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"@FrankLuntz: I'm getting a lot of @MegynKely hatemail tonight. @
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Human Annotation
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Example

Trump's speech was poor. The speech was "lacking in policy
prescriptions,” and its "strident rhetoric masked a lack of
depth," said Robert McFarlane, a former national security

adviser. However, his popularity in the polls continues to rise,

perhaps because of his recently self-declared high Q.
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Example

Trump's speech was poor. The speech was "lacking in policy
prescriptions,” and its "strident rhetoric masked a lack of
depth," said Robert McFarlane, a former national security
adviser. However, his popularity in the polls continues to

rise, perhaps because of his recently self-declared high 1Q.

Discourse Indicators (“However”, “because”)
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Example

Trump's speech was poor. The speech was "lacking in policy
prescriptions,” and its "strident rhetoric masked a lack of
depth,"” said Robert McFarlane, a former national security

adviser.
However, his popularity in the polls continues to rise,
perhaps because of his recently selt-declared high 1Q.

opical Similarity
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Example

Trump's speech was poor. The speech was "lacking in
policy prescriptions,” and its "strident rhetoric masked a
lack of depth,” said Robert McFarlane, a former national

security adviser. However, his popularity in the polls
continues to rise, perhaps because of his recently self-
declared high 1Q.

Argumentation Schemes
(Argument from expert opinion)
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Argumentation Scheme
Structures
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V. W. Feng and G. Hirst. Classifying arguments by scheme. In
Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 987-996. Association for Computational
Linguistics (ACL), 2011

Aims to classity instances of schemes based on pre-
identified structure
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|dentify segment as scheme components

Premise: Source E is an expert in
subject domain S containing

proposition A [FieldExpertise] \ contris e rn o Koren ‘
A
Premise: E asserts that S
proposition A is true § Y,
(false) [KnowledgeAssertion] /

=

from pursuing nuclear weapons,

who is an expert on Middle Eastern politics

N
\
Britain disarming would not stop Iran {V (

Conclusion: A is true (false)  cceorangto Sepn s
[KnowledgePosition]
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Dataset

* Over 500 examples of schemes identified in AlFdb

* Limiting the data to those schemes with at least twenty
instances that are fully defined:

Analogy (31 examples)

Cause To Effect (89 examples)
Practical Reasoning (68 examples)

Verbal Classification (38 examples)

A R G -te c h Argument Mining using Argumentation Scheme Structures

Centre for Argument Technology John Lawrence & Chris Reed



Analogy (AN)

Premise [SimilarityOfCases]: Generally, case C1 is similar to case C2
Premise [Precedent]: A is true (false) in case Cl1

Conclusion: A is true (false) in case C2

CauseToEffect (CE)

Premise [Causal]: Generally, if A occurs, then B will (might) occur
Premise [Occurrence]: In this case, A occurs (might occur)
Conclusion: Therefore, in this case, B will (might) occur

PracticalReasoning (PR)

Premise [Goal]: 1 have a goal G

Premise [GoalPlan]: Carrying out this action A is a means to realise G
Conclusion: Therefore, I ought (practically speaking) to carry out this action A

VerbalClassification (VC)

Premise [ ContainsProperty]: a has a property F

Premise [ClassificationProperty]: For all x, if x has a property F, then x can be classified as
having a property G

Conclusion: a has property G
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Classifiers for
each
component

ARG-tech

Unigrams Each word in the proposition
Bigrams Each pair of successive words
Length The number of words in the proposition
AvgWLength The average length of words in the
proposition
POS The parts of speech contained in the
proposition
Punctuation The presence of certain punctuation
characters, for example “ ” indicating a
quote
Similarity The maximum similarity of a word in
the proposition to pre-defined words
corresponding to each proposition type
Type Keywords
AN Similar similar, generally
AN Precedent be (to be)
AN Conc be (to be)
CE Causal generally, occurs
CE Occurance occurs
CE Conc occurs
PR Goal goal
PR GoalPlan action
PR Conc ought, perform
VC Property be (to be)
VC Class all, if
VC Conc be (to be)
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Results: One vs Others Classification

Type Naive Bayes SVM Decision Tree
p r fl p r fl p r fl

PR Goal 065 079 071 | 0.55 086 067 | 059 0.71 0.65
PR GoalPlan 065 093 076 | 0.76 093 0.84 | 0.75 0.86 0.80
PR Conc 090 064 075|055 043 048 | 0.76 093 0.84
CE Causal 0.57 089 0.70 | 0.58 061 059 | 094 089 091
CE Occurance | 0.50 0.72 059 | 040 022 0.29 | 038 0.33 0.35
CE Conc 073 089 080 | 054 078 0.64 | 057 0.72 0.63

AN Similar 058 100 0.74 | 060 043 050 | 056 0.71 0.63
AN Precedent | 0.64 1.00 0.78 | 0.75 043 055 | 029 029 0.29

AN Conc 1.00 029 044 | 038 043 040 | 057 057 0.57
VC Property 088 088 088 | 1.00 050 0.67 | 0.75 0.75 0.75
VC Class 058 088 0.70 | 0,67 0.75 0.71 | 0.75 0.75 0.75
VC Conc 1.00 050 0.67 | 062 062 062 | 1.00 0.38 0.55

Baseline = 0.5
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|[dentifying Scheme Instances

Segments corresponding to (one or two) scheme
components within a fixed window

Reduce the threshold for the other classifiers until we
have matches for all components
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|[dentifying Scheme Instances

Knowledge Assertion

Trump's speech was poor. The speech was "lacking in
policy prescriptions,” and its "strident rhetoric masked a
lack of depth," said Robert McFarlane, a former national
security adviser.

Threshold = 0.9
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|[dentifying Scheme Instances

Trump's speech was poor. The speech was "lacking in
policy prescriptions,” and its "strident rhetoric masked a
lack of depth," said Robert McFarlane, a former national

security adviser.

Threshold = 0.8
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|[dentifying Scheme Instances

Trump's speech was poor. The speech was "lacking in
policy prescriptions,” and its "strident rhetoric masked a
lack of depth," said Robert McFarlane, a former national

security adviser.

Threshold = 0.7
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|[dentifying Scheme Instances

Knowledge Position

Trump's speech was poor. The speech was "lacking in
policy prescriptions,” and its "strident rhetoric masked a
lack of depth," said Robert McFarlane, a former national

security adviser.

Threshold = 0.6
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Combining Techniques
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An explosion of charities offering
different and sometimes unproved
treatments to veterans with mental
iliness could be harming rather than
helping, it was claimed last night.

Sir Simon Wessely, an expert in the
field said there was a lack of
regulation in tackling post-traumatic
stress disorder. Better co-ordination
between charities and experts
dealing with veterans could have
advanced even further the treatment
of mental illness

ARG-tech

Betier co-ordination botween charities
and experts dealing with veterans
could have advanced even further the
treatment of mental iliness

!

Default Inference ‘

!

An explosion of charties offering
dierent and sometimes unproved
treatments to veterans with mental

iliness coukd be harming rather than

heiping

Sir Simon Wessely, an expert in the field

said there was a lack of regulation in
taciling post-traumatic stress disorder

Manual Analysis
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Bemer co-ordination botween charities
#0d oxpants dealing with vaterans
couid have advanced even further the

Bemer co-ordiration between Charities

Bemar co-ordimation botween Charities

#7C 030013 Seakng with vatarans
couid have acvanced even further the
troatment of mental finess
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treatment of mental finess
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Betier co-ordination between charities

and experts dealing with veterans

could have advanced even further the

Betier co-ordination between charities

and experts dealing with veterans
treatment of mental ifness
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treatment of mental ilness
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Sir Simon Wessely, an expert in the field
Combined Techniques
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