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Forbidden Sets I

In Dung’s formalism, given an af – < X ,A > – groups of “collectively
acceptable” arguments are often defined as those subsets of X satisfying
various criteria.

For example

S ⊆ X is,

conflict free.

⊆-maximally conflict-free (so-called naive extensions).

conflict-free and defensive (so-called admissible sets)

⊆-maximal admissible (so-called preferred extensions)

admissible and attacks all not within it (stable extensions)

contains exactly the arguments it defends (complete extensions)

S belonging to such systems is characterized “positively”.
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Forbidden Sets II

What if we wish to show, however, that S does not belong?

Option 1

Merely demonstrate that S violates the given criteria. For example,

An argument in S attacks another argument in S .

There is a strict superset of S meeting criteria.

There is an unattacked outsider.

S defends an argument neither in conflict with S nor inside S .

Option 2

Demontrate that S has a subset T that is not contained in any set
meeting the criteria of interest.

Such T are the forbidden sets (for the relevant semantics)
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Forbidden Sets III - Formal definition

For finite set X , let S be a subset of 2X , ie S is a set of subsets of X .
The forbidden sets for S are

κ(S) = { T ⊆ X : ∀S ∈ S ¬(T ⊆ S) }

The minimal forbidden sets for S are

µ(S) = { Q : Q ∈ κ(S) and (R ⊂ Q)⇒ (R /∈ κ(S)}
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Some basic properties of forbidden sets

For S ⊆ 2X ,

a. For every Q ∈ κ(S) there is some R ⊆ Q with R ∈ µ(S).

b. (∅ ∈ κ(S)) ≡ (µ(S) = {∅}) ≡ (S = ∅).

c. κ(S) = ∅ if and only if {x1, x2, . . . , xn} ∈ S.

Informal statement

a. If Q is a forbidden set for S then some subset, R of Q is a minimal
such set.

b. The empty set is a forbidden set for S if and only if S itself is empty.

c. S has no forbidden set if and only if S contains the set X .

COMMA 2016 (Potsdam 16/9/16) Forbidden Sets 6 / 13



Some basic properties of forbidden sets

For S ⊆ 2X ,

a. For every Q ∈ κ(S) there is some R ⊆ Q with R ∈ µ(S).

b. (∅ ∈ κ(S)) ≡ (µ(S) = {∅}) ≡ (S = ∅).

c. κ(S) = ∅ if and only if {x1, x2, . . . , xn} ∈ S.

Informal statement

a. If Q is a forbidden set for S then some subset, R of Q is a minimal
such set.

b. The empty set is a forbidden set for S if and only if S itself is empty.

c. S has no forbidden set if and only if S contains the set X .

COMMA 2016 (Potsdam 16/9/16) Forbidden Sets 6 / 13



Forbidden sets and extension-based semantics

Many results on extension-based semantics in afs are concerned with the
relationships between extension sets of distinct semantics, σ and τ .

Properties of Forbidden sets deriving from Extension properties

a. If σ and τ satisfy “every σ-extension is a τ -extension” then “every
forbidden set for τ -extensions is also a forbidden set for σ-extensions”.

b. If the σ-extensions are the ⊆-maximal τ -extensions, then their
forbidden sets coincide.

c. For σ, τ as in (b), a set S is a σ-extension iff,

c1. S contains a forbidden set for Eτ \ Eσ. AND
c2. S does not contain a forbidden set for Eσ.

The condition (c2) alone is not enough to distinguish S ∈ Eσ on account
of (b).
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In consequence:

a. The admissibility, preferred, and complete semantics yield the same
system of forbidden sets in any af.

b. The conflict-free and naive semantics have the same systems of
forbidden sets.

c. The forbidden sets for Epr are a subset of those for Esst which in turn
are a subset of those for Est .

d. The forbidden sets for conflict-free semantics are a subset of those for
admissibility semantics.

The relationships from (c) and (d) are tight.
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Example, µ(Epr) 6⊆ µ(Est)

1

2

3

4

5 6

7

Epr = {{1, 5}, {7}}
Est = {{1, 5}}
µ(Epr ) = {{2}, {3}, {4}, {6}, {1, 5, 7}}
µ(Est) = {{2}, {3}, {4}, {6}, {7}}
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Characterizations

Conflict-free & Naive semantics

µ(Ecf ) = { {x , y} : < x , y >∈ A }

Admissibility

µ(Eadm) = min
⊆
{ S : S is defenceless }

That is, every conflict-free superset of S has an attacker which is not
defended.

Unique status semantics

µ(Esing ) = { {x} : x 6∈ Esing }
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Combinatorial Properties

For any k , with 0 ≤ k ≤ n, it is easy to define < X ,A > which has a
preferred extension containing exactly k arguments.

This is not the case when considering minimal forbidden sets.

Upper bound

For any af, < X ,A > with |X | = n, no set S ∈ µ(Epr ) can contain more
than n − log2 n members.

Lower bound

There are afs with S ∈ µ(Epr ) having b n/2 c elements.
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Complexity of minimal forbidden set recognition

Single argument sets

With the exception of stable semantics, deciding if {x} ∈ µ(Eσ) is simply
a reformulation of the non-credulous acceptance problem, and thus its
complexity is the complementary class of credulous acceptance.

Two argument sets - admissibility semantics

The question {x , y} ∈ µ(Epr ) turns out to be more challenging. To verify
such cases requires showing:

1. That {x , y} is a forbidden set. AND

2. Is a minimal such set.

The second involves testing that both x and y are credulously accepted;
the first that the two are not simultaneously so.

This structure leads to a straightforward dp membership algorithm which
is “optimal”: the decision problem is also dp-hard.
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Further Development

1. S ∈ µ(Eσ) with |S | = 2 corresponds to “conflict-sensitivity” in recent
work of Dvorak et al.. What do S ∈ µ(Eσ) having |S | ≥ 3 tell us
about realizability issues?

2. Since µ(S) is itself a subset of 2X , in principle the operator can be
iterated. How does µk(Eσ) relate to Eσ?
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