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Introduction

Patients with aphasia frequently experience di�culties in comprehending reversible

non-canonical sentences (for reviews see Grodzinsky, 2000; Mitchum & Berndt, 2008).

They can comprehend canonical sentences without much di�culty. Irreversible

non-canonical sentences are also less problematic for them, mainly because world

knowledge and pragmatically-based comprehension strategies help in inferring the

meaning of the sentence. However, when reliance on syntactic structure is necessary to

derive the meaning of the sentence, patients tend to experience comprehension di�culties

(Caramazza & Zurif, 1976). This di�culty is reflected in the processing of reversible

non-canonical structures like passives, object relatives, object clefts, object questions and

object-topicalized sentences (Mitchum & Berndt, 2008). This deficit has been observed

cross-linguistically (Burchert, De Bleser, & Sonntag, 2003; Caplan, Waters, Dede,

Michaud, & Reddy, 2007; Caplan, Waters, & Hildebrandt, 1997; Caplan & Hildebrandt,

1988; Gavarro & Romeu, 2010; Grodzinsky, 2000; Grodzinsky, Piñango, Zurif, & Drai,

1999; Schwartz, Linebarger, Sa↵ran, & Pate, 1987; Thompson, Choy, Holland, & Cole,

2010). In addition to non-canonical structures, patients may also experience di�culties in

comprehending other syntactic dependencies like binding relations in reflexives and

pronouns (e.g., Choy & Thompson, 2010a; Edwards & Varlokosta, 2007; Grodzinsky,

Wexler, Chien, Marakovitz, & Solomon, 1993; Thompson & Choy, 2009).

Although syntactic comprehension deficits are often associated with agrammatic

Broca’s aphasia (e.g., Grodzinsky & Santi, 2008), syntactic impairments have also been

documented in Wernicke’s and global aphasia (see Caplan et al., 1997; Dronkers, Wilkins,

Van Valin, Redfern, & Jaeger, 2004). Grodzinsky (2000) and Grodzinsky et al. (1999)

provide overviews of studies that compared aphasics’ close to accurate performance on

canonical sentences and chance level performance on non-canonical sentences. In spite of

the divergence in the interpretation of chance level performance in non-canonical

0DQXVFULSW
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structures, the behavioral evidence is quite consistent (see, for example, Burchert, Hanne,

& Vasishth, 2013; Caplan et al., 2007; Caplan, 2001; De Bleser, Schwarz, & Burchert,

2006; Caramazza, Capasso, Capitani, & Miceli, 2005).

Theories and models of sentence comprehension deficits

Theories of sentence processing deficits in aphasia have been traditionally

categorized as either representational deficit accounts or processing deficit accounts (for an

overview, see Caplan, 2009). Representational or specific deficit accounts ascribe the

impairment to disturbances in underlying syntactic representations, i.e., they assume that

patients su↵er from a breakdown in their knowledge of the grammar; in traditional

linguistic terms, the deficit is in their competence as opposed to performance. For

example, the Trace Deletion Hypothesis (TDH, Grodzinsky, 1995, 2000, 2006) proposes

that aphasic patients have lost the ability to represent traces of syntactic movement.

Hence, for non-canonical structures such as passives, they have no information about the

theta-role of a moved NP and they need to rely on a default cognitive strategy which

assigns the AGENT theta-role to the first NP in a sentence. However, the patients’

syntactic representation also contains another AGENT, the one assigned to the unmoved

subject NP in base position, which forces them to simply guess which of the two NPs is

assigned the role of AGENT in a reversible non-canonical sentence. Besides the TDH,

other accounts exist that relate syntactic comprehension disorders to disruptions in

constructing fully intact syntactic representations (for example, Beretta & Munn, 1998;

Hickok & Avrutin, 1995; Mauner, Fromkin, & Cornell, 1993). These accounts ascribe

patients’ sentence comprehension deficits to a breakdown in syntactic chain formation. In

summary, representational deficit accounts generally equate “breakdown in knowledge of

grammar” with the loss in the ability to track head-dependent relations (such as the

relation between a noun phrase and its trace) or the ability to keep track of the
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derivational history of a syntactic structure, where derivational history is construed in

classical Chomskyan terms. It is by no means clear that such a breakdown is not due to

processing di�culty; that is, the failure to keep track of dependencies (which may be

equivalent to deleting traces) may be a processing problem arising due to stochastic

variability or less e�cient retrieval processes in parsing (Engelmann & Vasishth, 2014).

We turn next to theories that have traditionally been termed processing deficit

accounts. These assume that the underlying grammatical knowledge of patients is

preserved, but the syntactic processing system is a↵ected by processing (or capacity)

limitations. Thus, these theories ascribe patients’ di�culties with non-canonical sentences

to a processing breakdown in parsing.

There exist various processing accounts that di↵er in how exactly they conceptualize

processing limitations in syntactic parsing: (i) timing deficits; (ii) reduction in memory

(iii) intermittent deficiency; (iv) weakened syntax; (v) slow syntax; (vi) lexical integration

deficit; and (vii) lexical access deficits.

Timing deficit accounts have been articulated in some detail in computationally

implemented models; the others remain verbally–stated theories. We discuss each of these

theories below.

Timing deficit. A representative of the timing deficit accounts is the work by

Haarmann and Kolk (1991). They proposed a computational model of aphasic language

breakdown, called SYNCHRON. This model implements the hypothesis by Kolk and

Van Grunsven (1985) that parsing fails in agrammatic aphasics because syntactic

representational elements that need to be simultaneously active in working memory are

often not coactive because of disturbances in timing due to brain damage. The model is

provided with a predefined phrase-structure representation of a sentence and it determines

whether the complete construction of this phrase-structure representation is possible given

a set of temporal constraints. The model constructs the phrase-structure representation as
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a bottom-up chain of retrievals—input words cause the retrieval of word forms, word

forms cause the retrieval of associated lexical categories and lexical categories cause the

retrieval of phrasal categories. The retrieval of a phrasal category is possible only if all its

constituent categories are available in memory, which is the computational simultaneity

constraint in the model.

SYNCHRON assumes that aphasics have a temporal disorder—either the retrieval

time, the time required to retrieve an element, is longer than normal, or the memory time,

the amount of time a retrieved element remains available for further processing, is shorter

than normal. A di↵erent way to characterize these constraints is in terms of slowed

retrieval and faster than normal decay of items in memory. This temporal disorder

disrupts computational simultaneity among elements of the phrasal category, causing

parsing failures. Haarmann and Kolk (1991) showed that assuming a temporal disorder is

su�cient to model the combined e↵ects of the degree of severity and sentence complexity

in agrammatic aphasics described in Schwartz, Sa↵ran, and Marin (1980) and in a

replication study by Kolk and Van Grunsven (1985). Although SYNCHRON was

successful in modeling aphasic behavior on simpler sentence types, its capabilities are

limited due to the absence of a parsing process. It also lacked a mechanism for thematic

role assignment, which is a crucial issue in sentence processing.

Reduction in memory. In later work, Haarmann, Just, and Carpenter (1997)

proposed an enhanced model of aphasic sentence processing, the Capacity Constrained

Resource Deficit (CCRD) model. It is implemented in the 3CAPS architecture (Just &

Carpenter, 1980) and is derived from the Resource Reduction Hypothesis (Miyake,

Carpenter, & Just, 1994). This hypothesis proposes that the impairment in aphasia is an

extension of sentence processing limitations in low working memory capacity of

unimpaired individuals. CCRD focuses on deriving thematic roles assigned by the verb in

the sentence. CCRD is composed of three main subsystems that accomplish thematic role
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assignment by carrying out three di↵erent sub-tasks in sentence processing: performing

lexical access, constructing the parse tree and mapping thematic roles. The functionality

of each component subsystem is achieved through a set of production rules. Production

rules temporarily activate the working memory elements that lead to various sentence

representations. The rules in the thematic role component use the parse tree

representation of a sentence to generate thematic roles between words in the sentence.

Once the processing of a sentence is completed, the levels of activation of the working

memory elements representing the thematic role bindings are recorded. Sentence

comprehension accuracy is indicated by the average activation of these memory elements.

Both storage and computation of information need to draw from available

activation. If enough activation is not available, this leads to a breakdown in sentence

comprehension. The hypothesis for aphasic patients is that they share a deficit of

pathologically reduced working memory capacity. A more complex sentence has higher

storage and computational demands, and the reduction in the available activation in

aphasics induces a breakdown in processing. The model was shown to reproduce the

sentence complexity e↵ect obtained by Caplan, Baker, and Dehaut (1985) across nine

sentence types, as well as the interaction between the sentence complexity e↵ect and the

degree of severity of aphasia in the data from Kolk and Van Grunsven (1985). All

simulations involved modeling the o✏ine measure of sentence comprehension accuracy by

fitting the memory capacity parameter along with several other parameters.

Apart from SYNCHRON and CCRD, other attempts at modeling aphasic sentence

comprehension are the HOPE model proposed by Gigley (1986), the UNIFICATION

SPACE model proposed by Kempen and Vosse (1989); Vosse and Kempen (2000) and the

ACT-R based model proposed by Crescentini and Stocco (2005). While these models

di↵er considerably in their details, they are consistent with the assumption that aphasic

sentence comprehension is not a result of any breakdown in the knowledge of the grammar,
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but rather a deficit in the processing of this knowledge. As observed by Haarmann et al.

(1997, p. 82), all these previous models share the common assumptions that “(i)

knowledge representation and processing are activation driven, (ii) successful sentence

comprehension requires the co-activation of certain critical representational elements, and

(iii) in aphasia, co-activation is disturbed by an immediate or emergent timing deficit.”

Intermittent deficiency. Support for intermittent deficiency comes from recent online

studies with aphasics. In a self-paced listening study combined with a sentence-picture

matching and grammaticality judgement task, Caplan et al. (2007) found normal online

performance for patients when they provided correct o✏ine responses. In contrast,

incorrect o✏ine responses were associated with abnormal online performance. This result

is unexpected under the TDH, which does not predict systematic di↵erences in online

processes underlying correct and erroneous responses. Caplan and colleagues concluded

that patients cannot be su↵ering from constant impairments in an underlying grammatical

structure (e.g., deleted traces), or from a total breakdown in specific parsing operations

(e.g., associating a trace with its filler). Instead, they argued that sentence comprehension

deficits should better be conceptualized as reflecting intermittent deficiencies in resources

necessary for syntactic parsing. These intermittent reductions are then seen in divergent

self-paced listening data and lead the patient to end up with an erroneous sentence

interpretation. These claims are consistent with the results of former sentence processing

studies by Caplan and Waters (2003, 1995). In recent work, Hanne, Sekerina, Vasishth,

Burchert, and De Bleser (2011) also provided evidence for the systematic di↵erences

between correct vs. incorrect parses, pointing to intermittent deficiencies.

Weakened syntax. Weakened syntax has received support from sentence

comprehension studies using eye tracking (e.g., Choy & Thompson, 2010a; Dickey &

Thompson, 2009; Dickey, Choy, & Thompson, 2007; Hanne et al., 2011; Meyer, Mack, &
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Thompson, 2012; Thompson & Choy, 2009, for eye tracking studies on sentence

production in aphasia see also Cho & Thompson, 2010; Lee & Thompson, 2011a, 2011b).

Through a series of studies in the visual world paradigm, Thompson and colleagues

explored patients’ online parsing abilities for structures like yes-no questions, wh-questions

and object clefts (Dickey et al., 2007; Thompson, Dickey, & Choy, 2004). For correctly

answered wh-questions, aphasics showed the same eye movements patterns as

controls—anticipatory eye movements to a potential filler (the moved object) for the gap

when they heard the verb. When the o✏ine response was incorrect, they showed increased

looks to the subject competitor towards the end of the sentence. According to the

authors, the anticipatory eye movements reflect the participants’ incremental, automatic

gap-filling during sentence comprehension. This suggests that “resolving wh-dependencies

was relatively unimpaired in the patients” (Dickey et al., 2007, p. 14). Moreover, because

patients’ eye movements during correct responses were similar to controls’ in speed and

the overall pattern, the results are inconsistent with a slow-down in aphasics’ online

processing. Referring to Avrutin (2006), the authors suggested a weakened-syntax view of

sentence comprehension disorders, which holds that syntactic representations in aphasia

are (largely) undamaged and processing operations such as gap filling function with the

same speed as in controls’, but the resulting syntactic structures are not strong enough to

inhibit competition from other sources (such as competing extra-linguistic heuristics)

(Dickey et al., 2007). To replicate and extend these initial results, Dickey and Thompson

(2006, 2009) evaluated patients’ online processing in sentences with two di↵erent types of

syntactic movement—wh-movement in object relative clauses and NP-movement in

passives. Although the results showed that patients can successfully resolve wh-movement

dependencies, gap-filling in object relative clauses was slightly delayed. These results are

di↵erent from earlier findings involving wh-questions. Hence, the process of gap filling

may be delayed in patients at least for some syntactic structures involving movement.



8

Moreover, this process was disrupted by the late-emerging influence of syntactically

unlicensed competitor interpretations. This position is closely related to the idea of slow

syntax (Burkhardt, Mercedes Piñango, & Wong, 2003), discussed next.

Slow syntax. As mentioned above, there is some evidence that gap-filling is delayed

in patients. Further evidence consistent with slow syntax comes from Hanne et al. (2011),

who investigated online processing of Broca’s aphasics on German reversible canonical

(SVO) sentences and their non-canonical counterparts (OVS) using a classical

sentence-picture matching task in the visual world paradigm. Online (eye movements) and

o✏ine (accuracy and response time) data were collected simultaneously during the task.

Patients’ accuracy reflected the expected pattern. On average, they performed worse than

controls, and comprehension for non-canonical sentences was significantly lower than for

canonical sentences. Reaction times were significantly longer in patients than in controls,

and non-canonical sentences elicited longer latencies than canonical ones. Fixation

patterns showed systematic di↵erences in correct vs. incorrect o✏ine responses. For

correctly answered trials, patients’ eye movement patterns were very similar to controls’

(in terms of relative fixation probabilities). For incorrectly answered trials, patients’ eye

movements were clearly deviant from controls’. Interestingly, patients’ eye movement

patterns were delayed compared to controls, which is suggestive of a slowdown in online

sentence processing. Following Caplan and colleagues, they also came to the conclusion

that these preserved processing routines are not always available because of intermittent

deficiencies of parsing operations. Thus, the data of Hanne et al. are consistent with the

independently motivated idea of a slow-down in syntactic processing in aphasia and with

intermittent deficiency, although there may well be other underlying factors that lead to a

slow-down, such as increased uncertainty under noisy memory representations. Using

eyetracking with sentence-picture matching, Meyer et al. (2012) investigated the

processing of English active and passive sentences in aphasics and age-matched controls.
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They found that, in active sentences as well as correctly comprehended passive sentences,

on average aphasics’ eye movements converged to the correct picture a little bit later than

controls. Such delays could be interpreted as slow syntactic processing or, as Meyer et

al. interpreted them, as delayed lexical integration, which is discussed next.

Lexical integration deficit. Thompson and colleagues are the main proponents of

lexical integration di�culties. In a comprehensive summary of their eye tracking

experiments, Thompson and Choy (2009) concluded that sentence comprehension

impairments in aphasia are unlikely to be “related to an inability to form, or compute,

syntactic representations” (p. 278). They further emphasized that although slight delays

in gap-filling were seen for some syntactic structures, no delayed syntactic processing was

found for patients’ dependency resolution in pronominal constructions as well as in

wh-questions, making a general delay in syntactic computation unlikely. Instead, given the

consistent finding of the late-emerging influence of competitor interpretations in patients’

incorrect responses, the authors argued for a lexical integration deficit in aphasia, i.e., an

impairment in the ability to integrate already accessed lexical information into a syntactic

or a higher level semantic representation. Work by Hagoort, Brown, and Swaab (1996)

and Swaab, Brown, and Hagoort (1997) makes similar claims.

Lexical access deficits. Some authors attribute patients’ syntactic di�culties to an

earlier stage in language processing—lexical access. Prather, Zurif, Love, and Brownell

(1997), using a list priming paradigm, found slower than normal activation of word

meanings in Broca’s patients. They suggested that this e↵ect directly connects to reduced

and/or absent activation e↵ects found at gap sites during real-time sentence processing

(Zurif, Swinney, Prather, & Love, 1994). In subsequent studies using a cross-modal lexical

priming paradigm with Broca’s aphasics, Love and colleagues (Swinney, Zurif, Prather, &

Love, 1996; Love, Swinney, & Zurif, 2001) found that priming of a filler at its gap site in
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syntactic movement structures is not absent, but delayed. The late reactivation of the

antecedent was taken as evidence that patients can associate a moved element with a

trace; however, this process is pathologically slow. In another study (Love, Swinney,

Walenski, & Zurif, 2008), when the speech rate of the auditory input was slowed, patients

showed immediate priming e↵ects at the gap site. They also showed delays in lexical

activation when a moved NP was first overtly encountered in a sentence. Love and

colleagues interpreted their findings as evidence that “the formation of a syntactic

dependency involving a moved constituent is selectively vulnerable, not because it’s a

syntactic operation, but because if lexical reactivation is not accomplished within a

normal time frame, a non-grammatical heuristic kicks in to provide a conflicting

interpretation” (Love et al., 2008, p. 216). Further, Ferrill, Love, Walenski, and Shapiro

(2012) showed that in patients, lexical activation is slower not only in syntactic structures

containing movement dependencies but also in canonical sentences without dislocated

NPs. However, it remains unclear why comprehension of canonical structures is less (or

even not at all) a↵ected in aphasia.

It is also worth noting that the lexical access account and the lexical integration

deficit account may be di�cult to disentangle. The lexical access account is in principle

distinct from Thompson and colleagues’ proposal of a deficit in lexical integration.

Thompson and colleagues observed no or only slight delays in the reactivation of

antecedents at their gap sites (at least for correct trials) across experiments involving

di↵erent movement structures (Thompson & Choy, 2009; Choy & Thompson, 2010a;

Meyer et al., 2012). This absence of an e↵ect, together with the observation of aberrant

sentence-end e↵ects of lexical competitors, led Thompson and colleagues to propose an

impairment in integrating already accessed lexical information into the syntax or a higher

level semantic representation. According to them, this account could explain deficits in

comprehending both pronominal and movement structures. However, Thompson and
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colleagues’ findings could also be interpreted as evidence towards a delay in lexical access.

For example, in experiment one in Thompson and Choy (2009) (see also Choy &

Thompson, 2010a), patients showed delayed looks to overtly mentioned (unmoved) nouns

in a sentence compared to controls. Dickey et al. (2007) observed similar e↵ects at the

subject in yes-no-questions (see also experiment two reported in Thompson & Choy,

2009). In addition, Love et al. (2008) pointed out that the auditory sentences used, for

example, in Dickey et al. (2007) were spoken at a slower than normal speech rate, which

might have confounded the results because the slow input could have compensated for the

delay in aphasics’ lexical activation. Furthermore, Yee, Blumstein, and Sedivy (2008)

showed evidence for reduced lexical activation in Broca’s aphasia rather than delays in

reaching a certain activation threshold value; this points to impairments in lexical

activation levels rather than the time course of this activation. Finally, Blumstein et al.

(1998), found no delays but successful priming of a filler at its gap site using a

within-modality priming paradigm (auditory-auditory lexical decision). In this study,

Broca’s patients even patterned with unimpaired participants. Given the diverging

results, it is currently still unclear whether and how impairments in sentence

comprehension are caused by failures at the stage of lexical access or lexical integration.

We have summarized above the various theories about sentence comprehension

deficits in aphasia; but it may be helpful to see the connections, similarities and

di↵erences between these theories by trying to identify some of the key proposals in these

theories. We present such a comparison next.

A comparison of theories of impaired processing, and their relation to theories of

unimpaired processing

The theories of sentence processing deficits mentioned above address essentially the

same issues that theories of unimpaired populations address (one di↵erence is that the
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e↵ect of the various determinants of processing di�culty may be amplified in impaired

populations). This becomes clear when we consider how theories of unimpaired sentence

processing that focus on the e↵ect of working memory are characterized; here,

comprehension di�culty (i.e., delays) can arise in the integration of lexical items due to

decay or interference (Van Dyke & Lewis, 2003), or working-memory capacity di↵erences

(Just & Carpenter, 1992); dependencies may be forgotten (Tabor, Galantucci, &

Richardson, 2004; Vasishth, Suckow, Lewis, & Kern, 2010; Frank, Trompenaars, &

Vasishth, 2014), which may or may not lead to parse failure; and there may be occasional

mis-parses (Wagers, Lau, & Phillips, 2009; Badecker & Straub, 2002; Vasishth, Brüssow,

Lewis, & Drenhaus, 2008; Cunnings & Felser, in press; Patil, Vasishth, & Lewis, 2014),

due to interference e↵ects or stochastic noise. As Table 1 shows, classifying the theories

mentioned above along these three dimensions—delay, forgetting, and

mis-retrieval—demonstrates that while all the theories of sentence comprehension deficits

in aphasia try to characterize forgetting in di↵erent ways, some try to also develop a

theory of why processes are delayed, and why mis-retrievals happen:

1. In TDH, trace deletion has the e↵ect that the relationship between a filler and a

gap, which originally was present, is forgotten. Possibly, delays could also occur if

the parser carries out extra steps to complete a heuristic strategy to decide on

thematic roles for arguments.

2. SYNCHRON implements delays and forgetting by inducing timing deficits that

make retrieval slower and that make items in memory decay faster.

3. CCRD induces capacity limitations, which lead to forgetting.

4. Intermittent deficiency, as discussed by Caplan and others, is mainly concerned with

occasional forgetting and mis-retrieval, although the precise nature of the deficiency

is not defined.
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5. Weakened syntax assumes that syntactic structures do not have strong enough

representations, which may be a way to implement forgetting.

6. Slow syntax assumes slowed down parsing processes, which would cause delays, and

occasional parsing failures.

7. The lexical integration deficit proposal, as developed by Thompson and colleagues,

assumes a failure to retrieve a lexical item into a higher-level representation; this

could be seen as implementing forgetting and possibly also mis-retrieval.

8. The delayed lexical access model assumes that accessing an item in memory in the

service of completing a dependency will lead to delays and failures.

Framing existing theories of sentence comprehension deficits in the context of delay,

forgetting, and mis-retrieval also highlights the fact that (a) no one theory seems to cover

all three events, and (b) one could re-classify theories as either being about delays (more

generally, slowed processing), occasional failures to retrieve, or mis-retrievals. As an aside,

note that none of the theories have any formalization of prediction cost (e.g., Hale, 2001;

Levy, 2008); researchers in aphasia have largely neglected this topic in the past, but it is

likely to become a focus of research in the coming years (see Clark, 2012 for an interesting

recent attempt using the storage cost metric from the Dependency Locality Theory of

Gibson, 2000).

In summary, a useful way to understand the various theories of sentence

comprehension deficits is in terms of their attempt to characterize delays, forgetting, and

mis-retrievals. The fact that theories of unimpaired sentence comprehension that depend

on working memory concepts are also focused on these same events suggests a natural

classification of theories of impairment that makes contact with a more general theory of

unimpaired processing.
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Deriving quantitative predictions: The importance of computational modeling

As discussed above, the experimental evidence and theoretical proposals in the

aphasia literature attribute the comprehension di�culty to deficits at di↵erent stages in

lexical processing, to processing deficits at the sentence level, or to impaired grammatical

representations. How can we derive quantitative predictions of these di↵erent theoretical

proposals as regards online and o✏ine processing? A dominant approach has been to

derive qualitative predictions of such verbally stated models based on introspection. This

methodology, however, has important limitations when the claims are about dynamical

processes with non-deterministic properties; in such cases, inferences about model

predictions can lead to many surprising errors. For example, Logačev and Vasishth

(2014a) showed through a set of simulations that a central claim of the Unrestricted Race

Model (Traxler, Pickering, Clifton, & Clifton, 1998), that ambiguous sentences are read

faster than unambiguous ones (the ambiguity advantage), held only when the finishing

times of two attachment processes were very similar to each other; when the di↵erence

between the finishing times is large, the ambiguity advantage essentially disappears.

Sentence comprehension involves non-deterministic dynamical processes; there is therefore

an obvious need to computationally implement the alternative proposals in order to better

understand their predictions.

Implementing theories of impairment also has the advantage that it will help us

understand what exactly the claim is in various theories. For example, what does

intermittent deficiency mean? There are many ways to realize such a deficiency; whatever

the realization, a natural way to understand intermittent deficiency is in the context of a

model of unimpaired processing. A further important reason to implement the various

proposals is that the theoretical claims should be examined with reference to individual

patients—because patients have lesions in di↵erent locations, it may be an

oversimplification to study average patient behavior (in the case of controls this may make
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more sense, since they arguably belong to a more homogeneous population, cf. Badecker

& Caramazza, 1986; Caramazza & McCloskey, 1988). In order to study behavior at the

individual level, models with di↵erent parameter settings, and/or with di↵erent

assumptions, need to be developed.

In recent years, the idea of implementing computational models to inform our

understanding of neuropsychological impairments has gained more and more attention (for

an overview see Dell & Caramazza, 2008). As Martin (2006, p. 91) points out, “attempts

to model patient performance would lead to important predictions and new empirical tests

regarding the nature of the patients’ deficits.” Some models of patient performance do

already exist for single-word processing and the respective impairments. Among these are

modeling accounts which concentrate on impairments of auditory single-word

comprehension and production (Dell, Schwartz, Martin, Sa↵ran, & Gagnon, 1997;

Mirman, Yee, Blumstein, & Magnuson, 2011; Rogers et al., 2004), on acquired dyslexia

(for example, Coltheart, 2006; Plaut, McClelland, Seidenberg, & Patterson, 1996;

Woollams, Ralph, Plaut, & Patterson, 2007), on optic aphasia (Plaut, 2002) and on

single-word processing in bilingual aphasia (Kiran, Grasemann, Sandberg, & Miikkulainen,

2012). Penke and Westermann (2006) presented an implementation of a model designed to

account for impairments in morphological processing. Although sentence processing

research has made progress in implementing theories computationally (Christiansen &

Chater, 2001; Vasishth & Lewis, 2006b; Hale, 2001), research in aphasia has lagged behind.

Previous computational models relating to sentence processing in aphasia have

served an important purpose given the data they considered; but they have several

limitations. First, all the computational models mentioned above have attempted to

model only o✏ine measures such as sentence comprehension accuracy. Recently, it has

been observed that since measures of online processing have the potential to reveal more

detail about incremental processing in aphasics, they can help di↵erentiate between
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various accounts of syntactic deficits in aphasia (Dickey et al., 2007; Hanne et al., 2011).

Second, there exists no computational evaluation of the Trace Deletion Hypothesis. It is

quite possible that a model implementing the TDH can accurately account for aphasic

behavior. Finally, most of the approaches have aimed at modeling only aphasics’

responses. A more principled approach would be to first model the responses from

unimpaired participants, and then induce the assumed impairment in that model and

predict aphasics’ behavior for that task and sentence type. This approach allows us to

determine more clearly which properties of the model lead to impairment, and it directly

allows us to compare the characteristics of impaired vs. unimpaired processing.

We present a set of computational models that aims at modeling o✏ine as well as

online responses from controls and aphasics. We compare predictions of the Trace

Deletion Hypothesis, and three alternative accounts: (i) slowed syntactic processing, (ii)

intermittent deficiencies of the parser, and (iii) a combination of both these impairments;

and evaluate the predictions of these two classes of theories of aphasia. We implement the

models in a parsing architecture proposed by Lewis and Vasishth (2005). The parsing

architecture is grounded within a general computational architecture of human

information processing, ACT-R (Adaptive Control of Thought-Rational, Anderson, Byrne,

Douglass, Lebiere, & Qin, 2004), and it has already been shown to account for several key

sentence comprehension phenomena in healthy individuals (Boston, Hale, Vasishth, &

Kliegl, 2011; Patil, Vasishth, & Lewis, 2011; Vasishth & Lewis, 2006a; Vasishth et al.,

2008; Wagers et al., 2009; Dillon, Mishler, Sloggett, & Phillips, 2013; Engelmann,

Vasishth, Engbert, & Kliegl, 2013; Engelmann & Vasishth, 2014; for other parsing

architectures grounded in ACT-R, see Dubey, Keller, & Sturt, 2008; and Reitter, Keller, &

Moore, 2011). As a target for modeling, we chose data from a visual world paradigm

study reported in Hanne et al. (2011). The data consist of the eye movement patterns of

aphasics and age-matched controls during a sentence-picture matching task for German
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reversible canonical and non-canonical sentences. We also model the o✏ine measures,

accuracy and response time, for the sentence-picture matching task. We go beyond

looking at aggregate behavior in patients by modeling individuals separately and

comparing these to the aggregate behavior of controls. In the next section, we briefly

describe the architecture and then present the modeling results.

Cue-based retrieval theory

The complete details of the cue-based retrieval theory are described in Lewis and

Vasishth (2005), Lewis, Vasishth, and Van Dyke (2006) and Vasishth and Lewis (2006a).

Here we only describe the important features of the theory. The theory is derived from (i)

the architectural assumptions of ACT-R (Anderson et al., 2004), (ii) assumptions about

the parsing process based on psycholinguistic evidence, and (iii) representational

assumptions from syntactic theory.

ACT-R is a generic cognitive architecture consisting of two main components—the

declarative memory system and the procedural memory system. Declarative memory

holds the contents of long-term memory (semantic and episodic memory), as well as new

memories created at run-time during processing. Each element in declarative memory,

called a chunk, is a set of feature–value pairs. The procedural memory describes

procedural knowledge in terms of production rules, which are condition–action pairs.

These two memory systems also form the core of the architecture. Declarative memory

maintains the lexical knowledge, and procedural memory maintains the grammatical

knowledge and parsing rules (the control structure) in terms of production rules.

What do production rules correspond to in terms of human sentence parsing? They

simply encode the structure that should be built when a word is seen. For example,

psycholinguists routinely assume that, upon reading the word ‘The’, a Determiner Phrase

(DP) is built, leading to the expectation that a noun is coming up, and that a verb is also
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going to appear. This is an informal version of the left–corner parsing algorithm (Aho &

Ullman, 1972). The model simply implements this algorithm for the specific sentences we

are interested in modeling (for a more general architecture, see Boston et al., 2011). The

incremental syntactic structure created during parsing gets stored in declarative memory

as chunks. These chunks are X–bar structures (Chomsky, 1986a) representing maximal

projections with features corresponding to X–bar positions (specifier, complement, head)

and other grammatical features such as case marking, and person, number, gender

agreement. Traces are implemented as co-indexation inside maximal projections. The

parse tree is updated at each input word by creating new chunks and attaching them to

the existing parse tree representation. Sentence parsing takes place as an iterative

sequence of production rule firing, retrieval of memory chunks and update of the current

parse tree.

In addition to the symbolic system (i.e., procedural and declarative memory), the

behavior of a model is modulated by a set of subsymbolic computations. These

computations impose constraints on the retrieval of chunks from memory and the selection

of production rules at each stage. The constraints on retrieval are specified in terms of

activation of chunks. The activation value of a chunk determines the probability of its

retrieval and the latency of the retrieval. The frequency and recency of retrievals

determine the activation of a chunk. Equations (1-3) give the details of computing the

activation value for each chunk i at every retrieval.

Ai = Bi +
mX

j=1

WjSji +
pX

k=1

PMki + ✏i (1)

Bi = ln

 
nX

k=1

tk
�d

!
(2)

Sij = S � ln(fanj) (3)
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Equation 1 specifies the total activation of a chunk i (Ai), which is the sum of the

base-level activation (Bi), the spreading activation received through retrieval cues (first

summation component), the activation received due to partial match between retrieval

cues and corresponding feature values in the chunks (second summation component), and

stochastic noise (✏i). The base-level activation of a chunk is calculated using Equation 2.

Here, tk is the time since the kth successful retrieval of chunk i, and d is the decay

parameter. The base-level activation function captures the power law of forgetting and the

power law of practice for a memory representation (Anderson et al., 2004). The spreading

activation that a chunk i receives (first summation component in Equation 1) is computed

using Wj and Sji values. Wj is normally equal to 1/n, where n is the number of retrieval

cues. Sji is the strength of association from an element (typically a retrieval cue) j to

chunk i and it is computed using Equation 3. S is a parameter defining the maximum

associative strength and fanj is the number of items associated with cue j. The strength of

association from a cue is reduced as a function of the “fan” of the retrieval cue, resulting

in associative retrieval interference. The second summation component in Equation 1

specifies the activation received through a partial match. It is computed over p retrieval

cues using P and Mki values. P is the match scaling parameter and Mki refers to the

similarity between the retrieval cue k and the corresponding value in chunk i.

The mapping from activation Ai to retrieval latency Ti for a chunk i is obtained

using Equation 4. F is the scaling parameter. The higher the activation of the chunk the

faster the retrieval.

Ti = Fe

�Ai (4)

Another subsymbolic computation that a↵ects the behavior of a model is the

calculation of the utility value for each production. If there are multiple productions that

can fire at a certain stage then the production with the highest utility value is the one
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that gets selected. The utility value of each production is set depending on the

significance of that production in the given context. Just like chunk activations, utilities

have stochastic noise added to them; the distribution of this noise is controlled by the

utility noise parameter. If there are a number of productions competing with expected

utility values Uj the probability of choosing production i is described by Equation 5; s is

the noise parameter that controls the variance of the noise distribution. Once a

production is selected it takes a constant amount of time for it to “fire” and accomplish

the actions assigned to it. The value of this constant time can be modified using a

parameter called default action time.

Probability(i) =
e

Ui/
p
2s

P
j
e

Uj/
p
2s

(5)

From the perspective of modeling aphasic sentence processing, the ACT-R

architecture provides a framework with a set of well-defined constraints on the memory

processes involved in parsing sentences, while at the same time o↵ering the flexibility, in

terms of possible memory representations and the control structure, for extending the

architecture to model other tasks. The set of modifiable parameters makes it possible to

extend the framework to impaired sentence processing. The next section describes how we

harness this flexibility to extend the cue-based retrieval model of unimpaired sentence

processing to the modeling of a sentence-picture matching task with controls and aphasics.

Cue-based retrieval model of Hanne et al. 2011

Here we present the details of the cue-based retrieval models of the data from Hanne

et al. (2011). The study reported in Hanne et al. (2011) was a sentence-picture matching

task in a visual world paradigm. Participants listened to German reversible canonical and

non-canonical sentences as in (1) while they were presented with two pictures (see Figure

1) on the screen. Each trial consisted of listening to a sentence in one of the two word
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orders. One of the pictures on the screen matched the sentence and the other did not. At

the end of the trial participants were asked to select the correct picture. Participants’

response and response time were recorded. Participants’ eye movements were also

recorded during the whole trial. The experiment was carried out with seven individuals

with agrammatic Broca’s aphasia and seven age-matched controls without any history of

neurological impairment. As a result, Hanne et al. (2011) provides one online and two

o✏ine measures of sentence processing of both, controls and individuals with aphasia.

(1) a. Canonical:

Der Sohn fängt den Vater

theNOM son is catching theACC father

‘The son is catching the father’

b. Non-canonical:

Den Sohn fängt der Vater

theACC son is catching theNOM father

‘The father is catching the son’

In the past, the cue-based retrieval theory has been predominantly used for

modeling reading time data (Lewis & Vasishth, 2005; Vasishth & Lewis, 2006a; Vasishth

et al., 2008; Patil, Vasishth, & Kliegl, 2009; Wagers et al., 2009; Dillon, 2011; Dillon et al.,

2013; Boston et al., 2011; Engelmann et al., 2013; Engelmann & Vasishth, 2014). The

predictions of the model are in terms of retrieval times, which have been used as the

model’s estimate of processing di�culty. We retain this assumption in the current model.

The model also makes predictions in terms of retrieval failures and parsing failures. These

predictions can be mapped to errors in sentence processing (Vasishth et al., 2008) or

comprehension question-response accuracies (Patil et al., 2011). However, there exists no

model using the ACT-R architecture which targets online (eye movement patterns) and
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o✏ine (picture matching accuracies and response times) data in a sentence-picture

matching task. To model the sentence-picture matching data from Hanne et al. (2011), we

must first make new assumptions in terms of a linking hypothesis between predictions of

the ACT-R–based theory and cross-modal tasks.

Linking hypothesis: Implementing the sentence-picture matching task in the ACT-R–based

architecture

A sentence-picture matching task typically involves listening to a sentence while

gazing at two or more pictures—a target and one or several distractor pictures. In the

version used in Hanne et al. (2011), eye movements were recorded during sentence

presentation, and at the end of each sentence, participants selected the picture (out of two

pictures) matching the sentence. Hence, modeling the sentence-picture matching task

entails modeling eye movements across the two pictures during sentence presentation,

modeling response accuracy and modeling response time. To accomplish this, we make a

set of new assumptions in the architecture.

First, we assume that, while processing a sentence, the model creates two separate

semantic representations of the two pictures on the screen after the first noun is processed.

These semantic representations are stored as chunks in declarative memory. The picture

chunks are created after the first noun is processed in order to keep the model assumptions

as close as possible to the actual experimental procedure. In Hanne et al. (2011), the

picture presentation and (auditory) presentation of the sentence began at the same time.

Hence, we assume that the creation of the picture chunk doesn’t happen right at the

beginning of the sentence. However, as revealed by separate modeling, creating picture

chunks at the beginning of the sentence does not lead to significantly di↵erent predictions.

As in earlier ACT-R models, at each input word, the parser incrementally updates

the partial representation of the sentence. Algorithm 1 and 2 in Appendix A list the steps



23

followed by the model to create syntactic and semantic representations of sentences in (1).

The assumption that the semantic representations of pictures are stored as chunks is

necessary for two reasons: firstly, chunks are the only representational units in declarative

memory; and, secondly, the task of matching a sentence to a picture can be accomplished

only if they have comparable representations.

Next, we assume that, as the model processes new sentence input, it selects the

picture that matches the partial representation of the sentence up to that point. The

picture selection is performed by means of a retrieval request for a matching picture

chunk. As a consequence of a retrieval request the two picture chunks receive varying

amounts of activation boost. The amount of activation boost received by each chunk

depends on its match with the partial sentence representation.

The di↵erence in the activation of the correct and incorrect picture chunk at the

time of retrieval determines the probability of fixating on the correct picture. The

di↵erence in activation is calculated by subtracting the activation of the incorrect picture

from the activation of the correct picture. A positive sign on the di↵erence denotes a

fixation on the correct picture and a negative sign denotes a fixation on the incorrect

picture; the higher the value of the di↵erence the more likely it is that the correct picture

is fixated. For simplicity, we assume that the mapping between activation di↵erence and

fixation probability is linear; this is a reasonable approximation since the probabilities for

patients are not far from 50%. This set of assumptions for fixation probabilities in terms

of activations is based on the architectural constraints on the model, and reflects earlier

claims about the link between activations of memory objects and fixation probabilities in

the visual world paradigm (Allopenna, Magnuson, & Tanenhaus, 1998; Altmann &

Kamide, 2007; Dahan, Magnuson, Tanenhaus, & Hogan, 2001). Allopenna et al. (1998)

and Dahan et al. (2001) have proposed a similar linking hypothesis for spoken word

recognition in the visual world paradigm. They predicted fixation probabilities for the
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target and distractors using activations computed from the TRACE model (McClelland &

Elman, 1986). Altmann and Kamide (2007) proposed a linkage between language

processing and eye movements in the visual world paradigm. On the basis of studies

reported in Dahan and Tanenhaus (2005); Huettig and Altmann (2005); Myung,

Blumstein, and Sedivy (2006); Altmann and Kamide (2007), Altmann and Kamide (2007)

proposed that a conceptual overlap between the linguistic input and visual objects results

in an increase in activation of the memory representations of those objects. The increase

in the activation of an object constitutes a shift in the attentional state of the cognitive

system, and this shift in attention increases the probability of eye movements towards the

spatial location of that object. We implement the e↵ect of activation boost from linguistic

input in terms of multiple retrievals of the picture chunks; in the ACT-R architecture,

retrieval is the only process that induces an increase in the activation of an existing

memory chunk. Memory retrievals cause an increase in activation through activation

spreading and a boost in the base-level activation (see the explanation for Equation 1 and

Equation 2 in the earlier section).

Finally, we assume that the picture that is retrieved at the end of the sentence is the

picture that is finally selected as the response to the sentence-picture matching task, and

that the duration between the processing of the first word of the sentence and the retrieval

of the picture at the end of the sentence is the response time for the picture matching task.

Details of the model of sentence-picture matching

Modeling the sentence-picture matching task is dependent on accurately creating a

representation of the input sentence and retrieving the picture chunk from memory (refer

to the algorithms in the Appendix A for the sequence of steps followed by the model to

perform the task in Hanne et al., 2011). Creating a syntactic and semantic representation

of the sentence involves cue-based retrieval of existing syntactic structures such as a verb
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phrase (VP) or a noun phrase (NP). Retrievals of these structures and the picture chunks

from memory is subject to the constraints decay, interference, and partial match. These

constraints arise from Equations 1–4. For example, at the input object noun Sohn in the

SVO sentence, the model sets a retrieval request such as “retrieve a syntactic structure

with CATEGORY = DP and CASE = accusative” to retrieve an existing determiner

phrase (DP) marked with accusative case. The accuracy and latency of retrieving the

requested DP are a↵ected by the decay of activation (Equation 2) of the DP, spreading of

activation due to the fan of the retrieval cues (the first summation component in Equation

1 and Equation 3), the partial match of the cues (the second summation component in

Equation 1) and the noise component (the term ✏i in Equation 1). The picture chunks are

retrieved with cues specifying the thematic roles—AGENT and THEME—in the sentence;

for example, a picture retrieval request is of the form: “retrieve a picture representation

with AGENT = Sohn and THEME = Vater”. The picture retrieval requests that are

carried out before the second noun is processed (e.g., steps 7 in Algorithm 1 in Appendix

A) have an empty value for one of the features—AGENT or THEME—depending on the

word order. As in syntactic structure retrievals, the accuracy and latency of picture

retrievals are subject to the same retrieval constraints.

Mapping deficit assumptions to the ACT-R models

Our goal in the current study is to determine what kind of deficit induced in the

model for unimpaired individuals can be used to model responses from impaired

individuals. For this reason, using the cue-based retrieval architecture discussed earlier,

we test some of the proposals put forward by several alternative accounts.

Models for the Trace Deletion Hypothesis. Our discussion about the TDH’s

predictions for German canonical and non-canonical order are based on an email

discussion with Yosef Grodzinsky, dated July 4th, 2012. The predictions of the TDH for
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the comprehension of non-canonical sentences in German and other languages with free

word order depend on certain assumptions about the underlying syntactic structure,

specifically, regarding the underlying position of the subject. Understanding the

predictions of the TDH under di↵erent assumptions requires an unavoidable digression

into syntactic theory. We attempt below to unpack the assumptions in very general terms,

and from first principles.

In syntactic theory, a common assumption is to represent a sentence in terms of a

tree with a mother node labeled S (for sentence), and daughter nodes constituting the

phrases that make up the sentence. A simple sentence that has a subject and a verb can

be represented as an S node with daughters NP (noun phrase) and VP (verb phrase), each

of which contains the noun phrase and the verb phrase that make up the sentence. A more

sophisticated version of such a tree would add more intermediate nodes that represent, for

example, inflectional morphology on the verb. One such node is the inflectional phrase

(IP). Thus, a simple monoclausal sentence would have an S node as the mother node, with

daughters NP (for the subject) and IP, and the IP would contain the VP as a daughter. A

more general syntactic tree would have as mother node not an S node, but rather a CP

(complementizer phrase). Syntacticians have also proposed a general theory of the

internal structure of such phrases as the NP, VP, IP, and CP; this is generally known as

X-bar theory (Chomsky, 1970). Under this proposal, any phrase XP (where, X can be

instantiated as N, I, P, etc.) is assumed to have two daughters, a Spec(ifier) node and an

intermediate X0 (X-bar) node, and the X0 node has at least one daughter, the X node, but

may have a further adjunct or (in the case of a verb) an argument as a daughter.

For German, one could in principle assume, following standard assumptions in the

syntax of English (Chomsky, 1981), that the subject originates inside the Specifier of the

IP (Spec-IP), where it is assigned the thematic role of AGENT and case by the finite verb.

In canonical order sentences, the subject would then be assumed to “move” to the
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Specifier of the CP, leaving behind a trace at Spec-IP; the trace would be coindexed with

the NP that it is linked to. In order to arrive at an object-first word order, the object NP,

which originates inside the VP, would be assumed to move to the Spec-CP position,

leaving behind a trace of its movement inside the VP; importantly, the subject can no

longer occupy the Spec-CP position, because the object already occupies that position.

This would have the consequence that non-canonical sentences contain exactly one trace

that is deleted (the one that is created by movement of the object from inside the VP). As

a result of trace deletion, the sentence-initial object would be thematically empty and,

hence, interpreted by the default strategy, which assigns an AGENT role to it. If we were

to adopt the hypothesis of subjects originating inside the IP, the TDH would predict

chance performance because there is an AGENT role (the one assigned to the subject in

IP by the finite verb) that competes with the AGENT role assigned by the default

strategy to the object.

However, an influential alternative assumption in syntactic theory, called the

verb-internal subject hypothesis (VISH, e.g., Koopman & Sportiche, 1991), assumes that

the subject is originally located inside Spec-VP (where it receives its theta-role) and then

moves to Spec-IP for case assignment. The VISH is the only reasonable assumption for

German. This becomes evident when we consider an example of VP-fronting, which shows

that the subject is contained in the fronted VP: [VP Mädchen geküsst] haben ihn viele

([VP Girls kissed] have him many, ‘Many girls have kissed him’). This example shows that

the subject is fronted along with the verb (we are grateful to Gisbert Fanselow for this

example, also see Meinunger, 2000 and Diesing, 1992).

Once we adopt the VISH, the Trace Deletion Hypothesis makes di↵erent

predictions. Non-canonical sentences such as (1-b) then contain two traces that are

deleted, i.e., the trace created by the movement of the object to Spec-CP (as discussed

above), and the trace created by subject movement from Spec-VP to Spec-IP. As a
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consequence, both the sentence-initial object and the subject are thematically empty and

their interpretation is subject to the default strategy. This strategy, however, assigns

thematic roles to NPs according to their linear positions, and since the object in

non-canonical sentences comes first, it would be assigned the AGENT role and the next

argument in line, the subject, the THEME role. This would result into a consistent

misinterpretation of non-canonical sentences. The TDH, therefore, will predict below

chance performance, a prediction that is inconsistent with the predominant reports of

chance level performance with non-canonical sentences in German patients with aphasia

(Burchert et al., 2003; Burchert & De Bleser, 2004).

Since there are good independent arguments in favor of VISH in German, a

linguistically informed theory such as the TDH would consistently make the wrong

prediction. However, it is possible to salvage the TDH by assuming that subjects in

non-canonical sentences receive their AGENT role in Spec-IP after they have been moved

and are assigned NOMINATIVE case by the finite verb in the head of IP and, as a result,

have become visible for theta-role assignment (visibility requirement, Chomsky, 1986b).

Note that NOMINATIVE case is assigned by the finite verb or its trace in verb-second

sentences where the verb is moved from VP via IP to CP. Note also that verb-traces are

not subject to trace deletion, (cf. Grodzinsky & Finkel, 1998). Deletion of the subject

trace in VP, therefore, does not have an impact on the thematic interpretation of moved

subjects and the TDH would correctly predict chance performance due to competition

between the AGENT role assigned to the moved object by the default strategy and the

AGENT role assigned to the subject in IP by the verb (or its chain).

Since the VISH is di�cult to abandon for German syntax, we evaluated the TDH

using the two variants above that assume the VISH:

(TDH-1) The subject originates in Spec-VP, then moves to Spec-IP and it is assigned

AGENT theta role in IP by the trace of VP.
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(TDH-2) The subject originates in Spec-VP, then moves to Spec-IP and it is assigned

AGENT theta role through its trace inside VP.

Although the details of the TDH’s assumptions are admittedly rather intricate, and

assume a great deal of syntactic machinery, the essential element of modeling the TDH

lies in assuming that the trace information for the moved element (the subject and/or the

object, depending on whether we assume TDH-1 or TDH-2) is deleted. One can question

whether deletion of the trace is related to being unable to represent grammatical

constructs, or whether this is inextricably related to processing (e.g., the inability to

complete a dependency). This is, however, beside the point for us; whatever kind of deficit

the TDH in its various versions represents, we can test its consequences within a given

parsing architecture.

Models for slowed processing and intermittent deficiency. In the literature, slowed

processing is considered to be a pathological slowdown in the processing system, and

intermittent deficiency a reduction in the resources available for carrying out syntactic,

semantic and task-related computations. We do not investigate all the other theoretical

proposals in the present work due to limitations of time. Note that it is not at all clear,

especially in the verbally stated theories, (a) how to distinguish one theory from another

in a computational setting, and (b) what exactly the theoretical claim amounts to. As an

example of (a) consider the proposal about delays in lexical access, and lexical integration

failure. The lexical–level delays could be a consequence of a slightly slower syntactic

parser, which is not slow enough to be detected in experimental data, but is slow enough

to indirectly cause a reduction in the lexical level activation of items in memory; and in an

architecture like ACT-R, a reduction in lexical level activation can also lead to failure in

lexical integration. Since these theories do not make any detailed commitments as regards

the parsing algorithm, the timing of parsing events, and the underlying constraints on
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retrieval, these are e↵ectively free parameters in these theories, and many, many di↵erent

permutations of commitments about the underlying parser are consistent with these

theories. Slowed processing and intermittent deficiency are interesting for us because they

have been suggested as plausible explanations for the data (Hanne et al., 2011) that we

model in the present paper, and because they have a natural realization in the

computational architecture we used for modeling.

Consistent with the processing accounts, we assume that there is no impairment in

the grammatical knowledge of aphasics. This means that the set of production rules (the

procedural memory) is the same across models for controls and aphasics. Since it is

possible that only one of the two assumptions, slowed processing and intermittent

deficiency, is enough to explain the data from Hanne et al. (2011), we evaluated these

assumptions using three separate models:

(M1) Only slowed processing

Slowed processing is implemented in terms of a higher value for the default action

time (DAT) parameter. DAT controls the amount of time required for one

production rule to fire and hence the amount of time required to processing.

(M2) Only intermittent deficiency

Intermittent deficiency is implemented in terms of a higher value for the utility noise

parameter. The utility noise value determines the variance in the utility values of

productions. The utility value of productions determines the probability of selecting

a particular production when multiple productions are competing to fire.

(M3) Slowed processing and intermittent deficiency

This model is a↵ected by both factors.

Note that it is possible to evaluate alternatives to intermittent deficiency. We are

hoping to carry out such a comprehensive model comparison in future work.
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Estimation of parameter values

For controls, all ACT-R parameters, except for the three mentioned below, were set

to the values that have been used in the earlier models from Lewis and Vasishth (2005);

Vasishth and Lewis (2006a); Vasishth et al. (2008); Patil et al. (2011). The value of the

maximum di↵erence parameter was changed from the earlier models and it was set to its

default ACT-R value; this parameter defines the range of the scale of similarity between a

retrieval cue and the corresponding value of a chunk in declarative memory. The value of

the Default Action Time (DAT) parameter was lowered from its value used in earlier

models; DAT specifies the amount of time needed for each production rule to fire. Finally,

the value of the latency factor parameter was also lowered; this factor works as a scaling

parameter in the equation for retrieval latency (see Equation 4 above). All parameter

values were adjusted (by using a brute force search) to optimize the fit for the

sentence-picture matching task (measures of fit are described below). Table B1 lists

parameter values in earlier models and those used here for controls.

For aphasics, we estimated values for the utility noise and DAT for each patient;

other parameters had the same value as in controls. Di↵erences in patients’ lesions and

also in their responses call for estimating parameters for each individual separately

(Dilkina, McClelland, & Plaut, 2008; Nickels, Biedermann, Coltheart, Saunders, & Tree,

2008). We estimated the individual parameter values only for the o✏ine data from

aphasics. Once parameter values were estimated for the o✏ine data, predictions for the

eye movement data were generated without any changes to these values. The parameters

for each patient were estimated by doing an exhaustive search (Nievergelt, 2000) through

a range of parameter values for utility noise (the range: 0.01-0.22) and DAT (range:

0.01-0.10). The search chose the best parameter values using the normalized

root-mean-square deviation measure—the di↵erence between the values predicted by the

model and the observed data. The parameter values estimated for each subject are listed
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in Table B4 in Appendix B and the corresponding normalized root-mean-square

deviations are listed in Table 2–4.

For model M1, we estimated the values for the DAT parameter and for model M2,

we estimated the values for the utility noise parameter. For model M3, we used the newly

estimated values of both the parameters simultaneously (see assumptions for M1, M2 &

M3 in the preceding section). As an alternative, we also checked the predictions of M3 by

estimating both parameters again for M3; this did not lead to substantial changes in the

predictions.

No parameters values were estimated for TDH-1 and TDH-2 because these two

models don’t assume any impairment in processing time or activation.

In the current model we also adjusted an ACT-R parameter that was not used in

the previously published models, the utility values of productions. Note that the utility

value and utility noise value are di↵erent parameters. The utility value is associated with

each production and can be di↵erent for di↵erent productions. By contrast, the utility

noise value is globally defined for the procedural memory system and it determines the

variance in the utility value of each production.

As described earlier, the utility value of a production determines the probability of

selecting that production. The data from Hanne et al. (2011) (see Figure 2) and other

psycholinguistic studies (Matzke, Mai, Nager, Rüsseler, & Münte, 2002; Ferreira, 2003)

shows that non-canonical sentences are harder to process even for healthy individuals.

The di�culty in processing non-canonical sentences is reflected in slow response time and

increased error in the sentence-picture matching task. We adjusted the utility values of

productions that assign thematic roles to noun phrases in the sentence. We assume here

that the error in processing non-canonical sentences is a consequence of error in assigning

thematic roles. When the structural information in the parse tree is ignored, the parser

fails to correctly mark the AGENT and THEME roles of the sentence which, in turn,
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leads to an error in comprehending the sentence. We estimated the utility values of the

productions that process nouns in the sentence. There were two alternative productions

that could process nouns—one that uses the syntactic information and the other that does

not.

For each simulation, one of the two productions gets selected depending on its

utility value. The probability of selecting a production i given its utility value Ui is

calculated using Equation 5. We set the utility values of these productions such that

non-canonical sentences were processed with the accuracy observed for controls in the

Hanne et al. (2011) data. The utility values that we used for these productions are listed

in Table B2. These values were estimated only for the data from controls and then kept

constant while modeling the data from aphasics. This means that the utility values of

these productions were the same for controls’ model and all aphasics’ models (TDH-1,

TDH-2, M1, M2 and M3). Next, we report the predictions of these models. The

predictions for both o✏ine and online responses are generated by averaging across 1000

runs of each model for each condition.

Modeling results

Accuracy. Here we compare the sentence-picture matching accuracy (the accuracy

panel in Figure 2) with the predictions of each model of aphasia (the accuracy panel in

Figure 3). The model TDH-1 captures chance level performance (close to the 50% mark)

in aphasics for non-canonical sentences, but for canonical sentences it predicts accuracy to

be as high as for controls. TDH-2 does not capture the pattern in the accuracy data for

either condition—it predicts below chance performance in non-canonical sentences and

high accuracy for canonical sentences. M1 (slowed processing) also does not capture the

pattern in the accuracy data for either condition—it predicts high accuracy values for

both sentence types. In contrast, models M2 (intermittent deficiency) and M3 (slowed
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processing and intermittent deficiency) are able to reproduce the accuracy patterns in

aphasics’ data quite well. These models predict chance level performance for

non-canonical sentences; for canonical sentences, they predict above chance performance

which is not as high as in controls. We return to a comparison between models M1-M3

below, when we consider individual di↵erences.

Response time. Next, we compare the response time data for the sentence-picture

matching task (see the response time panel in Figure 2) with the predictions of each

model of aphasia (see the response time panel in Figure 3). For the response time data, all

models capture the pattern of slow response times for non-canonical sentences in correct

and incorrect responses compared to the responses for canonical sentences. The important

e↵ect that was observed in aphasics’ data was that all of their responses are slower than

controls’ responses. This e↵ect is captured only by M1 and M3; TDH-1, TDH-2 and M2

predict response times similar to those of controls. Although none of the models can

capture the fact that, in the patients’ data, non-canonical correct response times are

about the same as canonical incorrect response times, this e↵ect doesn’t appear to be

robust; a subsequent experiment by Hanne and colleagues with a comparable design did

not replicate this e↵ect (Hanne, Burchert, De Bleser, & Vasishth, 2014). The wide

confidence intervals for the predictions of M1 and M3 resulted from the assumption that

each participant has a di↵erent value of the DAT parameter (the assumption of slowed

processing); for details regarding separate model fits for each patient, see the section on

individual di↵erences in the deficits below.

Eye movements. The data and predictions for eye movements for controls and

aphasics are illustrated in Figures 4 and 5. The eye movements show percentage of

fixations on the correct picture at various points in the sentences—‘NP1’, ‘verb’, ‘NP2’,

‘silence’. For canonical sentences, ‘NP1’ is the grammatical subject and ‘NP2’ is the
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grammatical object, and vice versa for the non-canonical sentences. ‘Silence’ is the time

after presentation of the spoken sentence; during this time participants still look at both

pictures until they respond by pressing a button to select the correct picture. Controls’

data consisted of correct responses in the sentence-picture matching task, and since they

performed close to ceiling, this constitutes most of their data. Aphasics’ data was

partitioned into correct trials (those that led to a correct response) and incorrect trials

(those that led to an incorrect response). We model the eye movement data using the

linking hypothesis proposed earlier. According to this hypothesis, the models carry out

retrievals of picture chunks from memory based on the semantic representation of the

sentence at various stages of the input. The models’ predictions about the percentages of

fixations on the correct picture are derived from the di↵erence in activations of the correct

and incorrect pictures at the time of these retrievals.

Controls’ eye movements for both sentence types show a gradual increase in

fixations on the correct picture. The model for controls reproduces this pattern in the

data; although the model seems to perform better than humans towards the end of the

sentence (in the ‘silence’ region), this is merely a consequence of the linear linking function

assumed between activation di↵erences and fixation probabilities. We also estimated a

more sophisticated non-linear linking function; but for the number of data points being

modeled, this would have been an overfitted linking function (cf. ‘Summary of results and

discussion’ section for more details about a possible non-linear linking function).

For non-canonical sentences, controls start to fixate on the correct picture earlier, at

the ‘verb’; the model doesn’t capture this early certainty. Aphasics, in their correctly

answered trials, show similar behavior in eye fixations—gradual increase in fixations on

the correct picture. For canonical sentences, their responses are delayed—they fixate on

the correct picture only in the ‘silence’ region, whereas in non-canonical sentences, just

like controls, they are certain about the correct picture from the ‘verb’ region onwards.
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All models for aphasics show similar behavior in correctly answered canonical

sentences. They capture the pattern of gradual increase in correct eye fixations. However,

all models show early certainty (at ‘NP2’) in fixating the correct picture and they

consistently show a higher percentage of correct picture fixations than patients’ data. For

non-canonical sentences, TDH-1 predicts that patients remain uncertain about the correct

picture till the ‘verb’ region, and fixate on the incorrect picture more often in the ‘NP2’

region; in the ‘silence’ region, the patients are predicted to fixate on the correct picture.

This behavior of TDH-1 stems from initially using the subject-first strategy and then

using the trace of the VP to assign AGENT theta role to the second NP (cf. assumptions

for TDH-1 above and the Algorithm 2 in Appendix A). TDH-2 predicts an early bias (at

‘NP1’) towards fixating the correct picture and this bias remains until the ‘silence’ region,

but this pattern is not reliable because TDH-2 predicts that patients would process

non-canonical sentences correctly very rarely (see the accuracy panel in Figure 3); the

pattern seen for TDH-2 in non-canonical sentences is based on a very small proportion of

simulation trials. In contrast to the TDH implementations, models M1, M2 and M3

predict a more consistent and similar behavior across regions in non-canonical sentences.

These models fixate on the correct picture from the ‘NP2’ region onwards, and predict a

higher number of correct picture fixations towards the end. However, in these

non-canonical sentence trials, they fail to capture the early certainty (at ‘NP1’) in

aphasics’ fixations.

For incorrect trials of aphasics, the main pattern observed in the data was that the

proportion of fixations on the correct picture was mostly below the 50% mark (see plots

(E) and (F) in Figure 4 and (C) and (D) in Figure 5). All the models capture this

behavior, for the most part. The only exception is model M1 in the ‘NP2’ region for

non-canonical sentences, but model M1 seldom processes non-canonical sentences

incorrectly, which means that a very small proportion of simulation trials lead to this
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prediction.

Individual di↵erences in the deficits. As mentioned earlier, we estimated the two

parameters—utility noise and DAT—for each patient separately using their o✏ine

responses. This is because aphasics’ responses show high variance between participants

(see the data in Table B3 in Appendix B), implying that the impairment in aphasics

varies between individuals to a greater extent than in controls. The parameter estimates

for each patient are listed in Table B4 in Appendix B and the corresponding normalized

root-mean-square deviations (NRMSD) are listed in Tables 2–4; the smaller the NMRSD

value, the better the model fit.

For model simulations represented as a vector sim and observed values as a vector

obs, both of length n, the NRMSD is calculated using Equation 6. The normalization

renders the measure of fit comparable, independent of scale.

NRMSD =

p
(
P

(sim� obs)2/n

max(obs)�min(obs)
(6)

Table 2 shows that the models M2 and M3 outperform M1 and the TDH models,

and Table 3 shows that the models M1-M3 outperform the TDH models. But across these

two tables no one M* model seems to clearly outperform the other two. The superior

performance of M3 over M1 and M2 becomes clear only when we take the mean NRMSD

scores over accuracy and response time. Note that since the RMSD values are normalized,

they are on the same scale; and since NRMSD is a normalized standard deviation, it is

reasonable to take the mean of the by-participant NRMSDs to get an estimate of the

mean quality of fit of each model for both dependent measures. The averaged NRMSD is

shown in Table 4; it is clear from this table that M3 is the best model when both accuracy

and response time fits are considered.

As mentioned above, the estimated parameter values (see Table B4 in Appendix B)

that lead to the NRMSD values reflect the variability between patients—the values for
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aphasics fall in a wider range than for controls. Figure 6 shows the range of values

estimated for the two parameters; we also estimated values of each control (this was done

only to facilitate comparison of the di↵erent amounts of variability within each of the two

groups; the predictions for controls reported earlier were generated with a fixed set of

parameter values for all participants). The values for controls form a tighter cluster than

those for aphasics. The figure also shows that aphasics have di↵erent degrees of

intermittent deficiency and slowdown in processing: while patients P1 and P6 are almost

equally a↵ected by slowdown in processing (due to similar values for the DAT parameter),

they are a↵ected di↵erently by intermittent deficiency (due to dissimilar values for the

utility noise parameter); on the other hand, while P1 and P5 are almost equally a↵ected

by intermittent deficiency, they are a↵ected di↵erently by slowed processing.

By contrast, the fits to the eyetracking data of the di↵erent models provide no

useful information on the relative quality of fits; this is clear from Figures 4 and 5, and

also from an inspection of NRMSD values (across regions, conditions, and patients) for

each model: TDH-1: 2.8, TDH-2: 2.77, M1: 2.75, M2: 2.76, and M3: 2.76.

Summary of results and discussion. The NRMSDs for accuracies and response time,

taken together, suggest that M3, which assumes slowed processing and intermittent

deficiency, is the best model among the candidates considered.

Model M3 captures the main e↵ect of participant type in the accuracy data:

aphasics are predicted to have significantly lower accuracy than controls. It captures the

main e↵ect of word order: non-canonical sentences result in lower accuracy (chance level)

in the sentence-picture matching task. It captures the main e↵ect of participant type in

the response time data: aphasics are predicted to have higher response times than controls.

And, it also captures the main e↵ect of word order: response times for non-canonical

sentences are higher. For the eye movement data, the model M3 captures the divergent

eye movement patterns in correct vs. incorrect responses. However, M3 fails to model the
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early looks to the correct picture that were seen in the non-canonical order with aphasics.

An important conclusion is that models assuming only slowed processing or only

intermittent deficiency or trace deletion fail to capture several of the crucial patterns in

the aphasics’ data: TDH-2 and M1 fail to model the chance level performance in

non-canonical sentences; TDH-1, TDH-2 and M2 fail to model the high response times in

aphasics; TDH-1 fails to model the eye movements in the correctly answered

non-canonical trials. The demonstration that TDH-1 fails to capture aphasics’ online

behavior in non-canonical structures has important implications. From the o✏ine

predictions, it appears that TDH-1 accurately captures chance level behavior in

non-canonical sentences, which makes it di�cult to rule out TDH-1 as a possible

explanation for o✏ine data on sentence comprehension deficits in aphasia. But the

predictions of TDH-1 for online behavior diverged drastically from the observed behavior.

Thus, although the o✏ine behavior is consistent with the TDH, the online behavior is not.

This is an independent validation of the observation by, among others, Burchert et al.

(2013) that “. . . the consideration of behavioral o✏ine data alone may not be su�cient to

evaluate a performance in language tests and draw theoretical conclusions about language

impairments. Rather it is important to call on additional data from online studies looking

at language processing in real time to understand a performance at the behavioral level

and the nature of eventual underlying deficits.” In sum, when the predictions for both,

online and o✏ine (grouped and individual), measures are considered, model M3 emerges

as the best model of aphasic sentence processing among the five models considered.

Although the models—the model for controls and the best model for aphasics,

M3—capture the major patterns in the data, some e↵ects were not consistent with the

predictions. First, towards the end of the sentence, the models outperform humans in the

proportion of fixations to the correct picture. This divergence is only an artifact of the

relationship we assume between activation di↵erence and fixation probabilities. For
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simplicity, we assumed a linear relation between activation di↵erence and fixation

probabilities. A further issue with modeling fixation probabilities using activation

di↵erences could be that the probabilities are bounded, but activations in ACT-R are not.

Using a non-linear linking function with asymptotic growth (e.g., a sigmoid function) can

also put an upper bound on the predicted fixation probabilities.

We also tried a non-linear function to define the mapping between activation

di↵erence and fixation probabilities. We fit the Boltzmann Sigmoid A function, which has

four parameters:

y =
(a� b)

(1.0 + exp((x� c)/d))
+ b (7)

The first two parameters, a and b, were kept at 100 and 0 respectively as they mark the

upper and lower bound of the values we want to map activation di↵erence to. The

parameters c and d were estimated using the optim function in R, and the optimization

interface available from zunzun.com. The parameter estimates were comparable for optim

and zunzun (c=�0.139, d=�2.327). Once more data becomes available, this function

could be a good candidate for modeling the mapping from activation di↵erences to

fixation probabilities. This non-linear function gave us a better fit and also provided an

upper bound on the predicted fixation probabilities. However, such a mapping would

artificially over-fit the sparse data we have here (8 data points). We therefore chose to

retain the linear linking function.

Finally, although model M3 does not do a particularly good job of fitting patients’

eye movements in non–canonical sentences that resulted in a correct response, it does

outperform TDH-1. What is important here is relative fit. If the data reflect an early

ability in patients to build the correct parse, this aspect of non-canonical word order

processing is not reflected in any of the models. We note in passing here that Hanne and

colleagues have conducted follow-up studies with canonical and non-canonical structures

using a slightly di↵erent design with picture preview, and did not consistently find such an
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early increase in looks to the correct picture.

General Discussion

We carried out a computational investigation of several instantiations of two sets of

competing theories concerning sentence comprehension deficits in aphasia: the Trace

Deletion Hypothesis, and theories assuming intermittent deficiencies and/or slowed

processing. The two sets of theories have been traditionally categorized as

representational deficit accounts and processing deficit accounts. Intermittent deficiency

and slowed processing generally attribute di�culty to events in parsing, whereas the TDH

assumes that the underlying cause of these disorders is an impairment in representing

traces of syntactic movement.

We employed the cue-based retrieval architecture (Lewis & Vasishth, 2005) for

modeling the sentence-picture matching study reported in Hanne et al. (2011). We

implemented five models of sentence processing deficits in aphasia, comparing two

instantiations of the TDH with three alternative accounts—slowed processing,

intermittent deficiency and both these impairments together. Slowed processing was

operationalized as slowed procedural memory, and intermittent deficiency as extra noise in

the utility values of the parsing rules (productions in ACT-R), and the TDH as an

absence of the trace information in the syntactic tree built by the models. Modeling

results revealed that the model assuming slowed processing and intermittent deficiency

fits the aphasics’ o✏ine data better than the other models considered. A model of

individual aphasics suggests that it may be reasonable to assume that the two

impairments are present to di↵ering degrees in individuals. The TDH models implemented

in ACT-R failed to capture crucial patterns in the o✏ine data, such as reduced accuracy

in sentence-picture matching for canonical sentences, chance level performance for

non-canonical sentences, and elevated response times in aphasics. Models assuming only
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one of the two deficits (slowed processing or intermittent deficiency) also failed to capture

either the chance level performance or slowed response times.

For modeling online data, i.e., the incremental eye movement patterns, we proposed

a linking hypothesis. The hypothesis states that a model’s predictions about fixating a

picture are derived from the activation values of the two pictures presented on the screen.

The di↵erence in the activation of the correct and incorrect picture is assumed to predict

the probability of eye fixations on the pictures. Importantly, the predictions of eye

movements did not involve any parameter fitting; only the o✏ine data were used for

parameter estimation. In the data, aphasics’ eye movements show that correct o✏ine

responses are associated with normal-like online processing and incorrect o✏ine responses

are associated with aberrant online processing (aberrant relative to controls’ trials and

patients’ correct trials). Only the model that assumed both intermittent deficiency and

slowed processing, and the model assuming only intermittent deficiency could capture this

divergent pattern in the eye movement data. Note that even though the model assuming

only intermittent deficiency captured the eye movement data, it could not capture the

slow response times in aphasics. For the models based on the Trace Deletion Hypothesis,

one of the implemented versions of the TDH accurately predicted chance level behavior in

o✏ine accuracies for non-canonical sentences. However, this model failed to predict the

observed online behavior in eye movements, especially in correctly answered non-canonical

sentences.

Thus, when results for o✏ine and online data are considered together, the model

assuming slowed processing as well as intermittent deficiency emerges as the best model

(among the models considered) of the aphasics’ data from Hanne et al. (2011).

Consequently, the results are consistent with the class of hypotheses that ascribe aphasics’

sentence processing deficits to intermittent deficiency and slowed processing.

Although the models that implemented the Trace Deletion Hypothesis failed to
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predict crucial patterns in the o✏ine as well as online data, one important caveat here is

that we have only investigated two instantiations of the Trace Deletion Hypothesis, and

we have had to make assumptions about how the TDH predictions would play out in a

very specific parsing architecture. It is entirely possible that there exists a particular set

of assumptions compatible with the TDH which, when computationally implemented,

would yield predictions that fit the data better. In other words, we do not (and cannot)

claim that accounts such as the TDH are wrong; we have only shown that, in the specific

context of the present simulations, holding all other assumptions about the parsing

environment constant, the processing deficit accounts fare better than the versions of

TDH we implemented to the best of our knowledge.

How does our model compare with existing computational models? Existing

computational models of aphasia (Crescentini & Stocco, 2005; Haarmann & Kolk, 1991;

Haarmann et al., 1997) have also evaluated processing or resource reduction based

explanations of aphasia. However, these models di↵er from our architecture in terms of

the precise processing deficit assumed: Crescentini and Stocco (2005) assume slow lexical

activation, Haarmann and Kolk (1991) assume temporal disruption, and Haarmann et al.

(1997) assume reduction in memory resources for aphasics. In contrast to these proposals,

the present model posits intermittent deficiency and slowed processing as an explanation

of sentence comprehension deficits in aphasic patients. An obvious direction for future

research is to evaluate the relative merits of these di↵erent assumptions, or combinations of

these assumptions, within a single architecture. We intend to take this up in future work.

A major contribution of the present work is that we not only propose an

implemented model of aphasic sentence processing deficits but also evaluate the

predictions of several competing accounts. Further, the model presented goes beyond

existing work in delivering predictions for response times as well as incremental eye

movements. Finally, the modeling architecture we use here is unique in that a
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well-developed model of unimpaired sentence comprehension is “damaged” in order to

evaluate impairment, and both unimpaired and impaired processing are investigated

within a fixed architecture. To our knowledge, this is the first attempt to computationally

evaluate the predictions of slowed processing, intermittent deficiency, and the trace

deletion account, and to model o✏ine as well as online measures (fixation probabilities in

the visual world paradigm) of aphasic sentence processing using the same model for

impaired and unimpaired processing.

The linking hypothesis proposed here for modeling sentence-picture matching data

opens new possibilities for modeling data from the visual world paradigm, which is an

important methodology in psycholinguistics. Here, we modeled mainly the task of

sentence-picture matching, but the hypothesis can be extended for modeling other tasks in

the visual world paradigm such as the task described in Altmann and Kamide (1999),

where participants listen to sentences while they are shown a scene containing mentioned

and distractor objects; the task described in Choy and Thompson (2010b) where

participants are shown an array of mentioned and distractor objects instead of a scene; or

the task described in Huettig and McQueen (2007) where participants are shown objects

as textual words on the screen. For modeling these tasks, the linking hypothesis can be

generalized as “The chunk in declarative memory that receives higher activation as a

consequence of processing the current sentence fragment is the object from the visual

stimuli that is more likely to be fixated by the participants”. This claim is consistent with

the proposal about the linkage between language processing and visual attention

presented in Altmann and Kamide (2007).

We must, of course, acknowledge that our modeling attempt also has several

limitations. Specifically, we limited our scope to testing the assumptions of the slowed

processing and intermittent deficiency accounts on aphasic sentence comprehension for

non-canonical sentences in German. There are several other proposals in the literature
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that assume a processing deficit in aphasia; examples are the timing disorder proposed in

Haarmann and Kolk (1991), delayed lexical activation in Love et al. (2008) and lexical

integration failure in Thompson and Choy (2009). Additionally, experimental work in

aphasia examines data for a wide range of linguistic structures like passives, clefts,

subject/object relative clauses, etc. We recognize that a more detailed investigation of the

model is needed; a complete investigation of sentence processing in aphasia should

compare predictions of all existing hypotheses across a range of linguistic structures and

languages, and perhaps also competing architectures. Such an extensive study is needed in

order to determine how general the conclusions of the present work are. Nevertheless, one

achievement of the present work is that it demonstrates that the cue-based retrieval

architecture—an independently motivated theory of sentence comprehension—provides a

flexible environment for testing the di↵erent assumptions about deficits in aphasia, in

comparison to controls.

There are several interesting implications from our work for modeling sentence

processing deficits in aphasia. For example, in recent work Caplan, Michaud, and Hu↵ord

(2013) have investigated 61 persons with aphasia on di↵erent syntactic structures and

di↵erent tasks (sentence-picture matching, sentence-picture matching with auditory

moving window presentation, and object manipulation). Based on this large dataset, they

concluded that the underlying deficit may be a reduction in processing resources; they also

found an interaction between task demands and parsing di�culty (a topic that is of great

interest in unimpaired sentence processing; see Logačev & Vasishth, 2014a; Logačev &

Vasishth, 2014b). Reductions in resources can be operationalized in several di↵erent ways

within ACT-R; some examples are intermittent deficits, increased utility noise, or less

e�cient retrieval processes (Engelmann & Vasishth, 2014). Since one of the features of

ACT-R is that di↵erent tasks, such as those involving fairly elaborate hand movements,

can be directly modeled in ACT-R, our particular modeling approach opens up new
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possibilities for understanding what it means for a patient to have reductions in resources,

and how their performance interacts with tasks. The recent integration of eye-movement

control and the cue-based retrieval model described here (Engelmann et al., 2013) also

creates new opportunities to model the eye-parser connection directly when modeling

visual world data.

A further contribution of the present work is that patients’ behavior can be studied

in the same architecture that is used to model unimpaired processing; an obvious

implication is that models of unimpaired processing may also show occasional

impairments that are due to occasional retrieval failures, under conditions of processing

overload. This implication should be investigated in future work both experimentally and

through computational modeling.

Conclusions

There are four major achievements of the present work. First, aphasic patients’

impaired sentence processing, reflected in their o✏ine and online behavior during the

sentence-picture matching task, is best captured by a model assuming two processing

deficits—intermittent deficiency and slowed processing. Second, the model presented here

suggests that individual patients may be a↵ected by the two deficits in di↵ering degrees;

this necessitates moving beyond evaluating average behavior among patients (Caramazza

& McCloskey, 1988). Third, we show that the two models of aphasia based on the Trace

Deletion Hypothesis fail to capture the e↵ects of reduced accuracy, delays in o✏ine

responses and normal online performance in correctly answered trials. Finally, we show

that a well-developed model of unimpaired sentence comprehension, the cue-based

retrieval model grounded in ACT-R, can be extended to model both unimpaired and

impaired sentence processing in both o✏ine and online modalities.
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Appendix A

Parsing algorithms for the cue-based retrieval models

The models were implemented as simulations in R (R Development Core Team,

2009).

Algorithm 1: Canonical sentence (Der Sohn fängt den Vater)

1. Input: � (empty string before the 1st word of the sentence)

(a) Create CP, IP, VP (attach the VP to comp-IP and the IP to comp-CP)

(b) Predict an SVO structure: create a nominative DP with an empty head and

attach it to spec-CP; create trace ‘t s’ in spec-VP and in spec-IP, co-index ‘t s’

and the DP

2. Input: Der

(a) Retrieve the nominative DP and assign ‘Der’ to head-DP

3. Input: Sohn

(a) Retrieve the nominative DP; create an NP with ‘Sohn’ as the head and attach

it to comp-DP

4. Create picture chunks of the two pictures on the screen

5. Retrieve a picture chunk that matches the (partial) sentence

6. Input: fängt

(a) Attach ‘fängt’ to head-CP; create trace ‘t v’ in head-VP & head-IP; co-index

‘t v’ and the CP

(b) Predict an accusative DP: create an accusative DP and attach it to comp-VP



62

(c) Retrieve the nominative DP

[Note: (d1) & (d2) below lead to two competing productions with di↵erent utility

values in the models for controls, M1, M2 and M3; and (d3) implements the

hypotheses in the models for TDH-1 and TDH-2.]

(d1) Use the trace ‘t s’ in spec-VP and assign an AGENT theta role to the retrieved

DP

(d2) Fail to use the available trace information in spec-VP and assign a THEME

theta role to the retrieved DP

(d3) Due to the deletion of trace ‘t s’ in spec-VP assign an AGENT theta role to the

retrieved DP following the subject-first strategy

7. Retrieve a picture chunk that matches the (partial) sentence

8. Input: den

(a) Retrieve the accusative DP and attach ‘den’ to head-DP

[Note: (b1) & (b2) below lead to two competing productions with di↵erent utility

values in the models for controls, M1, M2 and M3; (b1) implements the hypotheses

in the models for TDH-1 and TDH-2, (b2) is absent the TDH models.]

(b1) Use the information that the DP is in comp-VP and assign a THEME theta

role to the retrieved DP

(b2) Fail to use the information that the DP is in comp-VP and assign an AGENT

theta role to the retrieved DP

9. Input: Vater

(a) Create an NP with ‘Vater’ as the head
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(b) Retrieve the accusative DP and attach NP to comp-DP

10. Retrieve a picture chunk that matches the sentence

Algorithm 2: Non-canonical sentence (Den Sohn fängt der Vater)

1. Input: � (empty string before the 1st word of the sentence)

(a) Create CP, IP, VP (attach the VP to comp-IP and the IP to comp-CP)

(b) Predict an SVO structure: create a nominative DP with an empty head and

attach it to spec-CP; create trace ‘t s’ in spec-VP and in spec-IP, co-index ‘t s’

and the DP

2. Input: Den

(a) Change the prediction of an SVO structure to OVS structure: Delete the DP in

spec-CP; delete trace ‘t s’ in spec-VP and spec-IP

(b) Create a DP with ‘Den’ as the head and attach it to spec-CP; create trace ‘t o’

in comp-VP; co-index ‘t o’ and the DP

3. Input: Sohn

(a) Create an NP with ‘Sohn’ as the head and attach it to comp-DP

4. Create picture chunks of the two pictures on the screen

5. Retrieve a picture chunk that matches the (partial) sentence

6. Input: fängt

(a) Attach ‘fängt’ to head-CP; create trace ‘t v’ in head-VP & head-IP; co-index

‘t v’ and the CP

(b) Predict a nominative DP: create a nominative DP and attach it to spec-IP;

create trace ‘t s’ in spec-VP and co-index ‘t s’ with the DP
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(c) Retrieve the accusative DP

[Note: (d1) & (d2) below lead to two competing productions with di↵erent utility

values in the models for controls, M1, M2 and M3; and (d3) implements the

hypotheses in the models for TDH-1 and TDH-2.]

(d1) Use the trace ‘t o’ in comp-VP and assign a THEME theta role to the retrieved

DP

(d2) Fail to use the available trace information in comp-VP and assign an AGENT

theta role to the retrieved DP

(d3) Due to the deletion of the trace ‘t o’ in comp-VP and assign an AGENT theta

role to the retrieved DP following the subject-first strategy

7. Retrieve a picture chunk that matches the (partial) sentence

8. Input: der

(a) Retrieve the nominative DP and attach ‘der’ to head-DP

[Note: (b1) & (b2) below lead to two competing productions with di↵erent utility

values in the models for controls, M1, M2 and M3; (b2) & (b3) implement the

hypothesis in the model for TDH-1; and (b4) implements the hypothesis in the

model for TDH-2.]

(b1) Use the trace ‘t v’ of the VP in head-IP and assign an AGENT theta role to

the retrieved DP

(b2) Fail to use the available trace ‘t v’ of the VP in head-IP and assign a THEME

theta role to the retrieved DP

(b3) Use the trace ‘t v’ of the VP in head-IP and assign an AGENT theta role to the

retrieved DP and change the AGENT theta role of the earlier DP to THEME
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(b4) Due to the deletion of the trace ‘t s’ in spec-VP assign a THEME theta role to

the retrieved DP

9. Input: Vater

(a) Create an NP with ‘Vater’ as the head

(b) Retrieve the nominative DP and attach NP to comp-DP

10. Retrieve a picture chunk that matches the sentence
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Appendix B

Details of the models
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Modeling sentence processing deficits in aphasia, Figure 2
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Modeling sentence processing deficits in aphasia, Figure 3
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Modeling sentence processing deficits in aphasia, Figure 4
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Modeling sentence processing deficits in aphasia, Figure 5
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(B) Patients : Non−canonical (correct resp.)

NP1 Verb NP2 Silence

0
20

40
60

80
10

0

   
   

  C
or

re
ct

   
  f

ix
at

io
ns

 (%
)

● ●
●

●

−2
.5

−1
.5

−0
.5

0.
5

1.
5

2.
5

Ac
tiv

at
io

n 
   

di
ffe

re
nc

e

(C) Patients : Canonical (incorrect resp.)

NP1 Verb NP2 Silence

0
20

40
60

80
10

0

   
   

  C
or

re
ct

   
  f

ix
at

io
ns

 (%
)

●
● ●

●

−2
.5

−1
.5

−0
.5

0.
5

1.
5

2.
5

Ac
tiv

at
io

n 
   

di
ffe

re
nc

e
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Modeling sentence processing deficits in aphasia, Figure 6
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Table 1: A matrix showing how the models relate to each other along dimensions of the three

working-memory related events—delays, forgetting (or failure to retrieve), mis-retrieval—

that have been investigated in sentence comprehension research.

Model Delays Forgetting Mis-retrieval

TDH x x

SYNCHRON x x

CCRD x

intermittent deficiency x x

weakened syntax x

slow syntax x x

lexical integration deficit x x

delayed lexical access x x
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Table 2: The normalized root-mean-square deviation between observed and predicted

response accuracies across five models of aphasia. For TDH-1 and TDH-2 the predictions

are derived from the same parameter values as those for controls. For M1, M2 and M3, the

predictions are derived from the best parameters for each patient.

Participant TDH-1 TDH-2 M1 M2 M3

P1 0.66 1.55 1.37 0.13 0.08

P2 0.7 2.2 1.33 0.14 0.07

P3 0.29 1.17 0.93 0.11 0.15

P4 0.62 0.59 1.17 0.42 0.4

P5 0.66 1.55 1.41 0.13 0.09

P6 0.12 0.63 0.67 0.22 0.21

P7 0.73 1.14 1.43 0.29 0.26

mean 0.54 1.26 1.19 0.21 0.18
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Table 3: The normalized root-mean-square deviation between observed and predicted

response times across five models of aphasia. For TDH-1 and TDH-2 the predictions are

derived from the same parameter values as those for controls. For M1, M2 and M3, the

predictions are derived from the best parameters for each patient.

Participant TDH-1 TDH-2 M1 M2 M3

P1 1.14 1.13 0.35 1.13 0.36

P2 1.23 1.23 0.47 1.21 0.49

P3 0.83 0.81 0.4 0.82 0.39

P4 1.08 1.07 0.33 1.07 0.33

P5 1.62 1.59 0.5 1.59 0.5

P6 0.9 0.9 0.36 0.9 0.37

P7 2.55 2.54 0.45 2.54 0.46

mean 1.34 1.33 0.41 1.32 0.41
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Table 4: The averaged normalized root-mean-square deviation between observed and

predicted response accuracies and response times across five models of aphasia. For TDH-1

and TDH-2 the predictions are derived from the same parameter values as those for controls.

For M1, M2 and M3, the predictions are derived from the best parameters for each patient.

Participant TDH-1 TDH-2 M1 M2 M3

P1 0.9 1.34 0.86 0.63 0.22

P2 0.97 1.72 0.9 0.68 0.28

P3 0.56 0.99 0.66 0.46 0.27

P4 0.85 0.83 0.75 0.75 0.36

P5 1.14 1.57 0.96 0.86 0.3

P6 0.51 0.77 0.52 0.56 0.29

P7 1.64 1.84 0.94 1.41 0.36

mean 0.94 1.29 0.8 0.76 0.3
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Table B1: The list of parameter values used in the previous studies with ACT-R models

and the values used in the current models for controls and the two models implementing

the Trace Deletion Hypothesis (TDH-1 and TDH-2).

Parameter Previous Current

Models Models

(Controls, TDH-1 & TDH-2)

Decay (d) 0.50 0.50

Maximum associative strength (S) 1.50 1.50

Retrieval Threshold (T) �1.50 �1.50

Maximum di↵erence �0.60 �1

Latency Factor (F) 0.14, 0.46 0.04

Noise (✏) 0, 0.15, 0.30, 0.45 0.30

Default action time 0.05 0.02

Utility noise 0 0.01

7DEOH�%�



73

Table B2: The utility values estimated for the productions that assign theta roles. Each

algorithm step corresponds to a production in ACT-R (see Algorithm 1 and 2 in Appendix

A). A missing value in a cell indicates that that production does not exist in the model(s).

The values are listed only for competing productions (algorithm steps); for all other steps

the utility value is the default value of zero. Utility values for TDH-2 are not listed because

there are no competing productions in TDH-2.

Utility values for

Algorithm steps Controls, M1, M2 & M3 TDH-1

Algorithm 1 step (6)(d1) 0.6 -

Algorithm 1 step (6)(d2) 0.4 -

Algorithm 1 step (8)(b1) 0.6 -

Algorithm 1 step (8)(b2) 0.4 -

Algorithm 2 step (6)(d1) 0.52 -

Algorithm 2 step (6)(d2) 0.48 -

Algorithm 2 step (8)(b1) 0.52 -

Algorithm 2 step (8)(b2) 0.48 0.5

Algorithm 2 step (8)(b3) - 0.5
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Table B3: The individual aphasics’ data from o✏ine measure in the Hanne et al. (2011)

study. The numbers in parenthesis indicate standard errors.

Percentage correct Response time in ms (correct) Response time in ms (incorrect)

Participant SVO OVS SVO OVS SVO OVS

P1 75 50 4148 (261) 4528 (384) 4731 (584) 6279 (904)

P2 80 60 3629 (279) 3337 (184) 4342 (1001) 3829 (316)

P3 85 53 3636 (351) 5642 (887) 3560 (261) 3764 (564)

P4 70 25 5943 (889) 9613 (1617) 5194 (1386) 7655 (1076)

P5 75 50 3143 (320) 3538 (534) 3642 (605) 3277 (272)

P6 95 45 3840 (246) 4144 (457) 5160 (-) 6679 (788)

P7 70 40 7487 (757) 6017 (735) 6718 (899) 7758 (860)
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Table B4: The estimated values of the parameters default action time and utility noise for

each aphasic participant. The values of default action time were estimated for response

times in M1 while keeping the other parameter values constant. Similarly, the values for

utility noise were estimated for response accuracies in M2. In M3 the two estimated values

were used together.

Participant P1 P2 P3 P4 P5 P6 P7

Default action time 0.05 0.04 0.04 0.09 0.03 0.06 0.09

Utility noise 0.15 0.09 0.08 0.21 0.15 0.05 0.18
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Table B5: The normalized root-mean-square deviation between observed and predicted

response accuracies and response times (RT) for controls. Note that model predictions

for controls were generated with a single set of parameter values for all participants.

(Participant C6 had 100% accuracy for both canonical and non-canonical sentences,

therefore NRMSD is undefined; see Equation 6 for the definition of NRMSD.)

Participant Accuracy RT

C1 0.3 0.6

C2 0.9 1.9

C3 0.2 1.3

C4 0.2 1.2

C5 0.7 0.5

C6 undefined 0.2

C7 0.3 0.3
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