt (Eds.) Advances in Infancy Research (Vol. 5: 69-95). Norwood, NJ: Ablex.

[7] Fritzsche, T., Höhle, B. & Fitch, W.T. (2007) Vowels as category cue in artificial grammar processing. Paper presented at the International Linguistic Association 52nd Annual *Conference*. Hunter College, CUNY, NY.

[8] Bahlmann, J., Gunter, T.C. & Friederici, A.D. (2006) Hierarchical and linear sequence processing: An electrophysiological exploration of two different grammar types. Journal of *Cognitive Neuroscience* **18**(11): 1829-42.

This work was funded by the European Union: NEST Pathfinder Initiative: What it means to be human CHLaSC Project: Characterizing Human Lan-

