Experimente mit **M**

Tom Fritzsche tom.fritzsche@uni-potsdam.de

7. Linguistischer Methodenworkshop 22.2. - 24.2.2016

W Kursbeschreibung

DMDX ist ein Programm zur Durchführung von Sprachverarbeitungsexperimenten. Es erlaubt die Messung der Korrektheit und der Reaktionszeiten von Probanden. DMDX ist sehr flexibel einsetzbar, relativ leicht zu programmieren, steht kostenlos zur Verfügung und hat eine breite Nutzerbasis. Es läuft allerdings nur unter Windows (inkl. Windows 10).

In diesem Kurs wollen wir DMDX kurz vorstellen und gemeinsam mehrere Experimente programmieren. Dabei sollen die Arbeitsweise des Programms erläutert und verschiedene Funktionen ausprobiert werden. Wir werden mit verschiedenen Stimuli (Text, Ton, Bild und Videos) arbeiten. Neben der Stimulusdarbietung wird auf die Aufzeichnung der Antworten und Reaktionszeiten eingegangen sowie Möglichkeiten der Randomisierung besprochen.

Wir empfehlen, den eigenen Laptop (mit Windows-Betriebssystem!) sowie einen USB-Stick mitzubringen. Auf dem Rechner sollte man Administrator-Rechte haben, um DMDX installieren und laufen lassen zu können. Für die Skripte im Rich Text Format (RTF) ist außerdem ein Textverarbeitungsprogramm von Vorteil, es reicht aber auch ein Texteditor.

Bei Interesse an einem bestimmten Testparadigma oder bei spezifischen Fragen für ein Experiment bitten wir, uns bereits vor dem Kurs zu kontaktieren.

<u> Ü</u>berblick

I. Theorie

1. Über DMDX

- a. Was & Wer
- b. Wofür
- c. Quellen, Tutorials & Hilfe
- 2. Installation
 - a. Download
 - b. Konfiguration (TimeDX)
- 3. Funktionen und Befehle
 - a. Itemfile
 - b. Output

II.Praxis: Skripte erstellen

- 4. Lexikalisches Entscheiden
 - a. Stimuli: schriftlich präsentierte Wörter
 - b. Outputdateien/Auswertung
 - c. Randomisierung
 - d. Feedback & Counter
- 5. Referent-Identifikation
 - a. Stimuli: Videos
- 6. Satz-Bild-Beurteilungsaufgabe
 - a. Stimuli: Bild und Ton
- 7. Self-Paced Reading

Optional:

8. Benenn-Aufgabe/Voicekey

Über DMDX

- Was ist DMDX?
 - Programm zur Durchführung von Sprachverarbeitungsexperimenten
 - steuert die Stimulusdarbietung
 - dokumentiert Reaktionen und misst Zeiten (millisekundengenau)
- Wer hat es entwickelt?
 - Ken Forster, Jonathan Forster
 - Publikation: Link zum Artikel

Behavior Research Methods, Instruments, & Computers 2003, 35 (1), 116-124

DMDX: A Windows display program with millisecond accuracy

KENNETH I. FORSTER and JONATHAN C. FORSTER University of Arizona, Tucson, Arizona

DMDX is a Windows-based program designed primarily for language-processing experiments. It uses the features of Pentium class CPUs and the library routines provided in DirectX to provide accurate timing and synchronization of visual and audio output. A brief overview of the design of the program is provided, together with the results of tests of the accuracy of timing. The Web site for downloading the software is given, but the source code is not available.

Quellen, Tutorials und Hilfe

Quellen

www.u.arizona.edu/~kforster/dmdx/download.htm

Tutorials

- Matt Davis <u>http://www.mrc-cbu.cam.ac.uk/personal/matt.davis/dmdx.html</u>
- Isabelle Darcy <u>http://www.iub.edu/~psyling/resources/dmdx-tutorial_id_2010.pdf</u>
 Hilfe
- <u>http://psy1.psych.arizona.edu/~jforster/dmdx/help/dmdxhdmdx.ht</u>
- Befehle (keywords): <u>http://psy1.psych.arizona.edu/~jforster/dmdx/help/dmdxhallkeywor</u> <u>dsalphabetically.htm</u>

Mailingliste

http://www.u.arizona.edu/~kforster/dmdx/list_serv.htm

M Installation 1

Runterladen & Installieren

- a) DMDX.zip runterladen von http://www.u.arizona.edu/~jforster/dmdx
- b) Dateien mit dem Namen "DMDX***.zip" sind ältere Dateiversionen
- c) nach dem Download entpacken
- d) Setup.exe ausführen (kann für alle installiert werden)
- e) auf dem Desktop erscheint eine Datei: "DmDX Automode"

f) Man muss nicht immer die neueste Version haben. Updates sind nur dann ratsam, wenn es neue Funktionen gibt bzw. wenn Fehler behoben wurden, ansonsten bei der alten Version bleiben

7. MWS 2016

Adelt & Fritzsche: DMDX

o sollten Videos nicht funktionieren, Renderer ändern

nie die erste Option wählen (=Vorauswahl), sondern die zweite ÖΚ Cancel DirectX 3D Renderer (ab Win 8) empfohlen **C**) im Hauptmenü "File" "Change Renderer (DD/D3D)" auswählen

standardmäßig sollte der richtige gewählt sein

ist dieser gewählt steht in der Kopfzeile "D3D"

- Driver", "Sound Capture Driver" auswählen (vor Win 8 wird das automatisch abgefragt) Direct Sound Driver Selection × ist eine Auswahl vorhanden, Primärer Soundtreiber
- ImeDX
- "TimeDX" im DMDX-Ordner öffnen a)

Vor dem ersten Starten: TimeDX ausführen

Installation 2

- nach dem Öffnen müssen die Treiber kontrolliert werden
- b)
 - im Hauptmenü "File" nacheinander "Video Driver", "Sound

D3D TimeDX 5.1.0

File Basic Tests Advance

Installation 3

TimeDX-Anzeige-Einstellungen

- a) Schritt 3 und 4 müssen für alle Auflösungen durchgeführt werden, die genutzt werden sollen (üblicherweise ist das nur eine)
- b) im Hauptmenü "File" "Select Video Mode" auswählen: hier kann die Vorauswahl genommen werden (üblicherweise die Bildschirmauflösung), z.B. 1600 x 900 (50hz) 32 bit (4294967296 color) RGB.
- c) nach dem Auswählen, muss mit "Do Test" die Auswahl getestet werden Wenn auf einem dunkelblauen Bildschirm "TimeDX" in gelb steht und nicht flackert, ist alles in Ordnung (in dem Fall *Escape* oder *Enter* drücken oder ins Bild klicken), wenn nicht, eine andere Auswahl probieren.
- d) am Ende im Fenster "Done" klicken

M Installation 4a

TimeDX-Zeiteinstellung (Teil 1)

- a) da die Zeitmessung über die Bildwiederholungsrate des Bildschirms bestimmt wird, muss für jede gewählte Auflösung diese Rate bestimmt werden
- b) im Hauptmenü "File" "Time Video Mode" auswählen
 Dann steht "Refresh Rate ><" mittig auf dem Bildschirm
 - Beendet sich der Test nicht nach einer Weile von selbst mit Space, Enter oder Escape beenden
 Videx Mode 1600x900 (50Hz) 32 bit Reg. Keyr SDFTWARE \TimeDX\511 Intel(R) HD Graphics 4000\1600x900_32bpp_50Hz_
- c) nach einem Test erscheint ein Fenster

o die Werte hängen ab von

- der Auflösung
- dem genutzten System

Video Mode 1600x900 (50Hz) 32 bit						
Reg. Key: S0FTWARE\TimeDX\5\1 Intel(R) HD Graphics 4000\1600x900_32bpp_50Hz_0fmt Sleep Times TimeOut Values Registry 16 Max. lines to Blit Automatic 16 Registry 20.345 Tuned value 16 Tuned value 20.345 Timed out Betraces Multiple Misses						
Use Millisecond Callback Too Save Last Used values in Registry Play Sound Buffer 2 at Retrace 0 Do Test Do Test Do Test Help Use Automatic Values Help						
Play Sound Buffer 2 at Retrace 0 Play Sound Buffer 3 at Retrace 0 Recycle Sound Buffers after Retrace 0 Recycle Sound Buffers after Retrace 0 Recycle Sound Buffers after Retrace 0						

M Installation 4b

TimeDX-Zeiteinstellung (Teil 2)

c) noch *Time Video- Mode*

 gemessen wurde, wie lange es dauert, den Bildschirm von oben bis unten komplett neu darzustellen – das wird auch Tick genannt bei 60 Hz passiert das in ca. 16,67 ms, bei 50 Hz in 20 ms

 d) nach dem Test, die Werte speichern: auf "Saved Last Used Values in Registry" klicken, dann "Done"

TimeDX Anpassungen

- a) immer noch im "Time Video Mode" kann man die Bildwiederholungsrate prüfen, indem man "Enh. Retrace" klickt
 - ab Win 8 scheint das keinen Sinn zu machen, aber auf älteren Systemen konnte man die Rate optimieren
- b) mittig auf dem Bildschirm steht "Refresh Rate <>"
 - bis einschließlich Win 7 sind hier auch rötliche Balken zu sehen, die entweder statisch sind, sich mehr oder weniger bewegen oder flackern
 - optimal ist, wenn sich die rötlichen Balken gar nicht oder kaum nach oben oder unten bewegen (er darf flackern)
- c) um die eine systematische Bewegung auszugleichen, kann mit "+" und "–" die Bildwiederholungsrate angepasst werden, wenn der Kasten statisch bleibt, mit Escape/Enter oder Mausklick beenden und wieder speichern ("Saved Last Used Values in Registry")
- d) Eine Alternative, um die Bildwiederholungsrate zu testen, ist im Menüpunkt "Basic Tests" unter "Refresh Rate" und dann "Do Test". Nach diesem Test erscheint ein Fenster mit einem Wert, der dem entsprechen sollte, was unter den vorigen Punkten gewählt wurde.

Installation 6

Fast fertig

- a) um den Millisekunden-Timer zu testen, muss im Menüpunkt "Basic Tests" der "Millisecond Timer Test" gestartet werden
- b) dieser Test überprüft die zeitliche Auflösung:
 - o die kleinste Auflösung ist 1 ms
 - o der Mittelwert (mean) sollte 1.00 sein
 - o die Standardabweichung (SD) sollte unter .30 liegen
 - o die meisten Datenpunkte sollten zwischen 0.9 und 1.1 ms liegen

Minim	num Timer Resolution	1 ms			
High Performa	nce Timer Frequency	2825703 Hz			
	Millisecond Timer	20762			
0.6ms 29 times		*			
0.7ms 24 times					
U.8ms 52 times					
U.9ms 2415 time	s				
1.0ms 15619 tim	es				
1.1ms 2460 time	s	-			
1.2ms 46 unes					
Mean: 1.0	Oms, Standard Deviat	ion: 0.07ms			
V	Automatically Update results				
Start	Refresh	Stop			
Done	Benchmark	Help			
Polled High Perfor	mance timer 16549 tin	nes in a millisecond			
. e.e. right offer			_		

c) wenn das der Fall ist, ist der Computer genau genug

Installation 7

Input-Geräte

- a) Tasten heißen je nach Gerät unterschiedlich
- b) für die Namen kann im Menü unter "Basic Tests" "Input Test" ausgewählt werden
- c) Dann kann man für die Maus und die Tastatur einen Test durchführen, der alle Tasten auflistet.
 Drückt man eine Taste, wird der Name angezeigt (die Leertaste kann z.B. "Leertaste" oder "Leer" heißen)

 jetzt ist DMDX bereit zum nutzen, dafür das Programm öffnen, dann erscheint dieser Dialog:

Diagnostic	Subject ID		Ignore unknown RTF 🔽
Diagnostic Branching 🗖			Unicode 🔲
Bun	Syntax Check	Exit	Help

- aktueller Pfad f
 ür das Skript
- bei "Ignore unknown RTF" sollte ein Häkchen sein
- "Syntax Check" um zu prüfen, ob das Skript durchläuft
- "Subject ID" ist optional, aber am besten immer was eingeben
- alle Infos auch auf der DMDX-Seite: <u>www.u.arizona.edu/~jforster/dmdx/help/dmdxhhowtouseit.htm</u>
- aber nichts geht ohne Itemfile

Itemfile

- eine rtf-Datei, die den Ablauf des Exp. steuert
- im Hauptteil des Itemfile werden die Stimuli definiert
- jedes Item beginnt mit einer Item-Nr. und endet mit ";"
- 0 ist reserviert f
 ür Items, die mit der Reaktion spezifiziert mit <mr> beendet werden muss (normalerweise Instruktionen)
- erwartete negative bzw. positive Reaktionen (definiert mit <mnr> und <mpr>) werden mit – bzw. + vor der Item-Nr. markiert
- möchte man die Antwort aufzeichnen, aber durch DMDX nicht als richtig/falsch werten:
 - o = jede Antwort ist korrekt
 - ^ es wird eine Nullreaktion erwartet (z.B. bei Produktion oder no-go Trials)
 - Vorsicht bei azk-Output, da so nicht dokumentiert wird, was gedrückt wurde

Kopfzeile (Parameter) 1

- Beginnt und endet mit <ep> </ep> (oder <eop>)
- die Parameter bestimmen, wie das Experiment abläuft

notwendig ist:

- o <mr +LEER> map response: Taste für "weiter"
- o <mpr +STRG-RECHTS>
- o <mnr +STRG>

map positive response: korrekte Anwort

- map negative response: falsche Antwort
- bei Tastenspezifikationen bedeutet:
 - + Drücken
 - Loslassen
- o <vm Desktop>
- o <fd N>/<msfd N>
 Frames
- o <id "Tastatur">

video mode: Bildschirmspezifikation frame duration: Standard-Dauer für

Eingabegerät definieren

Kopfzeile (Parameter) 2

- Standards (wenn nicht spezifiziert)
 - nach jedem Item wird auf eine Eingabe gewartet (mr)
 - Abschalten mit: <cr> ("<u>c</u>ontinuous <u>r</u>unning") oder am Ende jedes Items "c";
 - o verzögerte Präsentation des nächsten Items:
 - <d N>/<msd N> gibt Verzögerung (in ticks bzw. ms) zwischen Tastendruck und Beginn des nachfolgenden Items an
 - nach jedem Item wird Feedback gegeben (bei korrekt mit RZ auf Engl.)
 - Abschalten mit<nfb> no feedback oder <nfbt> no feedbacktime <t 2000>
 - o Timeout: 4000 ms
 - Ändern mit <t N>, N in Millisekunden
 - Farben des Hintergrund und der Schrift so wie im RTF oder kann definiert werden:
 - <dbc XXXXXXXX> default background color
 - <dwc XXXXXXXX> default writing color
 - XXXXXXXX = RGB-Werte: rot (0-255), grün (0-255), blau (0-255)

http://psy1.psych.arizona.edu/~jforster/dmdx/help/dmdxhfileformatnotes.htm

azk-Datei

Default-Ausgabe, eine Reaktion wird aufgezeichnet

○ 1 Item pro Zeile mit Item-Nr. und RZ (negativ, wenn falsch)

zil-Datei

- mehr als eine Reaktionen wird aufgezeichnet (Default 100) hier sollte dann mit <vzk Text> definiert werden, welche Reaktionen aufgezeichnet werden sollen
- interessant, wenn aus einer Auswahl etwas gewählt werden soll und danach, wie sicher man sich ist
- man kann zwischen den Trials verschiedene Tasten definieren bzw. wechseln, welche als korrekt gelten
- Achtung! Mit diesem Output wird f
 ür jeden Trial bis zum Timeout gewartet, der Trial also nicht mit der Antwort abgebrochen

Achtung!

- die Outputdateien heißen so wie das Skript (Endung azk oder zil)
- bei mehreren Probanden, werden alle Daten in dieselbe Datei geschrieben (das Neueste unten)
 Tipp: nach jedem Probanden, die Ergebnisdatei umbenennen, damit 1 Datei = 1 Person
- bei jeder Durchführung wird eine Datei "job1.zil" angelegt
 - falls das Programm abstürzt oder man am Ende vergisst, die Daten zu sichern, stehen hier alle Daten drin
 - aber diese Datei wird mit der nächsten Durchführung überschrieben!
- Kommentare im Output beginnen mit "!", z.B. wenn etwas verspätet dargestellt wurde (bei Videos)
- Dezimalzeichen = Punkt das kann zu Problemen beim Import nach Excel führen

Bsp: Lexikalisches Entscheiden

Ordner

 \circ 1_LexEnt

Skript

- o LexEnt_1.rtf
- Aufgabe
 - Entscheiden, ob etwas ein Wort ist, ja oder nein
- Stimuli
 - o schriftlich präsentierte Wörter

Quelle

 Test 4: Lexikalisches Entscheiden Wort/Neologismus, visuell aus: Stadie, N., Cholewa, J., & De Bleser, R. (2013). *LEMO 2.0 Lexikon modellorientiert: Diagnostik für Aphasie, Dyslexie und Dysgraphie*. Hofheim: NAT-Verlag.

M Outputdateien/Auswertung

Spalten in einer azk-Datei

- Item = Nr. des Items aus dem Itemfile
- o RT = Reaktionszeit in ms (mit Kommastelle)
 - negativ bei inkorrekter Reaktion
- OCOT = ClockOn time across items
 - Beginn der Reaktionszeitmessungen für alle Items (Sternchen im Itemfile)
 - 0 = Beginn der ersten RZ-Messung (Sternchen beim ersten Item im Itemfile)
- Vorbereiten f
 ür den Datenimport
 - Dezimalzeichen Punkt > Komma ändern

Import in Excel

Öffnen der azk-Datei aus Excel heraus

o im Textkonvertierungs-Assistenten Auswahl von:

- Getrennt (nicht feste Breite) im 2. Schritt Trennzeichen wählen: Leerzeichen
- Daten haben Überschriften (Zeile für Beginn definieren), Import ab Zeile 7 (im Vorschaufenster prüfen)

Feedback und Counter

Ordner

 \circ 1_LexEnt

Skript

- o LexEnt_2.rtf
- Unterschied zu rtf-Datei 1:
 - o 2 Blöcke: Übungsblock mit Feedback & Testblock ohne

Counter f
ür den Testblock:
 Z
ählen der korrekten Reaktionen pro Bed

Zählen der korrekten Reaktionen pro Bedingung, wird am Ende angezeigt

Randomisieren

- = Scrambling in DMDX <u>http://psy1.psych.arizona.edu/~jforster/dmdx/help/dmdxhmultiscramblingscramblekeyword.htm</u>
- 2 Parameter für die Kopfzeile

o <s N>

- definiert die Größe (N=Anzahl der Einheiten) eines Blocks
- die Reihenfolge der Blöcke und die Reihenfolge innerhalb der Blöcke wird randomisiert
- ohne diesen Parameter wird nicht randomisiert

○ <g N>

- Grouping, optional
- N spezifiziert, wie viele Items als eine Einheit betrachtet werden, Standard =1
- wichtig, wenn Stimuli aus mehreren Teilen bestehen (z.B. Interstimulus-Intervall, Fixationskreuz, Prime und Target, mehreren Feedback-Optionen)
- N dürfte hier nicht größer sein als N bei <s N>
- o <ss N>
 - Scramble seed, optional, wenn hier eine Zahl spezifiziert wird, wird bei jeder Durchführung dieselbe Randomisierung benutzt (normalerweise möchte man das nicht)
- Zeichen im Itemfile
 - o \$
- Zeichen, um Ausnahmen vom Randomisieren zu definieren
- Wichtig f
 ür Instruktionen (davor und danach einf
 ügen)
- 0
- Zwischen Blöcken (auf die <g N> zugreift) platziert, verhindert es, dass diese randomisiert werden (um die Reihenfolge zu fixieren)
- es geht auch noch komplexer mit <vg N> und Multi-Scrambling http://psy1.psych.arizona.edu/~jforster/dmdx/help/dmdxhmultiscramblingscramblekeyword.htm

Randomisieren: Ausprobieren

- Ordner: 6_RandoTest
- Skript: rando.rtf
- ohne Randomisierung Präsentation der Zahlen 1 bis 12
- was passiert bei
 - <s 1>
 - <s 2>
 - <s 4>
 - <s 4> <g 2>
 - <s 4> <g4>
- Wie kann man verhindern, dass die Blockreihenfolge geändert wird? Z.B. dass der erste Block immer die 1 enthält?

Stimulusarten

Text

o wird im Itemfile direkt spezifiziert (keine separate txt-Datei)

Bilder

- o nur die Formate <bmp> und <jpg>
- bei vielen Bildern kann es aufgrund eines Programmierungsproblems f
 ür jpg-Dateien zu Problemen kommen
- $\circ\,$ sichere Wahl sind bmp
- ohne weitere Spezifikationen werden die Bilder mittig in ihrer Original-Auflösung dargestellt, sie können auch positioniert und skaliert werden (z.B. <dv 0,0,0,0> = Vollbild)
- Videos
 - o <u>http://psy1.psych.arizona.edu/~jforster/dmdx/help/dmdxhdigitalvideo.htm</u>
 - <dv> unterstützt alle Video-Formate, die DirectShow unterstützt (avi, mpg, Quicktime) und für die Codecs auf dem Rechner installiert sind
 - $\circ\,$ die sicherste Wahl sind MPEG 2 Videos
 - $\,\circ\,$ wie Bilder können Videos positioniert und skaliert werden

Audio-Signale

- o <u>http://psy1.psych.arizona.edu/~jforster/dmdx/help/dmdxhsound.htm</u>
- o nur das wav-Format wird unterstützt
- am besten immer <wav 2> (2=Stereo, 0=linker Kanal =default, 1=rechts)

Bild & Ton

- häufig wird man Bild und Ton zeitlich aufeinander abgestimmt präsentieren wollen
- dafür gibt es <svp> set visual probe

Beispiele

Ton und Bild starten gleichzeitig

+10 <wav 2> "Ton" <svp start> <%ms 0> / <jpg> "Bild" *;

 Ton startet 1s vor dem Bild (Bildschirm ist leer) die RZ-Messung beginnt mit dem Bild

+10 <wav 2> "Ton" <svp start> <%ms 1000> / <jpg> "Bild" *;

 Bild ist f
ür 1s zu sehen, dann startet der Ton die RZ-Messung beginnt mit dem Bild

+10 <msfd 1000> <jpg> "Bild" / <wav 2> "Ton" <svp start> <%ms 0> / <jpg> "Bild" *;

Bsp: Referent-Identifikation

Ordner

- o 2_Refldent
- Skript
 - Refldent.rtf
- Aufgabe
 - Identifizieren eines visuellen Referenten in einem Video, rechts oder links
- Stimuli
 - Videos (mpg) mit gesprochenen Sätzen

Bsp: Verifikation

- Ordner
 - o 3_Verifikation
- Skript
 - Veri.rtf
- Aufgabe
 - Entscheiden, ob ein gesprochener Satz zu einem Bild passt, ja oder nein
- Stimuli
 - Bilder (jpg) und Audio-Dateien (wav)
- Besonderheiten:
 - selbst definiertes Feedback
 - Anzeige der Anzahl der korrekten Antworten am Ende

Bsp: Self-Paced Reading

Ordner

- 5_Self-paced reading
- Skript
 - SPR.rtf
- Aufgabe
 - aufmerksam und schnell lesen und nach jedem Wort/Phrase Taste für das nächstes Wort/Phrase drücken und (ab und zu) eine Verständnisfrage beantworten
- Stimuli
 - o wortweise präsentierte Sätze

Zusatzfolien

Bsp: Picture-Word Interference Paradigm

Ordner

- 4_PicWordInt
- Skript
 - PicWordInt.rtf
- Aufgabe
 - o das Bild benennen, dabei das geschriebene Wort ignorieren
- Stimuli
 - Bild (bmp oder jpg) und Text
- Besonderheiten:
 - Für jedes Item wird ein Soundfile erstellt, das anschließend auf RZ und Korrektheit mit dem Programm "CheckVocal" (Protopapas, 2007) manuell kontrolliert werden kann (Infos auf <u>http://users.uoa.gr/~aprotopapas/CV/checkvocal.html</u>)

Bsp: Picture-Word Interference Paradigm

CheckVocal

- .txt-Datei (Exp.-Name-ans.txt) mit Item-Nr. und korrekter Antwort
- o "CheckVocal" öffnen, azk-Datei auswählen
- Dateiformat auswählen (Empfehlung: "long format"), "RT Marks from CheckVocal" auswählen
- Für jedes Item Korrektheit und RZ kontrollieren

👷 CheckVocal setup						
DMDX results file: C:/Users/Anne2/Dropbox/MWS/4_Word picture interference/PicWordInt.azk						
Blink correct response: 📀 Never 🔿 Always 🗠 On change						
Timeout value: From DMDX item file C Set to 10000 ms						
Save subject data in: C Rows C Columns C AZK file 📀 long format						
Include: 🔽 date 🔽 time 🗔 computer 🗔 refresh 🔲 trial order						
Value separator: 📀 Tab C Space C Comma						
RT marks from: C DMDX Vox 📀 CheckVocal 🔲 Remove DC 🔲 Reverse (mark end)						
RMS threshold: 45 🛨 dB 🛛 Window length: 10 🛨 ms						
Wave display: 800 👤 pixels wide by 150 党 pixels tall						
Character encoding: Latin (ISO-8859-1) 🛁 🗌 Remove consecutive repeated items						
Cancel Reset Proceed						