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Introduction
•  Decision support for reasoning with evidence 

–  Legal cases
–  Risk assessment
–  Intelligence

•  Analysts and decision-makers work with natural 
language text (or semi-structured arguments, 
scenarios)

•  They miss the reasoning power of more 
mathematical approaches
–  Formal argumentation 
–  Logical model-based reasoning
–  Bayesian networks 
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Introduction
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Structured argumentation: ASPIC+

•  Arguments are Directed Acyclic graphs
–  Nodes are statements in a logical language with neg.
–  Links are applications of inference rules (strict or 

defeasible)

•  Arguments constructed from knowledge base
–  Ke (evidence, certain premises), Kp (assumptions, 

uncertain premises)

•  Attack
–  On uncertain premises, on defeasible inferences, on 

conclusions



Structured arguments
•  The burglary (Bur) was committed by the suspect, 

because there is a footprint match (Ftpr) and a 
motive (Mot) backed by a report (For) and a 
testimony (Tes1), and the suspect has no alibi, so 
Opp.

For


Ftpr


Tes1


Mot
 Opp


Bur




Structured arguments
•  However, there is evidence of a mixup in the lab 

(Mix), which means the footprint match is not really 
backed by evidence. Furthermore, the suspect later 
gave a testimony (Tes2) with an alibi, so −Opp.

For


Ftpr


Mix


Tes1


Mot
 Opp


Bur


Tes2


−Opp




Bayesian Networks
•  Represent joint probability distribution as DAG + 

CPT
•  Directed Acyclic Graph
–  Nodes are variables Bur = [Bur, −Bur] 
–  Arcs represent probabilistic dependencies between 

nodes (Mot, Bur)
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Bayesian Networks
•  (Conditional) probabilities
–  Pr(Mot)=0.4; Pr(−Mot)=0.6; 
–  Pr(Bur | Mot)=0.6; Pr(−Bur | Mot)=0.4 �

Pr(Bur | −Mot)=0.01; Pr(−Bur | −Mot)=0.99
–  Conditional Probability Tables (CPT) give all 

probabilities for Pr(V | Par(V)).
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Bayesian Networks
•  Observations E 
–  If a mixup has been observed then Pr(Mix)=1, 

Pr(−Mix)=0
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Bayesian Networks
•  Chain s is said to be blocked, or inactive, given E if
–  s contains node with two incoming arcs which is not in E 

and has no descendants in E; or 
–  s contains node in E that has at most one incoming arc 

on the chain. 
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Bayesian Networks
•  Active chains are not blocked
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Bayesian Networks
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Bayesian Networks
•  Sets of variables X and Y are independent given E 

iff there is no active chain from X to Y
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From arguments to constraints on BN

Nodes
•  Every proposition v or −v in the argument is a 

node representing variable v in the BN
•  Every proposition v in Ke is the observed value 

of v


For
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For	

Ftpr	



From arguments to constraints on BN

Inference chains
•  For every rule v1,…, vn => vc / v1,…, vn −> vc 

used in an argument there is an active chain 
between nodes v1,…, vn and vc
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From arguments to constraints on BN

Attack chains
•  For contradictory (i.e. Opp and −Opp) 

propositions, this is captured by inference chains

Opp


Tes2


−Opp
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From arguments to constraints on BN

Attack chains
•  If vu undercuts the application of rule vp => vc, 

then there are active chains from vp, vc to vu
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From arguments to constraints on BN

Attack chains
•  If vu undercuts the application of rule vp => vc, 

then there are active chains from vp, vc to vu
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From arguments to constraints on BN

Attack chains
•  If vu undercuts the application of rule vp => vc, 

then there are active chains from vp, vc to vu
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Using arguments to check BNs
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Using arguments to check BNs
•  Missing variables
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Using arguments to check BNs
•  Active inference chains
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Using arguments to check BNs
•  Active attack chains
–  If Mix undercuts the application of rule For => Ftpr, 

then there are active chains from For, Ftpr to Mix
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Using arguments to check BNs
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Using arguments to build BNs
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Using arguments to build BNs
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From arguments to constraints on BN

Probability constraints
•  For every strict rule v1,…, vn −> vc in an 

argument, we have Pr(vc | v1,…, vn) = 1
•  For every defeasible rule v1,…, vn => vc in an 

argument, we have Pr(vc | v1,…, vn) > 0 
–  Above interpretation was proposed by Verheij (2014)
–  Pr(vc | v1,…, vn) > 0.5 (Pollock 1995)
–  Pr(vc | v1,…, vn) > Pr(vc) (Hahn & Hornikx 2015)
–  …



From arguments to constraints on BN

Probability constraints
•  If vi attacks (rebuts, undermines) vj, we have 

Pr(vj | vi) = 0
•  If vu undercuts the application of rule vp => vc, 

we have Pr(vc | vp, vu) < Pr(vc | vp) 
–  Explaining away: chances of Ftpr given For and Mix 

are smaller than chances of Ftpr given just For. 
–  Pr(vc | vp, vu) = 0 (Verheij 2014)



Conclusions
•  We can go from structured arguments to BN 

structures
–  Conditional Probability Tables need more 

assumptions

•  (Semi-structured) arguments used by decision-
makers can be compared with BNs built by 
forensic experts

•  (Semi-structured) arguments used by decision-
makers can be used to build initial BNs


