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Background & Motivation

Introduction

@ The purpose of this study was to consider the feasibility of using
spectral techniques to analyse Dung's abstract argumentation
frameworks introduced in Dung (1995).

@ Spectral Graph Theory - The study of properties of a graph in
relation to the eigenvalues and eigenvectors of associated matrices of
the graph (in our case, the adjacency matrix).
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Background & Motivation

Motivation

Spectral techniques offer important insights into many different areas of

science, where the problem at hand can be represented as a graph. Most
notably:-

e Google's PageRank algorithm, see Bryan and Leise (2006),
g UK
o Characterisation of human faces, see Kirby and Sirovich (1990),
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Background & Motivation

Motivation

Spectral techniques offer important insights into many different areas of

science, where the problem at hand can be represented as a graph. Most
notably:-

@ Analysis of molecular structure, see Estrada (2000),
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Image from Estrada 2000

@ Subgraph centrality in complex networks, see Estrada and
Rodriguez-Velazquez (2005).
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Preliminaries

Dung's Abstract Argumentation Frameworks

Definition 1
An argumentation framework (AF) is a pair H = (X, A).
X is a finite set of arguments.

A is a binary relation on & such that A C & x X', known as the ‘attacks’
relation.
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Preliminaries

Dung's Abstract Argumentation Frameworks

Definition 2
Let S be an arbitrary subset of arguments of X.

S is conflict-free iff no argument in S is attacked by any other argument
in S.

The set S is a stable extension iff it is conflict-free and S attacks each
argument that does not belong to S.
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Matrix Algebra

Definition 3
Let M? be the n x n (0,1)-matrix representing H, where n = |X|.

Entry mj; = 1iff (x;, x;) € A, otherwise mj; = 0.

Definition 4

Let A be a complex number, X is an eigenvalue of M iff there exists
some non-zero, n x 1 vector v such that MHM = \v.

v is an eigenvector with respect to M* and X in this case.
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Matrix Algebra

TreyGreer62, Mona Lisa Eigenvector Grid, Retrieved from:
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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Matrix Algebra

Definition 5

The tuple
o(H) = (A1, A2, .0y An)

formed by the n eigenvalues of M™ is called the spectrum of H.

An ordering of o(#) is assumed such that whenever i/ < j, it holds that

|Ail = |Aj| > 0. The eigenvalues are considered in a non-decreasing order
and Ap is the largest eigenvalue (dominant).
Where for,

A=a+ibeC, where, i=+v-1

A=+ 1)
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Matrix Algebra

Definition 6
The Estrada Index, EE, of H - defined in Estrada (2000) - is given as,

EE(H)= ) _ ¢

A€o (H)

Fact 1
For all H, EE(H) € R.
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Experimental Structure

Experimental Aim

Aim
(Somewhat) randomly generate AFs, calculate their respective spectra and

assess whether there are any links between the spectra and a specific

semantic property of the AF (in our case the existence of a stable
extension).

Not all AFs are considered, only a specific set.

We construct AFs from 3-CNF formula; specifically in the form given by
Dimopoulos and Torres (1996).
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Experimental Structure

Considered Frameworks

¢ = (Zl V 2oV 23) VAN (21 V =z V _\23) VAN (—|22 V —zz3 V 24)
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Experimental Structure

Considered Frameworks

Fact 2

Let ¢ be any CNF formula and 7(¢) be the respective AF. The following
are equivalent properties respecting ¢:

@ The formula ¢ is satisfiable.
@ The AF 7(¢) has a stable extension.
@ The AF 7(¢) has a non-empty preferred extension.

@ The argument ¢ in 7(¢) is credulously accepted w.r.t. admissible
semantics.
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Satisfiability

Definition 7

Given a boolean formula ¢, ¢ is said to be satisfiable iff there exists some
assignment of variables within ¢ such that ¢ itself evaluates to true; if this
is not the case, ¢ is said to be unsatisfiable.

Satisfiability of a 3-CNF formula can be quite predictable according to the
ratio of the number of clauses, m, to the number of variables, n, which we
will refer to as r.
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Satisfiability Threshold

Fact 3
Let ¢ be a randomly drawn formula from the space of n variable, m clause

3-CNF formula. There exists constants (f},60%) € Rt (with 6 < 6Y) such
that

Letting r = m/n,

if r <6

if r> 0}

lim Pr[¢ is satisfiable] = { ’
n— o0 0

9
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Satisfiability Threshold

Probability Curves for SAT
(n =20, 30 and 40 variables)
1 T T

Probability Formula is Satisfied
o o = =4 o 4
w » o ) N @
T T T T T T
i i i i i i

o
[
T

I

0 I L I I
2 4 6 8 10 12
Ratio of Number of Clauses to Number of Variables

Figure 2.2: Probability curves for 3-SAT for n = 20, 30, 40 variables
Bailey, Delbert. 3-CNF Phase Transition. 2004. Phase Transitions Of Boolean Satisfiability Variants.
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Experimental Structure

Question

Question?

“Is the pattern whereby random 3-CNF with a small value of r are almost
certainly satisfiable whilst those with many clauses are not, reflected in the
spectral properties of the AF defined through 7"7?
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Experimental Structure

Experimental Procedure

1. Set n, the number of variables and set m the number of clauses.

n m r
4 3 0.75

2. Generate a random n variable, m clause, 3-CNF formula, ¢.

o= (21 V2oV 23) AN (21 V =z V _\23) AN (—|22 V —zz3 V Z4)
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Experimental Structure

Experimental Procedure

3. Form the AF, 7(¢).
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Experimental Structure

Experimental Procedure

4. Form the adjacency matrix, M7(9),

v ¢ C1 Cy C3 =z —21 2 —2 23 —23 24 4
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Experimental Structure

Experimental Procedure

5. Determine for the adjacency matrix M7(#),

(a) The dominant eigenvalue A;.
(b) The second largest eigenvalue A.
(c) The Estrada Index EE(7(¢)).

For this we used an eigenvalue calculator called JAMA, which is a package
that provides fundamental operations of linear algebra.

Other eigenvalues were considered such as A, Ap—1 and A, >, however
these values were minute and provided no interesting insights.
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Overview

@ Results
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Results - \; against R

NumClauses NumVars R LambdaMax MatrixSize

36 12 3 3.5060127607816627 62
38 1 3.45454545454545 3.5494037865195067 62
40 10 4 3.5911274782870497 62
42 9 4.66666666666667 3.6313263256695034 62
44 8 5.5 8.6701245557563675 62
46 7 6.57142857142857 3.7076311847742875 62
48 6 8 3.743942451076405 62
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Results

Results - \; against R

LambdaMax Against R

]
=
]
2
£
3

3 3.13.2333.43.53.63.73.83.9 4 4.14.24.34.44.54.64.74.849 5 5.15.25.35.45.55.65.75.85.9 6 6.16.26.36.46.56.66.76.86.9 7 7.17.27.37.47.57.67.77.87.9 8
R
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Results

Results - A\, against R

LambdaSecond Against R
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Results

Results - EE against R

EE Against R

2.62.72.82.9 3 3.13.23.33.43.53.63.73.83.9 4 4.14.24.34.44.54.64.74.84.9 5 5.15.25.35.%5.5.65.75.85.9 6 6.16.25.36.46.56.66.76.86.9 7 7.17.27.37.47.57.67.77.§7.9 8 8.18.28.38.48.58.6
R

-®- MS=62 & MS=72 & MS=82
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Conclusion

Conclusion

@ It has been shown in the case of the AFs considered here that there
exists a positive correlation between R and A1, A\ and EE in turn.

@ Through the phase transition of boolean satisfiability, this means that
AFs of this kind with spectra below certain thresholds will almost
always be satisfiable (have a stable extension) and those with spectra
higher than certain thresholds will almost always be unsatisfiable
(does not have a stable extension).
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Conclusion

Conclusion

@ However, these argumentation frameworks are not typical frameworks.

@ The purpose of this study was to establish some link between graph
spectra and Dungian abstract argumentation semantics and to
encourage further investigation into this area.
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Future Work

© Construct AFs with varying dominant eigenvalues (non-trivial task)
and consider their semantic properties.

@ Analyse the spectral properties of the extension characterisations (Xu
and Cayrol 2015).

Consider the spectral properties of real world AFs.

Consider Laplacian matrices as a representation.

© 00

Consider correlation with eigenvectors.
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Conclusion

Questions

Thank you for listening

Any Questions?
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