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Definition

An argumentation framework (AF) is a pair I = (A, R) where A is a set of arguments and
R C A x A. We say that b attacks a iff (b,a) € R, also denoted as b — a.



Definition

Given an AFT = (A, R):

- asetSC Aisa conflict-free setof F'if fa,b e Sst a—b;

- an argument a € A is acceptable with respecttoasetSC Aof INif Vb € A s.t.
b—adceSst c— b;

-asetSC Aisanadmissible set of I if Sis a conflict-free set of I' and every element
of S is acceptable with respect to S of T".

Definition
Givenan AFT = (A, R):asetSC Ais a:

- preferred extension of T iff S is a maximal (w.rt. set inclusion) admissible set of I';

- stable extension of I iff S is a conflict-free set of I and
A\S={ae A | b—aandbeS}
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First Impression:
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On random graphs 1.
Dedicated to O. Varga, ot the occasion of his 50" birthday.
By P. ERDOS and A. RENYI (Budapest).

Let us consider a “random graph” I, v having n possible (labelled)
vertices and N edges; in other words, let us choose at random (with equal

n
probabilities) one of the {!2') possible graphs which can be formed from
N

L. by selecting N edges from the (3]
). Thus the effective number of vertices of

the n (labelled) vertices P
possible edges PP, (1=
I..x may be less than n, as some points i may be not connected in 7', x
with any offier point P; we shall call such points P isolated points. We
consider the isolated points also as belonging to I, x. I\, is called com-
pletely connected if it effectively contains all points Py, P.,..., P. (i, e. if it
has no isolated points) and is connected in the ordinary sense. In the present
paper we consider asymplotic statistical properties of random graphs for
1~ . We shall deal with the following questions

1. What is the probability of I', v being completely connected?

2. What is the probability that the greatest connected component (sub-
graph) of I, x should have effectively n—k points? (k=0, 1,...).

3. What is the probability that Iy should consist of exactly k-1
connected components? (k=0, 1,....).

If the edges of a graph with n vertices are chosen successively so
that after each step every edge which has not yet been chosen has the same
probability to be chosen as the next, and if we continue this process until
the graph becomes completely connected, what is the probability that the
number of necessary steps » will be equal to a given number /2

As (partial) answers to the above questions we prove fhe following
four theorems. In Theorems 1, 2, and 3 we use the notation

1 .
[0} N= —z—nlugn—fcnl

where c is an arbitrary fixed real number ((x] denotes the integer part of x).
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import java.util.concurrent.Executors;
import java.util.concurrent. Future;

import java.util.concurrent. TimeUnit;

import java.util.concurrent. TineoutException:

import net.sf.probo.writer. Apririter;
import net.sf.probo.writer. Tgfuriter;

import net.sf probo.writer Writer;

import net.sf. tueety.arg.dung. ConpleteReasoner;
import net.sf. tueety. arg. dung.DungTheory
import net.sf. tueety.arg. dung. Groundeasoner ;

import net.sf.tweety.arg.dung.PreferredReasoner;
SF.tu

import net.sf. tweety.arg. dung. syntax. Attack;
import net.sf. tweety . commons. util.RandomSubsetIterator;
import net. sf . tweety. conmons. util. SubsetIterator;
import net.sf. tweety.Logics.pl.sat.LingelingSolver;
import net.sf. tweety. Logics.pl.sat.SatSalver;
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10« T if Pis unsolved

PAR10(s, P) = {

tp(s)  otherwise

T indicates the considered timeout
tp(s) denotes the time needed by solver s to solve problem P






EE-PR

All Barabasi-Albert Erdos-Rényi Stablem Watts-Strogatz
Solver PAR10 Cov. Ft PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov.
Cegartix 1350.4 79.1 229 16626 742  1266.6 81.0 1439.2 77.0 1028.6 84.2

ASPARTIX-D 27286  56.1 4 41015 326 3067.8 516 20688 66.7 16303 74.3
ASPARTIX-V 27722 552 21 3646.6 403 3292.6 471 23407 620 17724 71.9

CoQuiAas 3026.4 505 78 37361 384 28734 535 28364 533 26451 571
ASGL 34773 432 1 4809.7 20.3 96.1 100.0 44754 260 45855 254
Conarg 36963 393 158 11287 81.6 28139 558 49346 183 6000.0 0.0
ArgTools 39062 352 322 36944 39.0 452 100.0 6000.0 0.0 6000.0 0.0

GRIS 45437 244 174 254.6 96.1 6000.0 0.0 6000.0 0.0  6000.0 0.0




EE-ST

All Barabasi-Albert Erd6s-Rényi StablemM Watts-Strogatz

Solver PAR10  Cov. F.t PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov.

ArgTools 440.7 945 245 13286 78.4 47.4  100.0 1441 100.0 230.5 100.0
' LabSATSolver 6416 900 352 3962 939 227 100.0 14976 760 6849 907
ASPARTIX-D 829.7 871 395 4122 935 11944 816 11872 810 5350 930
- CoQuiAas 14772 762 372 14533 765 14851 765 18790  69.3 11065 833
" DIAMOND 15554 752 42 25271 587 6922 897 18872  69.7 11271 837
 ArgSemSAT 18266 705 70 40190 335 4089 945 19700 680 9008  87.0
Conarg 19764 678 292 2614 961 336 100.0 37421 383 40100 353







STATIC PORTFOLIOS

Defined by: Shared-k
1. the selected solvers; Each component solver has been allocated %ﬂ“me seconds. Solvers
2. the order in which selected/ordered according to overall PAR10
solvers will be run;
and

3. the runtime allocated
to each solver.

FDSS
From an empty portfolio, we iteratively add either a new solver component, or
extend the allocated CPU-time of a solver already added to the portfolio,

depending on what maximises the increment of the PAR10 score of the portfolio




PER-INSTANCE PORTFOLIOS

For each AF a vector of Classification-based

features is computed. Classify

Similar instances should It classifies a given AF into a single category which corresponds to the single solver
have similar feature predicted to be the fastest and allocates it all the available CPU-time

vectors. Portfolios are

configured using empirical )
Regression-based

1-Regression
Given the predicted runtime of each solver, the solver predicted to be the fastest is

performance models

§ selected and it has allocated all the available CPU-time

M-regression

Initially we select the solver predicted to be the fastest, but we allocate only its
predicted CPU-time +10%. If such a solver does not solve the given AF in the
allocated time, it is stopped and no longer available to be selected, and the process

iterates by selecting a different solver
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EE-PR

EE-ST

System

Cov.

PAR10

System

Cov.

PAR10

VBS

Clossify
1-Regression

M-Regression
FDSS

CCegartix
Cshared2
CShareds
| ArgSemsAT

LabSATSolver

prefMaxsaT
CShared-4
Shareds
DiaMOND

ASPARTIX-D
ASPARTIX-V

 CoQuitas
ASGL
Conarg

ArgTools
GRIS

914

87
88.6

82.8
80.0

791
732
694
691

66.8

668
65.7
633
610

56.1
55.2

205
432
393

35.2
P

562.9

0652
7347

1068.3
13114

13504
16780
118920
119162

2050.3

120572
121055
122403
24170

2728.6
2772.2

30264
4773
3696.3

3906.2
4543.7

VBS

T-Regression
Classify

Shared-2
M-Regression

~ Shared-3
~ ArgTools
* LabSATSolver

‘FDSS

ASPARTIX-D

CShareds
Cshared4
Coquiras
CDiaMOND

ArgSemSAT
Conarg

CASGL

11000

9Tk
97.1

97.7
94.7

87.1

863
860
762
752

70.5
67.8

940
S 945
900
894

373

393
2069
2175
2623
3784
4201
4407
6416
6774
829.7
867.4
8738

4772
1555.4

1826.6
1976.4

26476




EE-PR EE-ST

System Class. M-Reg. Class. M-Reg.
ArgSemSAT 0 253 0 212
ArgTools 311 305 138 428
ASGL 6 36 0 35
ASPARTIX-D 2 80 305 409
ASPARTIX-V 1 99
Cegartix 221 403

 Conarg 157 122 231 337

~ CoQuiAas 43 44 288 193

 DIAMOND o 65 33 138
GRIS 153 278
LabSATSolver 13 208 228 548

prefMaxSAT 297 301







LEAVE-ONE-SET-OUT SCENARIO: PREFERRED EXTENSIONS

EE-PR

Barabasi-Albert Erdds-Rényi StablemM Watts-Strogatz

System Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10
Clossify 789 13214 886 7450 744 15743 895 6778

1-Regression 76.3 1479.0 63.0 2255.2 76.5 1453.9 83.0 1079.9

M-Regression 70.4 1828.4 67.3 2039.7 77.0 1434.7 79.6 1267.6

FDSS 69.1 1916.2 80.9 12455 79.1 1341.9 78.6 1380.0

Shared-2 73.2 1678.0 73.2 1678.0 74.2 1620.4 73.2 1678.0
(Shored3 694 18920 673 20079 695 1897 694 18920
(Shored-4 657 21062 57 21011 657 21081 657 21039

Shared-5 63.3 2240.9 63.4 2235.8 63.3 22429 63.3 22429




LEAVE-ONE-SET-OUT SCENARIO: STABLE EXTENSIONS

EEZSTI]
Barabasi-Albert Erdos-Rényi StablemM Watts-Strogatz
System Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10
| TRegression 886 7569 926 5087 986 1499 816 11530
Classify 93.0 470.4 92.4 519.6 91.2 575.6 93.4 439.3
Shared-2 97.7 262.3 97.3 285.2 97.7 2209 97.7 262.3
M-Regression 96.2 297.4 96.4 282.2 95.6 3349 90.3 636.5
Shared-3 94.0 420.1 94.0 435.5 94.0 420.1 94.0 476.6
FDSS 894 6774 871 807 894 6774 887 7147
(Shared-4 859 | 8782 860 8875 860 8738 868 8338
Shared-5 86.3 867.4 86.3 870.8 86.3 862.3 84.3 973.4




CONCLUSIONS



. It is not always the case that that reduction-based solvers always outperform non

reduction-based systems;

. The solvers at the state of the art show a high level of complementarity (specially

those able to deal with EE-PR problems), thus they are suitable to be combined in
portfolios;

. Portfolio systems generally outperform basic solvers;

. If the training instances are representative of testing AFs, the existing set of features

is informative for selecting most suitable solvers;

. Classification-based portfolios show good generalisation performance;,

. Static portfolios are usually the approaches which are less sensitive to different

training sets.



- Further investigations in the generalisation capabilities of portfolios performance by

considering significantly differently-structured AFs, including complex frameworks
generated by real-world scenarios;

- Extend the portfolio methods considering SATZilla like approaches, or more

sophisticated model-based techniques;

- Testing portfolio methods also in other complex argumentation problems.
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