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In this article we take ‘symbolic medels of sentence
processing’ to mean approaches in which processing
is characterized in terms of relatively discrete, combi-
natorial representations. There are other properties of
symbolic processing that are important for cognitive
modeling more generally — for example, the ability
of symbol processing to support Turing-general
computation {Newell, 1990; Lewis, 2000a) — but for
language processing, discrete cmmbnmtmml repre-
sentations are often thought to be the hallmark of
symbolic models. Defined in this manner, symbolic
sentence processing madels include approaches some-
times termed ‘hybrid,” such as activation-based pro-
duction system models, or localist connectionist
models.

One important way to distinguish symbolic proces-
sing models is in terms of their ontological commit-
ments, that is, the symbolic primitives out of which
representations are composed. Arriving at an empiri-
cally and explanatorily adequate ontology of linguis-
tic primitives is the traditional province of synractic
theory. Instead, we focus here on the variety of theo-
retical approaches to symbolic sentence processing
that are largely orthogonal to the ontological distine-
tions made in syntactic theory - though often inter-
acting with them in empirically and theoretically
critical ways. We also focus here primarily on syntac-
tic processing in comprehension, the domain of sen-
tence processing that has received the most attention,
though symbolic models exist that exrend upward o
discourse-fevel phenomena (Kintsch, 1988; Carpen-
ver et al., 1995),

The remainder of the article is organized around
the following four broad approaches to symbolic sen-
tence-processing theory, which jointly cover most
existing models: (1) grammar-based approaches,
which posit a tight link between competence ;,lam—
mars and processing phenomena; (2) symbolic com-
plexity metrics and ambiguiry resolution principles,
which are abstract processing theories predicate f
on combinatorial syntactic representations; (3) ap-
proaches based on existing or independently moti-
vated compurational uxg,mme architectures: and {4)
approaches based on probabilistic grammars, which
appeal to frequency and experience, as encoded in a
symbolic grammar formalism. Rarher than surveying
the entire literature, we illustrate each of the
approaches by explaining the details of a few muodels,
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and provide pointers to the literature for other exam-
ples. We conclude the article with a brief section out-
lining points of commonality with connectionist
models.

Grammar-Based Approaches

Chomsky {Chomsky, 1965) has long argued that any
processing theory must include a theory of compe-
tence as a critical component, but given that a com-
petence theory is a characterization of knowledge
state that abstracts away from processing, it alone
does not make processing predictions of the kind
that bring it into contact with fine-grained psycholin-
guistic data: specific linking assumptions are required
to bridge the gap. Grammar-based approaches pre-
suppose a syntactic theory, and associate with it some
fairly strong linking assumption so that the compe-
tence theory itself can be seen to drive the processing
predictions.

The strongest form of this linking has been termed
by Berwick and Weinberg as the type-transparency
assumption. It states that “the logical organization of
rules and structures incorporated in a grammar [is]
mirrored rather exactly in the organization of the
parsing mechanisms™ (1984: 39). Many instances of
this assumption can be found in the literature, and
Berwick and Weinberg (1984: 39-82) provided an
extensive discussion of the potential theorerical and
empirical consequences of various positions.

In strong grammar-based approaches, the primitives
of competence grammar are the principal explanatory
force behind any observed processing difficulty. The
metrics for determining processing complexity may
differ as a function both of different underlying syn-
tactic theories and of processor-grammar linking
assumptions. Some theories rely on the history of the
syntactic derivation and/or the number of basic opera-
tions involved (e.g., the derivational theory of com-
plexity), while some rely on the number of rules used
or violated (e.g., optimaliry theory).

The deriv: mcmfﬂ theory of complexity (Miller and
Chomsky, 1963; Fodor et al., 1974) is the oldest such
idea. Its central hypothesis is thart the transformation-
al model could be construed as a processing theory
m addition to a competence theory {e.g., Chomsky,
1965} if “our performance on tasks requiring an ap-
preciation of the structure of ransformed sentences is
some function of the nature, number and complexiry
of the grammatical rtransformarions involved™
(Miller and Chomsky, 1963: 481). Although early
experiments showed little evidence to support such a
connection between grammar and processing {e.g.
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Slobin, 1966}, subsequent work has attempted to
tackle the question in ar least three distinct ways.

The Strong Type-Transparency Approach

Omne approach has been to redefine the architecture
of grammar in the hopes of maintaining the strong
rype-transparency assumption. Examples are other
versions of transformational grammar (Berwick and
Weinberg, 1984; Phillips, 1990), lexical-functional
grammar {Bresnan, 1978; Bresnan and Kaplan, 1982),
and optimality theory (Fanselow et al., 1999; Hoeks
and Hendriks, 2004; Stevenson and Smolensky,
forthcoming).

As an example of a sentence-processing model
based on a new grammar architecture, we consider a
specific approach based on optimality theory (OT)
(Fanselow et al., 1999). OT (Legendre et al., 2000}
is a grammar framework that assumes thar there
exists an evaluator, EVAL, and an ordered list of
rules. The rules are violable, with the additional con-
straint — termed strict dominance — that no number of
violations of a lower-ranked rule are as important as a
violation of a higher-ranked one. Also provided is
function called GEN that takes as input a string (in
sentence parsing, a string of words) and produces as
output a set of so-called candidates. For example,
given the set of words {guess, we, saw, whom} GEN
would generate all the possible permutations. The
candidates are simultaneously examined with respect
to the ordered rules and a winning candidate declared
based on the rule violations and subject to strict
dominance.

This grammar architecture can be applied to sen-
tence processing by relying on the following critical
property of OT: the incremental, nonmonotonic ap-
plication of the defeasible rule system allows for a
ranking of contrasting sentence structures to be estab-
lished, which predicts preferred parses. A simple ex-
ample is the string {guess, we, saw, whom}. The two
relevant rules whose relative ranking of candidates
determine the outcome are antisymmetry (AS) and
wh-criterion (wWhC); AS says that objects follow the
verb, and subjects precede it, and whC that a constit-
uent question must begin with a wh-phrase. Assum-
ing that whC is ranked higher than AS, the winning
candidate guess whowm we saw violates only AS,
whereas the permutations guess we saw whom and
guess we whom saw violate the higher ranking wh(
constraint; and so on.

A potentially interesting property of OT is that it is
considered a limiting case of a connectionist-inspired
grammar formalism (Smolensky and Legendre, 2005);
for example, the connectionist correlate to GEN is
the start state of a network in which all possible
constituents are represented as vectors, and the

threshold logic units representing suboptimal candi:
datres are deactivated, returning an optimal winner
{Hale and Smolensky, 2001).

An Automata-Theoretic Approach

A second approach, championed by Joshi (Joshi,
1990; Rambow and Joshi, 1994), is to establish math-
ematical equivalences between grammar forms
and computational automata, and then use proc
complexity metrics naturally defined on these auto-
mata. Joshi presents complexity metrics over a (bot-
tom-up) embedded pushdown automaton (BEPDA)

to explain the difference in processing difficulty of,
for example, Dutch vs. German center embedded
structures (Bach er al., 1986). The novel aspect of
their automaton-based metric s thar the BEPDA is
related in a systematic way to the class of tree-ad

dijvin-
ing grammars (TAGs), a framework for defining com-
petence grammars (Abeillé and Rambow, 2000). The
relationship is that for every TAG there is a BEPDA
that accepts exactly the strings thar the TAG ge
ates, and for every BEPDA there is a TAG rhat
erates exactly the set of strings thar the BEPDA
accepts. The uniqueness of this approach stems from
the fact that formal models of competence and of per-
formance are linked by the equivale
between the machinery; this mathematica
ship — rather than using a grammar formalism directly
as a sentence-processing model ~ constitutes the link
between grammatical representation and processing,.

Grammatical Representations with an
Information-Theoretical Constraint

The third type of exploration of the grammar—parser
relationship is exemplified by the entropy reduction
hypothesis (Hale, 2004}, This model fixes a partic-
ular complexity metric (the reduction of entropy
[Shannon, 1948] during incremental parsing) derived
from a probabilistic grammar, and compares the ef-
fectiveness of modeling sentence-processing data with
two distinct grammatical representational possibili-
ties (Kayne’s promotion analysis |Kayne, 1994/ and
Chomsky’s adjunction analysis |Chomsky, 1977]).
Although not an explicit goal of this approach, it
provides a principled comparison between one set of
representational assumptions vs. another in a precise
manner. What makes this comparison possible is that
the proposal is grammar independent and can be
implemented for any grammar in the class of mildly
context-sensitive grammars.

Some General Issues in Grammar-Based Models

In the grammar-based approaches, two general issues
deserve comment. An assumption (either implicit or
explicitly stated) in most grammar-based approaches
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is that the human parser is incrementally constructing
syntactic structures and, furthermore, that building
syntactic structure is a prerequisite for semantic intei-
pretation {(e.g., Frazier and Clifton, 1996). But an
interesting development in linguistic and psycholin-
guistic theory is the possible elimination of the dis-
tinction between syntactic structure building and
semantic interpretation. In particular, the concurrent,
incremental construction of a combined semantic and
syntactic structure has emerged as an alternative po-
sition (Steedman, 2000). This has important implica-
tions for modeling real-time sentence-processing data,
since considerable evidence now points to a simulta-
neous use of both syntactic and semantic information
in constraining a parsing decision (Trueswell et al.,
1994).

The second issue is the relationship between various
syntactic theories. Categorial grammars (Moortgat,
1997; Steedman, 2000), head-driven phrase structure
grammar (Pollard and Sag, 1994), lexical-functional
grammar (Bresnan, 1982), minimalism ( Chomsky,
1995), tree-adjoining grammars (Abeillé and Rambow,
2000), and OT (Legendre et al., 2000) are just some
of the syntactic formalisms currently in existence,
Significant progress has been made in exploring the
connections between their very different representa-
tional assumptions (Vijay-Shankar and Weir, 1994,
Frank, 2002), and these explorations raise an impor-
tant issue: if one formalism A can be shown to
be equivalent, in some well-defined sense, to some
other formalism B, and if the ontology of A is argued
to be associated with processing difficulty via some
linking assumption to sentence parsing, then this
implies that in reality the theoretical commitment of
grammar-based approaches is to some common base
of the equivalent frameworks rather to the specific
primitives of a particular one. An important step
in grammar-based approaches is thus identifying
exactly what this common theorerical commitment is
= what must be invariant about the grammar to derive
the same emipirical predictions. For example, is there
an empirical motivation for characterizing disloca-
tions such as wh-movement as movement rather than
some kind of feature sharing? There have been
attempts to distinguish between positing movement-
based traces and lexical association accounts (Gibson
and Hickok, 1993; Nakano et al., 20007, bur much
more work remains to be done in this area,

Symbolic Models Involving Complexity
Metrics and Ambiguity Resolution
Principles

A second kind of model proposes complexity metrics
or ambiguity resolution principles predicated on

symbolic syntactic structures. The metrics and ambi-
guity principles can be defined without reference to a
particular architecture for the competence grammar,
though particular syntactic representations must be
assumed in order to make specific predictions. The
common underlying assumption of these models is
that the metrics or principles are abstract charac-
terizations of the resource-boundedness of human
working memory for linguistic processing.

Ambiguity Resolution Principles

The best-known theory of this type is minimal attach-
ment (Frazier, 1979). Minimal atcachment is assumed
to be a principle that accounts for attachment prefer-
ences in ambiguous sentences. Sentences such as The
girl saw the boy with the telescope are ambiguous
because, in the absence of a context, we do not know
whether the prepositional phrase with the telescope
modifies the verb saw or the noun boy. Minimal
attachment provides a simple formal statement of
which attachment should be preferred: it is the atrach-
ment that yields the simplest structure, where “sim-
plest” can be defined as the structure that introduces
the fewest new syntactic nodes. Thus, minimal attach-
ment depends crucially on the representational as-
sumptions in some syntactic theory. For example, in
the prepositional phrase attachment example, the
minimal attachment prediction depends on the pre-
cise syntactic structure assigned to the VP-adjunct vs.
NP-adjunct. Frazier (1979) assumed that the NP-
adjunction introduces an additional syntactic node,
predicting initial VP attachment in an NP-VP-PP
ambiguity.

Another issue involving ambiguity is early vs. late
closure (Frazier, 1979). The relevant phenomena can
be illustrated in the following way. In a sentence such
as After the student moved the chair broke, a prosod-
ic break after moved (or a comma if the sentence is in
written form) will ‘close’ the phrase After the student
moved early; this is called early closure, and is the
intended utterance. By contrast, if the sentence is
spoken (or written) withour a prosodic break {or
comma) after moved, the perceiver tends to ‘close’
the phrase late, at the end of the chair, in this case
incorrectly. This initial misanalysis is called late clo-
sure. In the absence of any prosodic information {and
without any puncruation}, such sentences ofren cause
garden-pathing (initial misanalysis due ro ambiguitv).

Frazier proposed these principles with the specific
idea of a constrained-capacity working memory sys-
tem. Regarding late closure, Frazier (1979: 39} said,
“It is a well-attested fact about human memory that
the more structured the material to be remembered,
the less burden the marerial will place on immediate
memory. Hence, by allowirig incoming marerial ro be
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structured immediately, Late Closure has the effect of
reducing the parser’s memory load.” Similarly, re-
garding minimal attachment {1979: 40): “The Mini-
mal Attachment strategy not only guarantees minimal
structure to be held in memory, but also minimizes
rule accessing. Hence, [minimal attachment is also an
‘economical’ strategy] in the sense that [it reduces] the
computation and memory load of the parser.” Thus,
the limited capacity of working memory was a central
motivating factor in the development of theories of
ambiguity in sentence processing.

Going beyond the purely capacity-based explana-
tion for ambiguity is Frazier and Clifton’s theory of
construal (Frazier and Clifton, 1996). One of the
goals of this theory is to account for attachment
ambiguities like The girl with the hat that looked
funny. ... Here, it is unclear who was funny, the girl
or the hat. Construal predicts a preference for lower
attachment (modification of har rather than girl) as
follows. Two kinds of relation are assumed, primary
and secondary. Primary relations are, for example,
those between verbs and their arguments, while sec-
ondary relations are relations between modifiers and
the element modified, such as the modifying relative
clause that was funny and the modifiable elements
girl and hat. Frazier and Clifton proposed a construal
principle, which (in a simplified form) states that if a
nonprimary relation needs to be artached in a syntac-
tic structure, this nonprimary relation must be asso-
ciated with the phrase containing the most recent
theta assigner. This last theta assigner is with and the
phrase it occurs in is with the hat. This accounts for
the low attachment preference.

General Structural Complexity Metrics

The theories discussed above focus on ambiguity
resolution. Although ambiguity is an extremely im-
portant problem for efficient parsing, another impor-
tant issue is the complexity of globally unambiguous
sentences. Several theories attempt to address this
issue. The most prominent ones are dependency local-
ity theory (Gibson, 1998, 2000), and early immediate
constituents (Hawkins, 1994, 1998, 2001); we
describe the first one briefly.

Dependency locality theory (DLT) aims to account
for processing difficulty in both ambiguous (garden
path) structures and unambiguous ones, such as
center embeddings. DLT assumes that during the
course of sentence parsing, computational resources
in working memory are needed for two aspects: stor-
age of the structure built up thus far and integration
of the current word into the structure built up thus
far. Based on these two components, a cost metric is
defined which predicts relative processing difficulty.
There is a storage cost, measured in memory units

Imput words: The raporter  disliked the boy
Haads needed: Noun, Verb  Verb NP Noun
Storage cost {MUs): 2 1 1 1 o

Figure 1 Hiustration of DLT's storage cost computation.
(MUs), and an integration cost, measured in energy
units (EUs).

Storage cost is computed as follows: 1 MU is asso-
ciated with each syntactic head required to complete
the current input as a grammatical sentence. For ex-
ample, as shown in Figure 1, for the first word, The, a
noun and a verb are needed to complete the sentence
grammatically, so the storage cost is 2 MUs. At the
second word, reporter, only a verb is needed, so
the storage cost is 1 MU. For the next word, disliked,
one NP is needed, so the cost is 1 MU. The cost for the
next word, the, is also 1 MU, since only a noun is
neecded to complete the input string as a grammatical
sentence. The last word incurs no cost since it can
complete the senrence.

The cost of integrating a current word A with an
existing structure S depends on locality, i.e., the dis-
tance between them. The processing cost depends on
the complexity of the computations that took place
berween A and S and is assumed to be linearly related
to the number of discourse referents (DRs) introduced
between the two items. A DR is assumed to be “an
entity that has a spatiotemporal location so that it can
later be referred to with an anaphoric expression,
such as a pronoun for NPs, or tense on a verb for
events” (Gibson, 2000: 103).

Apart from storage cost and integr
other factors that are assumed to affe
sion difficulry are:

tion cost, the
ct comprehen-

1. The frequency of the lexical item being integrated:
the lower the frequency, the greater the processing
difficulty.

2. The contextual plausibility of the resulting struc-
ture: the less plausible the final structure, the
greater the processing difficulty.

3. The discourse complexity of the final structure:
nonfocused entities and elements introduced
using definite descriptions are less accessible (and
are therefore harder to process) than focused enti-
ties. Least accessible of all are elements introduced
using indefinite NPs: “Elements new to the dis-
course, which are usually introduced using indefi-
nite NPs, require the most resources because they
must be constructed in the discourse model ... itis
assumed that processing the head noun of an NP
that refers to a new discourse object consumes
substantial resources, and processing the head
verb of a VP that refers to a new discourse event
(also a discourse referent) consumes substantial
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resources, but processing other words does not
consume substantial resources in the discourse
processing component of structure building” (Gib-
son, 2000: 103). Also see Warren (2001: 33-44).

4. If the current word is not compatible with
the highest ranked structure built so far, there is
reanalysis difficulty.

The storage and integration costs rogether provide
a measure of integration time, which gives the com-
plexity at any given point, as well the as overall com-
plexity, of a sentence. Gibson assumed the following
regarding these two costs: (i) integrations and storage
access the same pool of resources; (ii) resources have
fixed capacity; (iii) each predicted syntactic head
takes up a fixed quantity of resources; and (iv] the
overall acceptability of a sentence depends on the
maximal integration time complexity experienced
during the parsing process.

In sum, sentence processing according to the DLT is
constrained by limited resources in working memory.
This limit on resources is quantified in terms of inte-
gration and storage costs of linguistic elements as they
are processed in real time,

Cognitive Architectures and Sentence
Processing

Another approach to sentence-processing theory is ro
apply independently motivated theories and princi-
ples from cognitive psychology research. One in-
stance of such an approach takes as its starti ng point
a fixed cognitive architecture, These theories derive
processing explanarions from general cognitive pro-
ing principles such as acrivarion deca v and mem-
ory interference,

Activation-Based Architectures

Activation models have dominated the cognitive-
architecture-based approaches. In activarion-based
maodels, symbolic long- and/or short-term memory
elements have a conrinuous quantity (activation)
associated wirh them thar affects processing in some
way. Early examples include the Just and Carpenter
READER model, which was based on a production
system architecture developed concomitantly wirh
the Sentence-processing model (Just and Carpenter,
1987). The READER model later evolved into a
model of individual differences in language compre-
hension, with 2 quantitative parameter (amount
ot available activation) used ro model differences in
working memory capaciy {Just and Carpenter, 1992)

Several orher sentence-processing models have heen
developed in general activation-based architecrures
developed jointly with a spectfic language model

{Kintsch, 1988; Stevenson, 1994; Vosse and ‘K.emape:m
2000; Tabor and Hutchins, 2004; Tabor et al., 2004}.

Independent Cognitive Architectures

More recently, there have been attempts ro derive sen-
tence-processing models from independent cognirive
architectures developed largely outside the domain
of linguistic processing. Examples are the SOAR-
based architecture in Lewis (1993) and the authors’
ACT-R-based sentence-processing model (Lewis and
Vasishth, forthcoming). As an example of this ap-
proach, and the cognitive architecture approach
more generally, we briefly discuss our own model.

Brief Overview of ACT-R

The cognitive theory ACT-R (Anderson ef al., 2004}
is implemented as a general computational model and
incorporates constraints developed through consider-
able experimental research on human information
processing. The ACT-R theory relevant for the pres-
ent discussion and the parsing model are outlined
next, and its empirical coverage is briefly discussed.

In its essence, ACT-R consists of two distinct 8Ys-
tems, declarative memory and procedural mermnory,
Declarative memory consists of items (chunks} iden-
tified by a single symbol. Each chunk is a set of
feature/value pairs; the value of a feature may be a
primitive symbol or the identifier of another chun k,in
which case the feature/value pair represents a relation.

In addition to the memory systems, focused buffers
hold single chunks. There is an architecturally fixed
set of buffers, each of which holds a single chunk in a
distinguished state that makes it available for proces-
sing. Items outside of the buffers must be retrieved to
be processed. The three important cognitive buffers
are a goal buffer, a problem state buffer, and a retriev-
al buffer. The goal buffer serves to FEPresent current
control state information, and the problem state buff-
er represents the current problem state. The retrieval
buffer serves as the interface to declarative memory,
holding the single chunk from the fast retrieval. This
structure has much in common with conceptions of
working memory and short-term memory that posit
an extremely limited focus of attention of one to three
items, with retrieval processes required to bring items
into the focus for processing (Wickelgren er al., 1980;
McElree and Dosher, 1993).

All procedural knowledge is represented as produc-
tion rules (Newell, 1973) - ASYMIMELTIC associations
specifying conditions and actions, Conditions are pat-
terns to match againse buffer contents, and actions
are taken on buffer conrents. All behavior arises
from production rule firing; the order of behavior is
not tixed in advance but emerges in response o the
dynamically changing contents of the buffers.
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The sentence-processing model critically depends
om the built-in constraints on activation fluctuarion
of chunks as a function of usage and delay. Chunks
have numeric activation values that fluctuate over
timey activarion reflects usage history and time-based
decay. The activation affecis a chunk’s probability
and latency of retrieval.

ACT-R also assumes that associative retrieval is
subject to interference. Chunks are retrieved by a
content-addressed (McElree, 2000), associative re-
trieval process. Similarity-based retrieval interference
arises as a function of retrieval cue overlap: the effec-
tiveness of a cue is reduced as the number of items
associated with the cue increases. Associative retrieval
mterference arises because the strength of association
from a cue is reduced as a function of the number of
itemns associated with the cue.

A Sentence-Processing Model Based on ACT-R

The sentence-processing model consists of a definition
of lexical items in permanent memory defined in terms
of feature/value pairs, and a set of production rules
specifying a left-corner parser (Aho and Ullman,
1977) . The most important property of a left-corner
parser in this context is that structure is built as inpur
comes in; there is no waiting period {lookahead; cf.
Marcus, 1980) before any parsing decisions are made.
The motivation for such an incremental parsing
model comes from previous work in the literature
{see, for example, Tyler and Marslen-Wilson, 1977;
Johnson-Laird, 1983; Scheepers et al., 1999).

The model has been applied to five different pub-
lished reading experiments (from three laboratories
and two different paradigms). The simulations pro-
vide detailed accounts of the effects of length and
structural interference on both unambiguous and gar-
den path structures. The phenomena covered include
an interesting novel prediction of the model, viz., a
crossover interaction of the effect of length and struc-
tural interference on reanalysis cost vs. initial atrach-
ment cost: interference affects attachment more than
reanalysis, while the reverse is true for length. The
reason for this interaction is that the dispreferred
structure does not receive additional activation
boosts from participating in the ongoing parse, and
so length disproportionately affects its retrieval dur-
ing garden path reanalysis. This retrieval does not,
however, incur greater interference cost, because that
cost is determined by the intervening structures,
which are often the same regardless of which inter-
pretation was pursued. Van Dyke and Lewis (2003)
obtained quantitative estimates of these effects and
their interaction, using ambiguous and unambiguous
versions of the constructions in (1). The model
provides accounts of reading times in the critical

disambiguating region and rthe ambiguous region
{the larter testing predictions of load eifects).

{1a}  Ishort] The assistant forgor {that) the scudent
was standing in the hallw

{16} [long/sitple] The ‘ orgot {that) the
student who was waiting for the exam was
standing in the hallway,

(1cy  {longfcomplex] The assistant forgot (that) the
student who knew thar the exam was
important was standing in the hallway.

An important result in this model is thar all fits
were obtained with one free scaling parameter that
was fixed across all the simulations; all remaining
quantitative parameters were set to defaule values
from the ACT-R literature. The remaining theoretical
degrees of freedom in the model are the production

rules that embody the parsing skill, and these rules
represent a straightforward realization of lefr-corner

parsing conforming to one overriding principle: coni-
pute the parse as quickly as possible. This approach
thereby considerably reduces theoretical degrees of
freedom — both the specific nature of the st

aregic
parsing skill and the mathematical derails of the
memory retrieval derive from existing theory, plus
the assumption of fast, incremental parsing.

In summary, this sentence-processing model (a)
provides an integrated, quantitative account of both
length and structural complexity effeces in both am-
biguous and unambiguous constructions; {b) predicts
reading times in both ambiguous and disambiguating
regions; (c¢) probabilistically predicts both parsing
failures and reading times; and (d} provides single-
parameter quantitative predictions across multiple
experiments and paradigms.

a

Probabilistic Models

In probabilistic models, the starting point is a set of
symbolic rules that generate syntactic structures (an
example is a context-free grammar specification), To
such rules a probability is assigned in the following
way: the probability of a rule’s left-hand side expand-
ing to the right-hand side is assigned a numerical
value between 0 and 1, this number being the product
of the probabilities of the right-hand side nonterminal
symbols. All rules with the same left-hand side have a
rotal probability summing to one, and a parse tree’s
probability is a product of the set of all rules used to
generate the tree (Manning and Schiitze, 1999).

Ambiguity Resolution Using a Probabilistic
Approach

Probabilistic models capture an important aspect of
sentence processing: the role of experience and fre-
quency in language processing. They also furnish
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good models of parsing preferences, of ami}xigmzyw—
solution, and of gradedness in acceptability {Crocker
and Keller, forthcoming).

We present next an instance of a probabilistic ap-
proach and show how it applies 1o a well-) nown
ambiguity resolution issue {Jurafsky, 1996). This
madel takes as irs starting point a syntactic formalism
known as construction grammar. Construction gram-
mar assumes that complex, nonlocal constructions
are stored along with lexical entries in the mental
grammar. Jurafskys model assigns probabilities to
each such construction, and these probabilities deter-
mine the likelihood of their being accessed. The prob-
abilities, which are analogous to initial activation
values of entities in the mental grammar, are assigned
using a corpus {the Penn Treebank) to compute maxi-
mum likelihood estimates from relarive frequencies.
In addition, valency frequencies of verbs are taken
from Connine et al. (1984).

The classic garden path sentence, the horse raced
past the barn fell, is then explained as follows, Of the
two possible interpretations, one has raced as an
intransitive verb {main verb interpretation? and the
other has raced as a transitive treduced relative inter-
pretation}, The intransitive valence has g probability
of 0.92, while the transitive one has a prabability of
0.08. In addition the reduced relative interpretation
requires a context-free grammar {CFG) rule to be
applied as in (2):

(2} WP — NP XP

This vule’s probability {com puted from the Penn Tree-
bank) is 0.14. The combination of the transitive verb
valency probability and the CFG rule is 0,14 w008 =
0.0112. Since this combined probability of the re-
duced  relarive mterpretation is 0.92 = 0.0112 —
8214286 rimes lower than that of the preferred in-
terpretation, it is pruned away during processing be-
cause of an assumed beam search mechanism thar
rejects any parses thar are too far awa v trom the best.

Some Open Issues In Probabilistic Models

Two important issues in ience processing that
remain to be addressed in derail are: explaining
moment-by-moment flucrpations in processing diffi-
culry, and ¢he refarive difficulty of complex ver unam-
biguous sentences. The a bility e explain reading tumne
data gathered by methods like self-paced reading and
eyetracking requires further rebimement of probabilis-
tic models, which generally provide a single veal num.
ber for the full senrence parse, which serves as a
measure of processing difficulty. The second issue is
that current probabilistic models do not have as broad

A aceount as sume other approaches (Gibson, 2000,
Hawkins, 2001; Lewis and Vasishih, h‘nﬂ'z(ta;’zmt‘zgé

of globally unambiguous sentences, such as E—iubjm:"!f
vs. object relative clause processing, center embed-
ding phenomena, erc. Some progress has been
made in this direction {Crocker and Brants, 2000;
Hale, 2001; Korthals, 2001; Narayanan and Jurafsky,
2002, jurafsky, 2003; Vasishth and Uszkoreir, 2004},
but much more remains to be done.

Symbolic Processing Models and Their
Relation to Connectionist Models

We conclude by briefly considering symbolic models
in terms of several properties normally associated
with connectionist models: parallel processing, inter-
activity  (simultaneous application of multiple
constraints), and the graded, continuous nature of
human performance.

First, it should be clear that parallel vs. serial proces-
sing is a distinction that is orthogonal ro symbolic vs.
nonsymbolic processing. For example, all of the prom-
inent symbolic cognitive architecrures {Soar [Newell,
1990}, EPIC [Kieras and Meyer, 1997}, and ACT-R
[Anderson er al., 2004} include substantial AMOUnNts
of parallelism. In the domain of sentence processing,
most symbolic models also assume parallel Processes —
for example, the ACT-R-based model above assumes
that memory retrieval happens in parallel with other
cognitive and perceptual processes.

It is also worth clarifying here a potential source of
confusion in the sentence processing literature that
relates to the serial vs. parallel processing issue {Lewis,
2000b). A distinction is often made berween serial and
parallel parsing, but these terms are generally meant
to refer to depth-first search vs. breadth-first search
methods, respectively - that is, serial parsing pursues a
single interpretation while parallel parsing pur-
sues multiple interpretations. But this distinction is
also orthogonal to serial vs. parallel processing as it
is used elsewhere in the connecrionist and symbolic
modeling literature, where it sunply refers to the
temporal sequentiality or overlap of processes. Thus,
one can have a serial-processing parallel parser, or a
parallel-processing serial parser. In fact, the ACT-R
model described above is an example of the lateer,

Second {and related 1o parallel processing}, simul-
fancous constraint interaction and constraing satisfac-
tion from different sources {e.g., the immediate effect
of context on parsing) is also completely consistent
with symbolic processing. One example is the modu-
lar symbolic architecture sketched in Altmann and
tman (1988, which involves multiple constraine
satisfaction from different sou rces.

Finally, although we defined Symimizizc~;3=r«nmssmg
systems as ones thar manipulare relatively discrete
combinatorial representations, such systems are seill
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capable of accounting for aspects of the continuous,
graded nature of human performance. Examples are
the probabilistic approaches in Hale (2004) and
Crocker and Keller {forthcoming), optimality theo-
retic approaches, and the ACT-R model mentioned
in this article {Lewis and Vasishth, forthcoming).
Looking ahead, it seems clear that labels such as
‘symbolic’ and ‘connectionist’ will continue to be at
biest vaguely descriprive categories, and sharper theo-
retical discussion will appeal to precisely articulated
issues such as the nature of the parsing search strate-
gy, the precise relationship of parallel processes in
rerms of memory and control, the distribution of
linguistic knowledge across the architectural compo-
nents, the nature of codified experience, and the inter-
action of language-specific and more general cognitive
resources. The current class of symbolic cognitive
models comprises a rich body of theory from which
to pursue these and other pressing research questions.

See also: Generative Grammar; Human Language Proces-
sing: Connectionist Models; Information Theory; Lan-
guage: Mathematical Complexity; Language Processing:
Statistical Methods; Parsing: Statistical Methods; Psycho-
linguistics: Overview; Rational Analysis and Language
Processing; Sentence Processing; Syntax: Optimality
Theory.
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Human language technology, or technologies, or
HLT, is the name given collectively to the various
areas of technology, especially computer technology,
that involve applications to tasks in which language is
central. Traditionally, three subfields have been recog-
nized: speech technology, information or document
retrieval, and natural language processing. Each is
described in detail in a separate article in this ency-
clopedia, as are many of the specific topics of research
and areas of application within each subfield. The use
of the name buman language technology, however, is
usually intended to emphasize the unity of the field,
the integration of elements from different subfields,
and an emphasis on application rather than theory.
For example, all three subfields would be involved in
creating a system that took as its input video or audio
recordings of news broadcasts, and automatically
transcribed the soundtrack (using speech recognition)
to create a written summary of the broadcast {using
methods from natural language processing) and to
retrieve segments of the video or audio in response
to topical requests from a user (using methods from
information retrieval).

The three subfields arose as distinct enterprises in
separate disciplines with differing research methods
and traditions — natural language processing in com-
puter science, speech technology in electrical engi-
neering and digital signal processing, and document
and information retrieval in library science —and they
have only recently been seen as together forming an

integrated area of research with significant interests
in common. Early moves in this direction were ini-
tiated by U.S. agencies that funded research in the
subfields: the first Human Language Technology
Conference was held in 1993 with the aim of bringing
agency-funded researchers together to learn ol
another’s methods, goals, and interests. In 2001, the
conferences became an annual event and were opened
to the general international research commiunity; in
2003, their organization was turned over to the Asso-
ciation for Computational Linguistics (see Associa-
tion for Computational Linguistics).

A related term, often used in Europe particularly
since the carly 1990s, is language engineering or
natural language engineering (the latter being also
the name of a research journal). While perhaps in
practice natural language engineering is more cen-
tered on textual applications than on speech, this
term, too, implies an orientation toward applications
involving language with less regard for the discipline
or subfield in which the work arises. Both terms are
now commonly used in Europe.

See also: Association for Computational Linguistics; Doc-
ument Retrieval, Automatic, Natural Language Proces-
sing: Overview, Symbolic Computational Linguistics:
Overview.

Relevant Websites

www.aclweb.org, — Association for Computational Ling-
uistics.

journals.cambridge.org. ~ Natural Language Engineering.





