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Abstract

Research on similarity-based interference has provided extensive evidence that the

formation of dependencies between non-adjacent words relies on a cue-based retrieval

mechanism. There are two di�erent models that can account for one of the main

predictions of interference, i.e., a slowdown at a retrieval site, when several items share a

feature associated with a retrieval cue: Lewis and Vasishth’s (2005) activation-based model

and McElree’s (2000) direct access model. Even though these two models have been used

almost interchangeably, they are based on di�erent assumptions and predict di�erences in

the relationship between reading times and response accuracy. The activation-based model

follows the assumptions of the ACT-R framework, and its retrieval process behaves as a

lognormal race between accumulators of evidence with a single variance. Under this model,

accuracy of the retrieval is determined by the winner of the race and retrieval time by its

rate of accumulation. In contrast, the direct access model assumes a model of memory

where only the probability of retrieval can be a�ected, while the retrieval time is constant;

in this model, di�erences in latencies are a by-product of the possibility of backtracking

and repairing incorrect retrievals. We implemented both models in a Bayesian hierarchical

framework in order to evaluate them and compare them. We show that some aspects of the

data are better fit under the direct access model than under the activation-based model.

We suggest that this finding does not rule out the possibility that retrieval may be

behaving as a race model with assumptions that follow less closely the ones from the

ACT-R framework. We show that by introducing a modification of the activation model,

i.e, by assuming that the accumulation of evidence for retrieval of incorrect items is not

only slower but noisier (i.e., di�erent variances for the correct and incorrect items), the

model can provide a fit as good as the one of the direct access model.

Keywords: cognitive modeling; sentence processing; working memory; cue-based

retrieval; similarity-based interference; Bayesian hierarchical modeling
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Models of retrieval in sentence comprehension: A computational evaluation using Bayesian

hierarchical modeling

There is strong evidence that the formation of syntactic dependencies between

non-adjacent words relies on the memory system. An example is the so-called locality

e�ect: increasing the distance between co-dependents (such as subjects and verbs) tends to

lead to greater processing di�culty (Gibson, 2000; Grodner & Gibson, 2005). Research on

interference makes a similar point: the speed and/or accuracy of dependency completion

can be adversely a�ected by the presence of items in memory that are similar to the

retrieval target (among others: Gordon, Hendrick, & Levine, 2002; Van Dyke & Lewis,

2003; Van Dyke, 2007; Jäger, Engelmann, & Vasishth, 2015; Nicenboim, Engelmann,

Suckow, & Vasishth, submitted; Vasishth, Brüssow, Lewis, & Drenhaus, 2008). Such a

central role for memory in sentence comprehension is well-motivated: it is implausible that

the parser could keep track of a large and in principle unbounded inventory of the

dependencies that can be found in a sentence, since they easily exceed the amount of

information that can be held in the focus of attention (McElree & Dosher, 1989; McElree,

2006; Cowan, 1995; Oberauer, 2013; Marcus, 2013). The evidence from studies

investigating similarity-based interference (see the meta-analysis of published studies in

Jäger, Engelmann, & Vasishth, submitted) strongly suggests that dependency completion

relies on a content-addressable cue-based retrieval mechanism that is subject to interference

(McElree, 2000; Van Dyke & Lewis, 2003; Lewis, Vasishth, & Van Dyke, 2006).

Similarity-based interference is a phenomenon that is not unique to language, and occurs

when several items share a feature associated with a retrieval cue. A major implication is

that the retrieval mechanism employed for the creation of linguistic dependencies is similar

to the one utilized in non-language domains.

There are multiple implementations compatible with such a content-addressable

cue-based retrieval mechanism in sentence processing. As a verbally stated model, this

type of mechanism would entail that when retrieval cues fully match the target of retrieval,
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similarity-based interference would cause an inhibitory e�ect, that is, an increase of

processing di�culty at the retrieval of a dependent. This processing di�culty would be

reflected in longer reading times and lower accuracy. However, in some cases, shorter

reading times have been observed when increased processing di�culty was clearly expected

(Van Dyke & McElree, 2006; Nicenboim, Vasishth, Gattei, Sigman, & Kliegl, 2015;

Nicenboim, Loga�ev, Gattei, & Vasishth, 2016). In these cases, it is usually assumed that

the fast reading times are a consequence of a shallow parse (due to, for example,

good-enough processing, Ferreira, Bailey, & Ferraro, 2002) caused by cognitive overload.

There can be good reasons to assume that shorter reading times are associated with

increased di�culty, for example, when shorter reading times co-occur with lower

comprehension accuracy (Van Dyke & McElree, 2006) or lower working memory capacity

(Nicenboim et al., 2015; Nicenboim et al., 2016). However, the trade-o� between reading

times and comprehension accuracy is usually left underspecified.

There are two models that make explicit the relationship between reading times and

retrieval accuracy, and even though they are sometimes not di�erentiated, they implement

the content-addressable cue-based retrieval mechanism in a di�erent way: Lewis and

Vasishth’s (2005) model, which we will refer to as the activation-based model, and

McElree’s (2000) model, which we will refer to as the direct access model. While the

models are similar, as we explain in detail later, they have di�erent implications for

retrieval processes in sentence comprehension. The activation-based model assumes a

process that resembles a race model (Audley & Pike, 1965; Vickers, 1970), where evidence

for each retrieval candidate is accumulated with di�erent rates. This race determines both

the latencies and the retrieval accuracy. By contrast, the direct access model assumes that

retrieval candidates have di�erent levels of availability, which is the probability that a

memory representation is retained. Availability determines only the accuracy of the

retrieval and not the latency. In this model, a di�erence in latency between two conditions

is a by-product of a mixture of directly accessed items, and retrievals that were initially
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incorrect, but they are reanalyzed leading to a correct retrieval.

The goal of this paper is to unpack the quantitative predictions of the

activation-based and direct access models by implementing them in a Bayesian hierarchical

framework. This will allow us to compare their relative fit to a representative dataset and

to assess their validity as models of retrieval that can account for similarity-based

interference. We used the data from Nicenboim et al. (submitted), which investigated

similarity-based interference from the number feature using two relatively high-powered

self-paced reading experiments. The data in this study include two dependent measures: (i)

reading times for the critical region where retrieval from memory is assumed to occur, and

(ii) accuracies in a comprehension task that targets specific dependency relations through a

multiple choice task. This dataset is especially suitable for our modeling purposes because,

apart from Van Dyke (2007, who also evaluated some of the dependencies), this is the only

dataset that we are aware of that uses comprehension questions to directly assess the

resolution of the dependencies. As we explain in detail later, these two dependent measures

(reading times and accuracy) are necessary for evaluating the models.

Nicenboim et al. (submitted) used stimuli like (1). There were two conditions, high

vs. low interference, which were assumed to a�ect the dependency between the subject

(i.e., Der Wohltäter “The philanthropist”) and the verb (i.e., begrüßt hatte “had greeted”).

In the high interference condition, two nouns intervened between these two co-dependents

that had the same number marking as the target noun, the subject of the sentence, namely,

singular marking. In the low interference case, the two intervening nouns had plural

marking while the target noun remained singular. In German, the verb (i.e.,begrüßt hatte)

agrees in number with its subject; in the high interference condition, the retrieval cue set at

the verb to seek out a singular noun would match three nouns. By contrast, in the low

interference condition, only one noun matches this retrieval cue. Thus, reading time at the

critical region, the verb begrüßt hatte, provides an estimate of any interference e�ect.

Each target sentence was followed by a question that queried either the subject of the
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matrix verb (e.g., “sat”), the subject of the embedded verb (e.g.,“had greeted”), or the

object of the embedded verb. The possible answers were provided in multiple-choice format

in pseudo-randomized order. For all the questions, participants had the option to answer “I

don’t know”, when they did not remember or could not answer.

(1) a. High Interference

Der
The.sg.nom

Wohltäter,
philanthropist,

der
who.sg.nom

den
the.sg.acc

Assistenten
assistant (of)

des
the.sg.gen

Direktors
director

begrüßt
greeted

hatte,
had.sg,

saß
sat.sg

später
later

im
in the

Spendenausschuss.
donations committee.
‘The philanthropist, who had greeted the assistant of the director, sat later in

the donations committee.’

b. Low Interference

Der
The.sg.nom

Wohltäter,
philanthropist,

der
who.sg.nom

die
the.pl.acc

Assistenten
assistants (of)

der
the.pl.gen

Direktoren
directors

begrüßt
greeted

hatte,
had.sg,

saß
sat.sg

später
later

im
in the

Spendenausschuss.
donations committee.
‘The philanthropist, who had greeted the assistants of the directors, sat later in

the donations committee.’

Nicenboim et al. (submitted) found an inhibitory e�ect of similarity-based

interference for the retrieval of the subject (“the philanthropist”) when it shared the

number feature singular with other competitor NPs (“the assistants”, “the directors”); this

suggests that retrieval in high interference conditions took longer than in low interference

conditions. Given that the auxiliary verb (hatte “had”) is morphologically marked as

singular, the longer reading times at the auxiliary verb is consistent with cue-based

retrieval.

Both the activation-based and the direct access models make the correct predictions

regarding the average behavior—both predict an inhibitory interference e�ect. However,
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these two accounts di�er in the way that correct and incorrect retrievals occur, and these

di�erent underlying mechanisms can be investigated using the data from Nicenboim et al.

(submitted).

We first describe the models qualitatively, but in order to unpack the predictions of

these two models we later provide a more formal presentation. We then evaluate the

models quantitatively by examining the relationship between reading times and accuracy.

There are two main findings in the present study: First, the direct access model

provides a better fit to the data than the activation-based model corresponding to Lewis &

Vasishth, 2005. Second, we show that a variation of the activation-based model fits the

data as well as the direct access model, and also provides a reasonable model of the

underlying generative process.

Overview of the activation-based and direct access model

The activation-based model as implemented by Lewis and Vasishth (2005) is a

computational model of sentence processing in which dependencies of non-adjacent

elements are created via a content-addressable cue-based retrieval mechanism. This model

was realized in ACT-R (Anderson et al., 2004), which is a general cognitive architecture

used to model a vast variety of cognitive phenomena. This means that sentence processing

depends on the application of general cognitive principles to the specialized task of

sentence parsing. Being a computational model, it provides quantitative predictions of

retrieval speed and accuracy.

The predictions regarding interference, locality, and some antilocality e�ects of Lewis

and Vasishth’s (2005) original model have been investigated using simulation (Lewis &

Vasishth, 2005; Vasishth et al., 2008). In addition, simplified versions of the model, which

focused on certain aspects of the architecture and evaluated some of the assumptions of the

original model, have also been used (e.g., Dillon, Mishler, Sloggett, & Phillips, 2013;

Dillon et al., 2014; Kush & Phillips, 2014; Jäger et al., 2015; Vasishth & Lewis, 2006;
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Nicenboim et al., 2016; Engelmann, 2015; Parker & Phillips, 2016).

Crucially, the activation-based model provides an account of the relationship between

reading times at the dependency resolution site and the accuracy of the resolution. This is

so because dependency creation relies on the retrieval of the correct item from memory; in

ACT-R terms, what is retrieved is a chunk. The chunk with the highest activation is

retrieved and its activation level determines the retrieval time. We provide next an

informal explanation of the key aspects of our implementation of the activation-based

model. We do this using example (1) from Nicenboim et al. (submitted). We show that the

activation-based model can explain similarity-based interference e�ects, predicting

inhibitory interference (i.e., an increase in processing di�culty) when a competitor NP

matches the singular number feature of the target of retrieval.

The main assumptions of the model are that (i) words are encoded in memory as

bundles of features (as in Nairne, 1990; Oberauer & Kliegl, 2006) that include lexical,

semantic, and syntactic information, and that (ii) retrieval cues are used to identify the

“correct” chunk from memory: If retrieval cues (which are feature specifications) match

with the features of a chunk in memory, the chunk gets a boost in activation, and if cues

mismatch a chunk’s features, activation is decreased. Such a mechanism would always

retrieve the correct item. However, due to random noise in the system, activation

fluctuates randomly from trial to trial, so that despite a cue match with a target, a

competitor could have higher activation and could end up being retrieved. An alternative

possibility is that all candidate chunks in memory fall below a retrieval activation threshold

(a parameter in ACT-R); in this case, retrieval would fail.

As an example, consider the auxiliary verb (hatte, “had.sg”) of (1). This is the region

where an interference e�ect was seen in Nicenboim et al. (submitted). In both sentences

(1a) and (1b), there is a dependency between this verb and its subject (“the

philanthropist”), and the only di�erence between the sentences is that the intervening NPs

(“the assistant/s”, “the director/s”) appear in singular in (1a) and in plural in (1b). The
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activation-based model assumes that the feature information of each item such as category,

case, number, gender, and so forth is encoded in memory. When the embedded verb

(begrüßt hatte, “greeted had.sg”) is being read, an attempt is made to retrieve the subject.

The verb provides cues such as NP, nominative (notice that case is encoded in the

determiner of the NP in German), singular, among others features required from the target

of the retrieval. For each cue, a limited amount of activation (called the maximum

associated strength or MAS) is spread among the target and the competitors that are

stored in memory. The MAS determines the strengths of association from each cue to each

item in memory. This strength of association represents how uniquely the cue identifies a

target. This means that in the low interference condition (1b), the strength of association

of the singular cue with the target is determined by the maximum activation associated

with this cue (since the cue fully identifies the item). In the high interference condition

(1a), however, the target (“the philanthropist”) and the competitors (“the assistant”, “the

director”) will be assigned some smaller part of the maximum activation (this is the

so-called fan e�ect, for details, see Anderson & Reder, 1999), and thus their strength of

association of singular will be smaller than the maximum activation. This is regardless of

the fact that in both conditions, there is another cue that uniquely identifies the target,

namely, being nominative: In both conditions the target also receives activation due to the

strength of association with the cue nominative. As it is shown more formally in the next

section, this means that the target would receive (on average) more total spreading

activation than the competitors. See Figure 2 for a schematic that explains this.

One crucial aspect of the activation-based model is that retrieval is not deterministic

because it depends on activation that fluctuates from trial to trial due to noise. Given that

both latency and probability are a�ected by activation, we will show later that the retrieval

process is similar to a race of accumulators (among many others: Audley & Pike, 1965;

Vickers, 1970; Usher & McClelland, 2001): Each item in memory is assigned an

accumulator of evidence for its retrieval, where the activation of each item acts as the rate
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of accumulation. The accumulator that reaches the threshold of evidence first determines

which item is retrieved and with which latency. Furthermore, some of the assumptions of

ACT-R can allow us to frame the retrieval process as one of simplest accumulator models:

the lognormal race model with a single variance for the noise associated with target,

competitors, and failure accumulators (Heathcote & Love, 2012; Rouder, Province, Morey,

Gomez, & Heathcote, 2014). A variant that we will consider later is a model with two

separate variances, one for the target accumulator, and one for the competitors and failure

accumulators.

It should be noted that a content-addressable system does not necessarily entail a

race between items in memory, and there are other models that are also compatible with a

content-addressable cue-based retrieval mechanism. The cue-based retrieval model

proposed in Van Dyke and McElree (2006) is based on McElree and colleagues’ previous

work (e.g., McElree, 2000; McElree, Foraker, & Dyer, 2003) and, while it does not assume

a race model, it shares with the activation-based model some of the assumptions of the

cue-based retrieval mechanism: Words are also encoded in memory as feature bundles, and

retrieval cues are used to distinguish the target from the competitors. In addition, even

though the mechanism is di�erent from the one in the activation-based model, here too the

probability of retrieving a particular item from memory given the retrieval cues is a

function of the degree of the match between the cues and the item, reduced by the degree

to which the cues match other competitor items in memory. However, in contrast with the

activation-based account, cues are supposed to enable direct access to relevant memory

representations. This means not only that there is no serial search between items in

memory, but that the distribution of access time is independent of the degree of match

between item and cue, and regardless of the quality or strength of the representation of the

item in memory (McElree, 2000).

It is not uncommon, however, that both poorer accuracy and longer reading times

associated with similarity-based interference are taken as evidence for McElree’s (2000)
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direct access model as well as for Lewis and Vasishth’s (2005) activation-based model. For

example Van Dyke and McElree (2006) write:

The current experiment supports a retrieval-based account of interference

e�ects in sentence processing, one that is compatible with the hypothesis that a

cue-based retrieval mechanism mediates the creation of grammatical

dependencies during parsing. One such mechanism has been proposed in Van

Dyke and Lewis (2003; see also Lewis and Vasishth, 2005; Van Dyke, 2002), in

which parsing success depends on the extent to which required constituents can

be retrieved from working memory. On this account grammatical heads provide

retrieval cues that are used to access previously stored items via a

content-addressable retrieval process (McElree, 2000, 2006; McElree, Foraker, &

Dyer, 2003).

A slowdown in self-paced reading or eyetracking-while-reading can also be taken as

evidence for direct access, since processing speed may be a�ected by di�erences in the

likelihood of recovering an item from memory (McElree, 1993; McElree et al., 2003). This

is because McElree (1993) assumes that after a misretrieval, that is, an incorrect or failed

retrieval, the parser can often backtrack to reprocess the retrieval and reach the

appropriate analysis. This would mean that a correct interpretation of a dependency could

be arrived at because the correct dependent was retrieved at the first attempt or,

alternatively, because a wrong dependent was retrieved initially but the parser backtracked

and retrieved the correct one. Given that backtracking should take some additional time,

latencies associated with the correct responses would be a mixture of fast directly accessed

dependents and retrievals slowed down due to the time needed for backtracking. Since

interference adversely a�ects retrieval probabilities, the proportion of errors would be

higher in high interference conditions. This would entail a higher proportion of

backtracking and hence slower latencies in the mixture of correct responses and on average,
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high interference conditions would show longer reading times than low interference

conditions.

Since the assumed constant distribution of retrieval times may not be observable in

reading for comprehension, evidence compatible with the direct access model but

incompatible with the activation-based model comes only from findings of speed-accuracy

trade-o� (SAT) procedure on rapid grammaticality judgment task (e.g. McElree, 2000;

McElree et al., 2003; Van Dyke & McElree, 2011). In this task, participants need to judge

a sentence as either grammatical or ungrammatical, and their judgment process is

interrupted with a cue to respond (typically a tone) after varying amounts of time (Reed,

1973; Wickelgren, 1977; and see also: Foraker & McElree, 2011). However, this is a

meta-linguistic task and it would be desirable if independent support for the direct access

model could be found with a reading-for-comprehension task. In addition, the conclusion

that retrieval time is constant requires arguing for a null result in one of the parameters of

the SAT model. For SAT procedures, accuracy is modeled as a function of three

parameters corresponding to the three phases of the SAT curve: (i) the asymptotic level of

performance, (ii) the intercept or the point in time where performance is di�erent from

chance, and (iii) the rate at which accuracy grows from chance to asymptote. While the

presence of the e�ect in the asymptote, so that an increase on interference lowers the

asymptote, is evidence for the reduction of the probability of accessing the target, the lack

of evidence for changes in the rate and intercept must be taken as evidence for no e�ect on

the speed of the retrieval. It could be, however, that the di�erences were too small to be

detected.

Since both models give virtually identical predictions for non-SAT (self-paced reading

or eye-tracking) experiments for averages, slowdowns product of similarity-based

interference have been taken as evidence for the two models. However, the two models

assume di�erent relationships between retrieval times and responses. It is important to

assess the fit to the data of each model, since each one is compatible with di�erent memory
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retrieval mechanisms. The activation-based model uses the declarative retrieval module of

ACT-R, which has been shown to be able to account for many memory-related phenomena

(e.g., Anderson, Bothell, Lebiere, & Matessa, 1998; Anderson & Reder, 1999; Van Rijn &

Anderson, 2003). In addition, the characteristics of the retrieval process allow us to model

it as a race of accumulators (Vickers, 1970), which places the model under a sequential

sampling framework (such as the drift di�usion model: Ratcli�, 1978; Ratcli� & McKoon,

2008; the leaky competitive accumulator: Usher & McClelland, 2001; linear deterministic

models: Brown & Heathcote, 2008, among others; Heathcote & Love, 2012). In the

sequential sampling framework, decisions (such as which is the right dependent that needs

to be retrieved) are considered a process of noisy accumulation of evidence.

In contrast to the activation-based model, the direct access model assumes a bipartite

architecture for retrieval (e.g., McElree & Dosher, 1989; McElree, 2006): Items within

focal attention are accessed quickly, but all other items outside attention are accessed more

slowly and with the same retrieval speed. The direct access model allows items that are

outside the focus of attention to vary only in their level of availability, i.e. their probability

of retrieval.

Implementation of the models

In order to distinguish between the activation-based and direct access models, we

implemented them as hierarchical Bayesian models in Stan (Stan Development Team,

2016b).1 See Lee (2011) for a similar approach to cognitive modeling. Implementing these

models a�ords several advantages: (i) we can investigate (through posterior predictive

checking, explained below) whether the data could have been generated by the models; (ii)

we can determine how each model’s parameters were a�ected by interference e�ects; and
1
Given the existence of models that assume that some aspect of the mind is Bayesian, such as Bayesian

approaches to parsing (such as Kleinschmidt, Fine, & Jaeger, 2012; Traxler, 2014; Myslín & Levy, 2016)

or to word learning (see, for example Xu & Tenenbaum, 2007), it is important to note that we are using

Bayesian methods as a flexible and interpretable way of extending models of cognitive processes (Lee, 2011;

Shi�rin, Lee, Kim, & Wagenmakers, 2008). This approach is orthogonal to the question of whether the

mind does or does not do Bayesian inference.
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(iii) the quality of fit of the two models can be compared using cross-validation.

The benefits of using hierarchical Bayesian modeling are two-fold: (i) The Bayesian

aspects of the models mean that the model incorporates the general advantages of Bayesian

inference, such as the use of credible intervals instead of confidence intervals, and the

possibility of fitting complex non-linear models (see Nicenboim & Vasishth, 2016, for an

extended discussion), and (ii) the hierarchical aspects entail that the models take both

between- and within-group variances into account and pool information via shrinkage

(Gelman, Hill, & Yajima, 2012). This means that we avoid overfitting the data and at the

same time we avoid averaging and losing valuable information about group-level variability

(Gelman & Hill, 2007). In the next section we provide a more formal presentation of the

assumptions and details of the implementation of both models than the one given in the

introductory overview.

The activation-based model

Lewis and Vasishth’s (2005) activation-based account is based on ACT-R (Anderson

et al., 2004) which is explicit about the e�ect of similarity-based interference in both

latency and accuracy. Even though ACT-R is a general cognitive architecture, we focus

only on the ability of the architecture to explain the retrieval process under interference

and not on the full framework. A detailed description of the full ACT-R framework is

provided in Anderson et al. (2004) and Anderson and Lebiere (1998).

In ACT-R, all chunks (which in our case are words or phrases) in memory have an

activation level that represents their strength in memory. In the classical ACT-R

framework (as opposed to RACE/A extension proposed by van Maanen, van Rijn, &

Taatgen, 2011), the activation of the chunk in memory is calculated at the onset of a

particular retrieval request. The total activation, Ac, assigned to each chunk c stored in

memory is the sum of the base-level activation, Bc, which describes the history of usage of a

chunk; the spreading activation, Sc, which represents the influence of the cues in identifying
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the chunk; a penalty component, Pc, which is the activation deducted in case of mismatch;

and a random noise component, ‘, that makes the retrieval a probabilistic process:

Ac = Bc + Sc + Pc + ‘ (1)

Similarity-based interference a�ects the value of the spreading activation, Sc. This

value, Sc, represents the sum of each of the strengths of association, Sc,u, from each cue u

to chunk c, assuming N di�erent cues, weighted by the importance of the cue, Wu; see

Equation (2). The value of each Sc,u will range between zero, meaning that cue u is not

helpful for distinguishing the target between competitors in memory (e.g., being a word is

certainly a feature required, but it provides no useful association to the target), to the

maximum associated strength (MAS), which represents the gain in activation when the

cue unequivocally distinguishes the target (since the cue matches a feature that no

competitor possesses); see Figure 1.2

chunk
1

cue
1

S1,1
99

S2,1
%%

S3,1

⌫⌫

chunk
2

cue
2

S3,2 %%

S2,2

99

S1,2

GG

chunk
3

Figure 1 . Graph showing the associations between two cues and three chunks.

2
The value of the strengths of association, S

c,u

, is defined in Anderson and Reder (1999) as depending

on the probability of needing chunk c when cue u is present, P (c|u), so that S

c,u

= MAS + log(P (c|u)).

The problem is that outside experiments where the association between cue and chunk (so-called fan e�ect)

is highly controlled, P (c|u) is very di�cult to estimate. In addition, since P (c|u) < 1, it follows that

log(P (c|u)) < 0, this means that MAS needs to be set to avoid a negative value of spreading activation.

Since we do not need to know the exact value of S

c

, for our purposes, distinguishing S

c,u

< MAS from

S

c,u

= MAS is enough.
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Sc =
Nÿ

u=1

Wu · Sc,u (2)

In addition, it is assumed that the sum of Wu is fixed for each individual,

representing a limited amount of source activation (which has been associated with

working memory capacity; see Anderson, Reder, & Lebiere, 1996; Daily, Lovett, & Reder,

2001); see Equation (3).

W =
Nÿ

u=1

Wu (3)

As before, we will focus on the e�ect at the auxiliary embedded verb of the example

(1) of Nicenboim et al. (submitted). At the auxiliary embedded verb (hatte, “had”), a

dependency between this verb and the subject needs to be created via the retrieval of a

singular nominative-marked NP (e.g., “the philanthropist”). For this retrieval, there are

two competitors, an accusative-marked NP (e.g., “the assistant(s)”) and a genitive-marked

NP (e.g., “the director(s)”). These NPs are singular in the high interference condition and

plural in the low interference one. For simplicity we will focus on three retrieval cues: (i)

NP, which is a shared feature on both experimental conditions, (ii) nominative, which is a

feature that uniquely distinguishes the target, and (iii) singular, which is shared with the

competitors in the high interference condition, but uniquely distinguishes the target in the

low interference condition.

In this setting, the spreading activation of the target for the low interference

conditions, ST |LI , described in Equation (4), would be higher than for the competitors,

SC|LI , and the spreading activation of both competitors should be described by the same

Equation (5). The spreading activation of the target should be higher because regardless of

the weights of the cues, Wu, it contains two strictly positive terms that are absent for the
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competitors: the weighted strength of association of the nominative cue,

Wnominative · snominative, and of the singular cue, Wsingular · ssingular|LI , while both strengths

of association are not shared and amount to the maximum associated strength, MAS; see

Figure 2.

ST |LI = WNP · sNP¸˚˙˝
<MAS

+ Wnominative · snominative¸ ˚˙ ˝
MAS

+ Wsingular · ssingular|LI¸ ˚˙ ˝
MAS

(4)

SC|LI = WNP · sNP¸˚˙˝
<MAS

+ Wnominative · 0 + Wsingular · 0 (5)

where the letter before the pipe, |, indicates whether it is the target, T , or the competitor,

C, and the letters after the pipe, |, indicate whether it is under high, HI, or low, LI,

interference.

Furthermore, the total activation, as described in Equation (1), is also a�ected by the

noise component, ‘, the history of usage or how much a representation decayed, Bc, and in

the case of the competitors, it is also a�ected by a penalty component, Pc that quantifies

the cost of a mismatch with the retrieval cues. This means that on average the activation

of the target will exceed the activation of the competitors. Since in ACT-R the chunk with

the highest level of activation is retrieved, this will mean that the target will be retrieved

more often than any of the competitors. Regardless of which chunk is retrieved, the level of

activation of the retrieved chunk determines the latency of the retrieval by Equation (6).

This equation also ensures that a higher level of activation corresponds to a faster retrieval,

which is scaled by F . To account for the absence of unrealistically long latencies and for

cases where no chunk is retrieved, when the activation falls below a certain threshold, the

retrieval fails (Lebiere, Anderson, & Reder, 1994).

Latency = F · e≠max(A1,...,A
N

) (6)
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For the high interference conditions, the spreading activation of the target, ST |HI as

shown in Equation (7), is still higher than the one of the competitors, SC|HI as shown in

Equation (8). The di�erence between the spreading activation of target and competitors,

however, is reduced because the singular cue is associated to both chunks in memory with

strength ssingular|HI . Thus the strength of association, ssingular|HI , will be lower than the

maximum associated strength, since here the singular cue does not uniquely identify the

target. As before, however, on average, the activation of the target will exceed the

activation of the competitors; see Figure 2.

ST |HI = WNP · sNP¸˚˙˝
<MAS

+ Wnominative · snominative¸ ˚˙ ˝
MAS

+ Wsingular · ssingular|HI¸ ˚˙ ˝
<MAS

(7)

SC|HI = WNP · sNP¸˚˙˝
<MAS

+ Wnominative · 0 + Wsingular · ssingular|HI¸ ˚˙ ˝
<MAS

(8)

Because the strength of association between singular cue and the target in the high

interference condition, ssingular|HI in Equation (7), is smaller than the one in the low

interference condition, ssingular|LI = MAS in Equation (4), it follows that ST |HI < ST |LI .

This means that on average, (when noise ‘ is canceled out) the activation of the target in

the high interference condition would be smaller than in the low interference one. The

higher activation of the target in the low interference condition leads to less errors, because

the distributions of the activation of the target and competitors are further apart, and also

leads to faster retrievals due to Equation (6). As a consequence, the activation-based

account will predict higher accuracy and shorter reading times for the low interference

condition in comparison with the high interference one.

Another less studied consequence of similarity-based interference is that when

competitors are incorrectly retrieved in conditions of high interference, the process should

take shorter time than when they are retrieved in low interference conditions. This is

because the spreading activation of the competitors for high interference, SC|HI , has the
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term Wsingular · ssingular|HI , which is absent from the low interference conditions; compare

Equation (5) with (8).

To sum up, in similarity-based interference the following inequalities derived from

Equations (4)–(8) should hold:

AT |HI > AC|HI (9)

AT |LI > AC|LI (10)

AT |HI < AT |LI (11)

AC|HI > AC|LI (12)

Low interference

NP
<MAS //

<MAS

))

<MAS

""

e.g.,“philanthropistÕÕ
˙ ˝¸ ˚
Target

nominative

5555
MAS

55

Competitor
1¸ ˚˙ ˝

e.g.,“assistantÕÕ

singular

<<<<

MAS

<<

Competitor
2¸ ˚˙ ˝

e.g.,“directorÕÕ

High interference

NP
<MAS //

<MAS

))

<MAS

""

e.g.,“philanthropistÕÕ
˙ ˝¸ ˚
Target

nominative

5555
MAS

55

Competitor
1¸ ˚˙ ˝

e.g.,“assistantÕÕ

singular

<MAS

<<

<MAS

55

<MAS
// Competitor

2¸ ˚˙ ˝
e.g.,“directorÕÕ

Figure 2 . Graph showing the associations between the cues NP, nominative, and singular,
and the target and two competitor NPs. The width of the arrow represents the strength of
association, but this strength is weighted, so two identical associations may assign di�erent
amount of activation depending on the cue to which they belong.

The activation-based model as a lognormal race. In order to assess the fit of

the activation-based account to the experimental data, we implemented it as a lognormal

race of accumulators with a shift parameter and a single variance for the noise of all

accumulators (Rouder et al., 2014), as explained further below. The retrieval in ACT-R

can be thought of as a decision processes, where target and competitors stored in memory
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accumulate evidence until the first chunk reaches a certain value and is retrieved.

Activation can be linked to evidence by assuming that it represents the rate of its

accumulation (in a similar way as assumed by van Maanen et al., 2011). This is so because

activation in ACT-R represents the probability of the retrieval, and it is boosted by

processes that increase evidence such as matching cues, previous retrievals and so forth,

while it is penalized by processes that decrease the evidence such as mismatching features

and decay.

Although in ACT-R the latency of the retrieval is only relevant for the chunk that

was actually retrieved, as shown by Equation (6), our implementation assumes that there is

a potential retrieval time, or finishing time in the race, tc for each candidate c in memory.

This is the time it would have taken for the chunk to be retrieved given its activation

(scaled by the parameter F) :

tc = F · e≠A
c = e≠A

c

+log(F ) (13)

The race model is implemented in the following way: Since the noise component in

Ac is assumed to be normally distributed (Lebiere et al., 1994) and a�ects the activations

of all the chunks to the same extent,3 for each trial, the finishing time of each chunk, tc, is

sampled from a lognormal distribution with the same standard deviation ‡, and the fastest

chunk in a given trial would be the one retrieved (i.e., the chunk with the lowest tc in a

given trial).

tc ≥ enormal(≠µ
c

+log(F ),‡) ∆ log(tc) ≥ normal(≠µc + log(F ), ‡) (14)

…tc ≥ lognormal(≠µc + log(F ), ‡) (15)

(16)

3
The noise component is sometimes approximated to have a logistic distribution for convenience, see, for

example Lebiere (1999).
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where

Ac = µc + ‘ (17)

‘ ≥ normal(0, ‡) (18)

The only observable data for every trial are (i) the answer of the comprehension

question at the multiple choice task, w, (which we assume that when the question asks

about the subject of the embedded verb, the answers correspond to the chunk retrieved

from memory modulo o�ine distractions, i.e., the winner of the race), and (ii) the reading

times at the site of the retrieval (the auxiliary verb “had.sg”). The reading times will

include the retrieval time, tc=w, of the “winner” chunk, and the time taken for other

processes. Given the evidence that distributions of reaction times are shifted (Rouder,

2005; Nicenboim et al., 2016), we assume a lower bound, Â, which represents changes in

peripheral aspects of processing, such as encoding or motor execution (Rouder, 2005). We

also account for other aspects of processing (e.g., lexical access) with a parameter p. For

simplicity and to achieve a realistic fit to the data, p is added to the exponential factor

(this ensures that the reading time variance increases with means, which is a general

property of reaction times that seems to hold across many paradigms; see Rouder,

Tuerlinckx, Speckman, Lu, & Gomez, 2008).

RTc=w ≥ Â + lognormal(≠µc + log(F ) + p, ‡) (19)

Since the observed reading times, as shown in Equation (19), are associated with the

maximum activation (on a specific trial), the observable data constrain the unobserved

finishing times, t’c,c ”=w, of the other non-selected choices which must be necessarily slower:

t’c,c ”=w > tc=w (20)
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Since we are not interested in the specific value of µc, F , or p, but in learning from

the model (i) whether the retrieval process resembles a race of accumulators, and (ii) the

e�ect of number interference on the target and competitors, we fit the reading times, RT ,

as a function of –c and an arbitrary constant, b, such that b ≠ –c = ≠µc + log(F ) + p. By

setting b large enough (to 10, for example), we ensure that –c is strictly positive for ease of

interpretation: a higher positive number corresponds with a higher rate of accumulation.

Rouder et al. (2014) show that without further assumptions, thresholds and accumulation

rates cannot be disentangled in the lognormal race model. To estimate the thresholds in a

lognormal race model, Heathcote and Love (2012) assumed that both the rate of

accumulation ‹ and the thresholds ÷ were lognormally distributed, so that the finishing

times, y, were distributed in the following way y ≥ lognormal(µ = µ÷ ≠ µ‹ , ‡ =
Ò

‡2

÷ + ‡2

‹).

If the thresholds are fixed at some arbitrary point b, then ‡ = ‡‹ (since ‡÷ = 0) and the

rate of accumulation µ‹ = b ≠ µ, thus we can interpret –c as the rate of accumulation

associated with each chunk, and we can rewrite Equation (19) in the following way:

RTc=w ≥ Â + lognormal(b ≠ –c=w, ‡) (21)

On every trial, l, we can estimate –l,c=w from the observed RT , and we can constrain

the possible values of –l,’c,c ”=w from the values of tl,’c,c ”=w that could not be possible on a

given trial.

Given that shifts vary across participants but tend not to vary with experimental

manipulation (Rouder, 2005), we assume a certain shift for every participant i, while –l,c,

the activation together with nuisance parameters, will vary by participant i and by

experimental item j.

RTl,i,j ≥ Âi + lognormal(b ≠ –l,i,j,c=w, ‡) (22)

In standard ACT-R, if the activation is below a certain threshold, T , the retrieval
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fails with a latency, F · e≠T (Lebiere et al., 1994). To avoid a deterministic latency, we

assign an accumulator to the possibility of failure, which acts as a noisy timer, and its

timeout depends on its parameter –c=failure. In this way, the retrieval threshold can be also

thought as a chunk that competes for activation (Van Rijn & Anderson, 2003).

Figure 3 summarizes the parameters and the process for two chunks. The lognormal

race model is sometimes called a ballistic or deterministic race model because there is no

within-choice noise (as in, for example, the drift di�usion model): once a rate of

accumulation is set for a given accumulator, it will determine its time to the threshold; this

is represented in the lower part of Figure 3 by the straight lines. This, however, does not

make the process deterministic, since the rate of accumulation changes from trial to trial.

It is important to highlight that even though we model the ACT-R retrieval process

with a shifted lognormal race model, a good fit of the race model does not automatically

imply that ACT-R predictions regarding number interference were borne out. For that to

happen the inequalities (9)–(12) must hold.

In the implementation of the activation-based model, the hierarchical structure of

this model is embedded in each parameter –c associated with each chunk c (including one

representing the failure) that is allowed to vary by condition (high/low interference) and

includes by-participants and by-experimental-items intercepts and slopes (which are also

allowed to be correlated). This means that the model can account, for example, for an NP

of a certain experimental item being more semantically plausible as a retrieval candidate

than other NPs, by simply adjusting the by-item intercept of the accumulators associated

with each NP. See Appendix A for the details of the Bayesian model.

The direct access model

Next, we present an implementation of a direct access model. This is a Bayesian

hierarchical implementation of the cue-based retrieval model proposed by Van Dyke and

McElree (2006) based on McElree and colleagues’ previous work (e.g., McElree, 2000;
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Activation−based model as a lognormal race model
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Figure 3 . The figure depicts how the distribution of retrievals is generated from the
activation-based model as a lognormal race model. The bottom figure depicts the
parameters of the activation-based model, the full lines in green and red are the mean
finishing times tc=T arget and tc=Competitor, and the broken lines are finishing times one
standard deviation away from the mean. The middle figure shows the distributions of
finishing times for target and candidate; since every chunk is associated a potential
finishing time, t, both distributions have the same number of elements. The top-most figure
shows the distribution of retrieval times (adding the shift parameter Â would transform it
to reading times); since only the winning chunks are retrieved, the distribution of retrieval
times for targets has more elements than the one of the competitors. Notice that the
retrieval times are faster than the finishing times: this is so because when a chunk has a
very long finishing time in a given trial, it is very likely that its competitor will be faster.
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McElree et al., 2003). Since the original model has not been implemented computationally,

it is underspecified in some respects. We therefore made some assumptions in the model to

spell these details out; these are described below.

For the direct access model, we assume as in Van Dyke and McElree (2006) that cues

in the retrieval context are combined multiplicatively in a way similar to the proposed by

the Search of Associative Memory (SAM) model (Raaijmakers & Shi�rin, 1980; Gillund &

Shi�rin, 1984).4 In Van Dyke and McElree (2006), the probability of retrieving the item or

chunk (in ACT-R terms) c given N cues and O items in memory is defined by the following

equation (where we follow a nomenclature as similar as possible to the one from ACT-R):

Sc =
NŸ

u=1

wu · Sc,u (23)

P (c) = Sc

Oq

k=1

Sk

(24)

where Sc in Equation (23) is the total strength of chunk c which is defined as the product

of the strength of association of the chunk c with each cue u weighted by wu, and it is only

limited to be positive.5 One crucial di�erence between the multiplicative combination of

cues and the additive one is that the former removes chunks that will never be retrieved

from the “search set” of potentially retrievable chunks by assigning a strength of

association close to zero. Thus Equation (24) is just the ratio of the total strength of item

c divided by the sum of the total strength of the number of chunks.

Equation (24), however, does not allow for failed retrievals. In contrast with

Van Dyke and McElree (2006), in the SAM framework (Raaijmakers & Shi�rin, 1980;

4
Van Dyke and McElree (2011) are explicit, however, in that it could also be that cues are combined

linearly, but with weights that are di�erent enough so that certain cues, such as syntactic cues, have a more

prominent role.

5
This is sometimes called total activation of the image c (Raaijmakers & Shi�rin, 1980; Gillund &

Shi�rin, 1984), but in order to distinguish it from activation from the previous account, we refer to it as

“total strength.”
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Gillund & Shi�rin, 1984), it is assumed that Equation (24) represents the probability of

sampling c from memory, but after it, there is a recovery process that is successful on a

proportion of time that depends on the sum of the strength of association:

Precovery(c) = 1 ≠ e

Nq
u=1

w
u

·S
c,u

(25)

In order to be able to account for failed retrievals, we will follow the distinction

between sampling, recovery, and retrieval as it is present in the SAM framework; the entire

process is shown in Figure 4 . We will focus on the probability of retrieval, Pr, of the target

or one of the competitors in low or high interference, which entails sampling (with

probability P ) and recovery (with probability Precovery). As before, for simplicity, we

assume that there are three relevant cues for the retrieval of the subject, which explain

interference e�ects in the example (1), namely, NP, nominative, and singular, and we

derive the total strengths and probabilities of retrieval for low interference,

ST |LI = (wNP · sNP ) · (wnominative · snominative) · (wsingular · ssingular) (26)

SC|LI = (wNP · sNP ) · (wnominative · snominativeú) · (wsingular · ssingularú) (27)

Pr(T |LI) = ST |LI

ST |LI + 2 · SC|LI
· Precovery(T |LI) (28)

Pr(C|LI) = SC|LI

ST |LI + 2 · SC|LI
· Precovery(C|LI) (29)

Pfailure = 1 ≠ (Pr(T |LI) + 2 · Pr(C|LI)) (30)

and for high interference.
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ST |HI = (wNP · sNP ) · (wnominative · snominative) · (wsingular · ssingular) (31)

SC|HI = (wNP · sNP ) · (wnominative · snominativeú) · (wsingular · ssingular) (32)

Pr(T |HI) = ST |HI

ST |HI + 2 · SC|HI
· Precovery(T |HI) (33)

Pr(C|HI) = SC|HI

ST |HI + 2 · SC|HI
· Precovery(C|HI) (34)

Pfailure = 1 ≠ (Pr(T |HI) + 2 · Pr(C|HI)) (35)

In order to allow for the retrieval of chunks that partially match the retrieval cues, we

need to assume that there is a non-zero association between nominative and either

accusative and genitive, snominativeú, which is still smaller than the association between the

cue nominative and the feature nominative, that is 0 < snominativeú < snominative. Similarly,

there is a non-zero association, ssingularú, between the singular cue and the plural feature of

the competitors in the low interference condition such that, 0 < ssingularú < ssingular.

The direct access model as a mixture model. In order to account for

di�erences in reading times, the direct access model assumes that, in some proportion of

the cases, the parser is able to backtrack a misretrieval and to access the target candidate,

taking some extra time. Thus the reading times associated with the correct retrievals are a

mixture of directly accessed as well as backtracked retrievals as shown in Figure 5. This

means that the probability of accessing a certain chunk, P Õ (which should be equivalent to

the proportion of responses given at the multiple choice task modulo o�ine distractions), is

a�ected by the probability of backtracking, Pb in the following way:
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P Õ
r(T ) = Pr(T ) + (1 ≠ Pr(T )) · Pb (36)

P Õ
r(C) = Pr(C) ≠ Pr(C) · Pb (37)

P Õ
failure = Pfailure ≠ Pfailure · Pb (38)

Regardless of the e�ect of Pb, which if large enough may produce a ceiling e�ect and

hide the di�erences in accuracy between high and low interference conditions, we would

expect the following relationships between the probabilities of retrieval (sample and

recovery) to hold:

Pr(T |HI) > Pr(C|HI) (39)

Pr(T |LI) > Pr(C|LI) (40)

Pr(T |HI) < Pr(T |LI) (41)

Pr(C|HI) > Pr(C|LI) (42)

The core assumption of the direct access model is that retrieval takes the same time

on average, tda, regardless of the availability of the to-be-retrieved chunk. This is in

contrast with the activation-based model, but also in contrast with the SAM framework of

(Gillund & Shi�rin, 1984), where the retrieval time depends on the match between cues

and features of the chunk. The implications for the direct access model is that there will be

two di�erent distributions of reading times: a distribution associated with the incorrect

responses and a distribution associated with the correct ones. An incorrect response is

given by a participant, only when the wrong chunk is retrieved and there is no

backtracking and repair process; see Figure 5. In this case, the reading times at the

retrieval site will only include the time needed for the direct access, tda, together with the
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Figure 4 . Graph showing how di�erent responses are reached in the direct access model.
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time taken for other processes, p, and normally distributed noise with standard deviation

‡; crucially, this time is independent from the level of interference. We assume, as before,

that the noise and the time taken for other processes are added to the location of the

lognormal distribution; in addition, reading times are assumed to be shifted by some

minimum amount Â of time that represents the lower bound of the process. Thus we can

assume that the reading times at the retrieval site for each trial l that are associated with

an incorrect response (i.e, the retrieval of a competitor or a failed retrieval) have a shifted

lognormal distribution, where the tda depends on each participant i, and experimental item

j, but not on the experimental condition or the identity of the chunk retrieved.

RTincorrect,l,i,j ≥ Âi + lognormal(tda,i,j + pi,j, ‡) (43)

For correct responses, the reading times depend on whether there is a repair process

or not; see Figure 5. This entails that the distribution of reading times is a mixture of two

components: The first one is associated with chunks correctly retrieved at the first attempt

as shown in the first line of Equation (44), and it is identical to the distribution of incorrect

responses. The second one is associated with incorrect responses that are backtracked and

repaired, and it includes the direct access times, tda, together with the time it takes to

backtrack and do a reanalysis, tb, as shown in the second line of Equation (44). (We derive

the exact proportions in Appendix B.)

RTcorrect,l,i,j ≥ Âi +

Y
___]

___[

lognormal(tda,i,j + pi,j, ‡) , if the first try is correct

lognormal(tda,i,j + tb,i,j + pi,j, ‡) , otherwise
(44)

As with the activation-based model, we are not interested in p, and we define

Tda,i,j = tda,i,j + pi,j. Support for this model would mean not only a good fit, but also that

similarity-based interference would a�ect the probabilities of retrieval in the way shown by
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the inequalities (39-42). We estimate the probability of each retrieval and the e�ect of

interference on the retrieval probability using a multi-logit regression (or categorical

distribution with the parameters on the logit scale). This is achieved by assigning a

hierarchical structure to the parameters of the multi-logit regression which vary by

condition (high/low interference) and include by-participants and by-experimental-items

intercepts and slopes which have one correlation matrix for participants and one matrix for

experimental items. Furthermore, we assign a hierarchical structure also to Tda and tb,

which are composed by by-participant and by-experimental-item varying intercepts. To

allow for correlations between the direct access time and the backtracking time, we

included also one correlation matrix for participants and one matrix for experimental

items. This means that we assume that latencies should not be a�ected by retrieval

probabilities. See Appendix B for more details.

Evaluation of the activation-based and direct access models

Application to data from a self-paced reading experiment

We fitted the models to a subset of the data from Nicenboim et al. (submitted). This

work reports two self-paced reading studies investigating similarity-based interference with

experimental items similar to (1). For the current study, we pooled the data of the 183

participants of both experiments, but keeping only the sentences with questions that

queried the subject of the embedded verb, since cue-based retrieval models predict that

interference will a�ect only retrievals where the cue is relevant. This left us with 20

sentences for each participant. For each sentence we used the time taken for reading the

auxiliary verb hatte (“had.sg”) and the response given at the multiple choice task; as we

mentioned before we assume that the response given corresponds to the NP that was

retrieved at the moment of parsing the auxiliary verb.

We fitted the models using rstan package (Stan Development Team, 2016a) in R

(R Core Team, 2015) with four chains and 2000 iterations, half of which were the burn-in
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or warm-up phase. In order to assess convergence, we verified that the R̂s were close to one,

and we also visually inspected the chains (Gelman, Carlin, et al., 2014). When needed, we

also increased the maximum tree-depth and the adaptation parameter ” of the sampler to

eliminate divergent transition and achieve convergence. We also verified that we could

recover the parameters from the models using fake data simulation (Gelman & Hill, 2007).6

Posterior predictive checking

We use posterior predictive checking to examine the descriptive adequacy of the

models (Shi�rin et al., 2008; Gelman, Carlin, et al., 2014, Chapter 6), that is, the observed

data should look plausible under the posterior predictive distribution. The posterior

predictive distribution is composed of 4000 datasets (one for each iteration) that the model

generates based on the posterior distributions of its parameters. In other words, given the

posterior of the parameters of the model (which are based on the current data), the

posterior predictive distribution shows how other data may look like. Achieving descriptive

adequacy means that the current data could have been predicted with the model. While

passing a test of descriptive adequacy is not strong evidence in favor of a model, a major

failure in descriptive adequacy can be interpreted as strong evidence against a model

(Shi�rin et al., 2008). Thus, posterior predictive checking is an important sanity check to

assess whether the model behavior is reasonable (see Gelman, Carlin, et al., 2014, for

further discussion)

Given that the main di�erence between the activation-based model and the direct

access model is in the way they account for the relationship between retrieval probability

and latencies, for each of the 4000 datasets generated by the models, we calculate the

means and .1-.9 quantiles of the reading times associated with each response, as well as the

mean proportion of responses given. We represent this graphically using violin plots

(Hintze & Nelson, 1998): the width of the violin plots represents the density of the
6
Data and code can be downloaded from: www.ling.uni-potsdam.de/~nicenboim/code/

code-data-retrieval-models.zip

www.ling.uni-potsdam.de/~nicenboim/code/code-data-retrieval-models.zip
www.ling.uni-potsdam.de/~nicenboim/code/code-data-retrieval-models.zip
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predicted means (or quantiles). The observed mean (or quantile) of the data is represented

with a cross. If the data could plausibly have been generated by the model, we would

expect the crosses to be inside the violin plots.

Estimation of relevant parameters

In addition to fitting the data, the models include parameters that can be interpreted

and can give support (or falsify) some assumptions of the e�ect of interference under the

two presented models. We provide the estimates of some key parameters (or relations

between key parameters) with their credible interval.

Cross-validation

We also compared the models using cross-validation, since the descriptive adequacy

can also be achieved by a model that is too flexible and can generate too many di�erent

results. The idea behind cross-validation is to assess the accuracy the model would have in

making predictions for new data, that is the expected predictive performance. The

leave-one-out (LOO; Geisser & Eddy, 1979) method is a robust way to compare the

expected predictive performance of the models (Vehtari & Ojanen, 2012; Gelman, Hwang,

& Vehtari, 2014; Vehtari, Gelman, & Gabry, 2015). The basic idea of LOO is to split the

data such that each training set used for estimating the parameters only excludes one

observation, while one observation is validated. Then the estimate of the expected log

pointwise predictive density ( ˆelpd) for a new dataset (i.e., the sum of the expected log

pointwise predictive density of each observation) can be used as a measure of predictive

accuracy for the N data points taken one at a time; ˆelpd can be transformed to deviance

scale by multiplying it by minus two, providing a fully Bayesian alternative to AIC (Akaike

Information Criterion; Akaike, 1974) or DIC (Deviance Information Criterion;

Spiegelhalter, Best, Carlin, & Van Der Linde, 2002).

However, the robustness of LOO is achieved by fitting a model as many times as the

number of observations, which is prohibitive in terms of time for complex models. In order
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to reduce computation time, it is possible to use an approximation of LOO or to reduce the

number of models to be fit. We first calculated ˆelpd approximating LOO with Pareto

smoothed importance sampling (PSIS-LOO; Vehtari & Gelman, 2015) with the R package

loo (Vehtari, Gelman, & Gabry, 2016). However, PSIS-LOO can be a�ected by highly

influential observations; the estimated shape parameter k̂ of the generalized Pareto

distribution can be used to assess the reliability of the estimates, with k̂ > .7 indicating an

unreliable calculation of ˆelpd. Given that several k̂ of the pointwise estimates were above

0.7 for the models presented here, we also provide ˆelpd based on k-fold cross-validation

(Vehtari & Ojanen, 2012), with k set to ten. We calculated the k-fold cross-validation by

first splitting the data into 10 subsets (or folds) and then using each subset as the

validation set, while the remaining data were used for parameter estimation. We

partitioned the data into subsets by pseudo-randomly permuting the observations, and

then systemically dividing them into 10 subgroups; we ensured that each group contained

similar number of observations for each subject (this was meant to avoid the situation

where most of the data of a certain subject is left out due to chance).

Results

Activation-based model.

Posterior predictive check. The posterior predictive check reveals that the

model is inadequate for predicting some key characteristics of the data. Figure 6(a) shows

that the model predicts shorter times for reading the auxiliary verb when the correct

response is given and longer times for reading the auxiliary verb when an incorrect answer

is given. In other words, the model underestimates the retrieval time of the correct

dependent and overestimates the retrieval time of the competitor NPs, or the timeout.

Figure 6(b) also shows a slight misfit for the predicted accuracy: the model tends to

underestimate the proportion of correct responses and to slightly overestimate the

proportion of incorrect ones. Furthermore, Figure 6(c) reveals that the fit is especially poor
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for the second half of the quantiles.

Estimation of relevant parameters. The key parameters and relationships

between parameters of the activation-based model are summarized in Figures 7(a) and (b).

Figure 7(a) shows caterpillar plots of the posterior distributions for the rates of

accumulation of evidence for each choice assuming an arbitrary threshold of 10. In the

activation-based model, these parameters represent the mean activation (together with a

common additive constant) of the target, competitor NPs, and in the case of the failure

option, the activation represents the speed of the timeout. As assumed by the

activation-based model, the activation of the target is higher than the activation of the

competitors and of the failure. The figure shows that the activations of the chunks fit the

inequalities (9-10), which indicate that the correct chunk should receive more activation on

average than the competitor chunks.

As shown by Figure 7(b) the evidence for the e�ect of interference on the activation

of the target and competitor NPs is rather weak. There is very weak evidence for

interference decreasing the activation of the target (—̂ = ≠0.02, 95% CrI =

[≠0.06, 0.03], P (—̂ > 0) = 0.23) as predicted by Equation (11). Furthermore, even though

interference e�ects should increase the activation of both competitors according to

Equation (12), there is weak evidence that this might be the case for one of the

competitors (—̂ = 0.09, 95% CrI = [≠0.04, 0.22], P (—̂ > 0) = 0.91) and virtually no evidence

for the second competitor (—̂ = 0.03, 95% CrI = [≠0.13, 0.19], P (—̂ > 0) = 0.66).

Direct access model.

Posterior predictive check. The posterior predictive check reveals that, in

contrast to the activation-based model, the direct access model is able to predict the main

characteristics of the data fairly well. Figure 8(a) shows that the model is able to predict

that reading times associated with correct responses are on average slower than the ones

associated with incorrect ones, while Figure 8(b) shows that the model is able to predict

fairly well the proportion of responses from the data. Furthermore, Figure 8(c) reveals that
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Activation−based model
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Figure 6 . The top-most figure shows the fit of the mean reading times (RTs) for response
(a) and proportion of responses (b) of the activation-based model. The width of the violin
plot represents to the density of predicted mean RTs (a) and responses (b) generated by
the model. The bottom figure (c) shows the fit of the .1-.9 quantiles of the reading times
(RTs) for response of the activation-based model. The width of the violin plot represents to
the density of predicted quantile generated by the model. The observed means and
quantiles are represented with a cross.
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Activation−based model
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(b) Effect of interference

Figure 7 . Mean activation of the di�erent chunks assuming an arbitrary threshold of 10
(a), and mean di�erence between the activations of the chunks in high interference vs. low
interference conditions (b). The outer error bars indicate 95% credible intervals while the
inner error bars indicate 80% credible intervals.

the fit is generally good for the entire distribution of reading times.

Estimation of relevant parameters. The key parameters of the direct access

model are: (i) the probability that each of the candidate NPs would be retrieved (as shown

in Figures 9), (ii) the probability of backtracking (reported below), and (iii) the time

needed for backtracking (reported below). Figure 9(a) shows caterpillar plots of the

posterior distributions for the parameters that represent probability of retrieving each

chunk from memory in order to build a dependency at the auxiliary verb. Figure 9(a)

shows that the retrieval of the target is more likely than the retrieval of the competitors or
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Direct access model
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Figure 8 . The top-most figure shows the fit of the mean reading times (RTs) for response
(a) and proportion of responses (b) of the direct access model. The width of the violin plot
represents to the density of predicted mean RTs (a) and responses (b) generated by the
model. The bottom figure (c) shows the fit of the .1-.9% quantiles of the reading times
(RTs) for response of the direct access model. The width of the violin plot represents to the
density of predicted quantile generated by the model. The observed means and quantiles
are represented with a cross.
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the retrieval failure; this is in agreement with the inequalities (39-40). Notice that since the

model assumes that backtracking is possible, after some trials the incorrect retrieval will be

repaired. This means that the probability of retrieving a dependent is not the same as the

proportion of times a responses was given in the multiple choice task. In fact, the model

estimates that around half of the time that there is a misretrieval, it will be corrected

(—̂ = 0.48, 95% CrI = [0.4, 0.55]). In addition, the model estimates that backtracking takes

119 ms, 95% CrI = [25, 240] ms (after transforming it from log-scale).

As shown by Figure 9(b) the evidence for an e�ect of interference on the probability

of retrieving the target or competitor NPs is not very strong. There is weak evidence for

interference decreasing the probability of the retrieval of the target (—̂ = ≠0.04, 95% CrI =

[≠0.11, 0.02], P (—̂ > 0) = 0.09) and increasing the probability of incorrectly retrieving one

of the competitors (—̂ = 0.04, 95% CrI = [≠0.01, 0.08], P (—̂ > 0) = 0.95; and —̂ = 0.02, 95%

CrI = [≠0.01, 0.04], P (—̂ > 0) = 0.88); this is as predicted by Equations (41) and (42).

Cross-validation: activation-based vs. direct access models. In order to

assess the compatibility of the models with the data, we compared how the models would

generalize to an independent data set, that is, the pointwise out-of-sample prediction

accuracy or ˆelpd of the models. We first used PSIS-LOO (Vehtari & Gelman, 2015) and

then we verified the results with 10-fold cross-validation.

Comparing the models on PSIS-LOO reveals an estimated di�erence in ˆelpd of ≠119

(SE = 28) in favor of the direct access model in comparison with the activation-based

model. However, given that there was a number of Pareto k̂ larger than 0.7 (2.29% of the

pointwise estimates for the activation-based model and 1.14% for the direct access model),

we also compared the models with 10-fold cross-validation. This comparison also shows an

advantage for the direct access model in comparison with the activation-based model,

namely an estimated di�erence in ˆelpd of ≠110 (SE = 28) in favor of the direct access

model.

Figure 10 shows for any given observation, whether one model has an advantage over
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Direct access model
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Figure 9 . Mean probability of retrieval of the di�erent chunks (a), and mean di�erence
between the probabilities due to interference (b). The outer error bars indicate 95%
credible intervals while the inner error bars indicate 80% credible intervals.

the other in its predictive accuracy. Since higher (or less negative) values of ˆelpd indicate a

better fit for a model, observations that are further away from the dotted line correspond

to data that are particularly better predicted by one model (and poorly by the other). This

figure shows that the advantage of the direct access model is not due to some outlier

observations, but mostly due to a high number of observations that fit slightly better under

this model than under the activation-based one (this is the darker patch on the top right

corner). Figure 11 shows the di�erence between the ˆelpdf of the two models for every

observation corresponding to either a correct or an incorrect response. The figure shows

that most of the advantage of the direct access model comes from reading times between
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300 and 1000 ms (notice the darker patch above the zero dotted line). In addition, the

direct access model has a clear advantage in predicting long reading times associated with

correct responses and short reading times associated with incorrect ones, while the

activation-based model has an advantage in predicting short reading times for correct

responses and long reading times for incorrect ones.

Activation−based vs.
 direct access models
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Figure 10 . Comparison of the activation-based and direct access models in terms of their
predictive accuracy for each observation. Each axis shows the expected pointwise
contributions to 10-fold cross-validation for each model ( ˆelpdf stands for the expected log
pointwise predictive density of each observation). Higher (or less negative) values of ˆelpdf
indicate a better fit. Darker cells represent a higher concentration of observations with a
given fit.

Discussion

The evaluation of the activation-based and direct access models reveals two sets of

findings: one relates to the e�ect of interference on the key parameters of the models, and

other the relates to their validity as models of retrieval in sentence comprehension.

Regarding the e�ect of interference on the parameters of the models, the results show

that interference a�ects the parameters as expected, but some of the posteriors include a
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Figure 11 . Comparison of the activation-based and direct access models in terms of their
predictive accuracy for each observation depending on its log-transformed reading time
(x-axis) and accuracy (left panel showing correct responses, and the right panel showing
any of the possible incorrect responses). The y-axis shows the di�erence between the
expected pointwise contributions to 10-fold cross-validation for each model ( ˆelpdf stands
for the expected log pointwise predictive density of each observation); that is, positive
values represent an advantage for the direct-access model while negative values represent
an advantage for the activation-based model. Darker cells represent a higher concentration
of observations with a given fit.

large degree of uncertainty. Given the small e�ect size on reading times in the experimental

study of Nicenboim et al. (submitted), and given that we used a subset of the original data,

this is not surprising. However, this serves as a sanity check that confirms that both

models can work in principle and that experimental findings can produce the expected

e�ects on the parameters of the models.
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For the activation-based model, the underlying activation of the target NP was, as

expected, clearly larger on average than the one of the competitors and the one associated

with the timeout. The parameters that correspond to the e�ect of interference on

activation, however, provided very weak evidence that interference decreases the activation

of the target and increases the activation of the competitors.

Similarly for the direct access model, the underlying probability of retrieving the

target was clearly larger than the one of the competitors and the one associated with the

failure of the retrieval process. The model estimated that approximately half of the time

(—̂ = 0.48, 95% CrI = [0.4, 0.55]) that a retrieval was incorrect, it was repaired to the

correct retrieval in 119 ms, 95% CrI = [25, 240] ms. This finding shows, as McElree (2000)

suggested, that it is possible to account for di�erences in reading times that arise only from

di�erences in probabilities of retrieval, if there is a repair process that takes more than a

negligible amount of time. However, as with the activation-based model, the posterior

distributions present only weak evidence that interference decreases the probability of

retrieving the target and increases the probability of retrieving one of the competitors.

In order to evaluate the validity of the models for retrieval in sentence

comprehension, we examined whether the models were able to fit the patterns found in the

data using posterior predictive checks, and we compared their predictive accuracy using

cross-validation. The posterior predictive checks of the activation-based and direct access

models show clearly that some aspects of the data fit better under the direct access model

than under the activation-based model. While we found that the reading times at the

auxiliary verb associated with correct responses in the multiple choice task were on average

slower than the reading times associated with incorrect responses, this pattern could only

be captured by the direct access model. This is so because in the case of the direct access

model, reading times associated with correct responses are assumed to be a mixture of fast

direct-accessed retrievals and slower backtracked responses, while incorrect responses are

assumed to be just direct-accessed wrong or failed retrievals. By contrast, in the case of the
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activation-based model, reading times associated with correct responses are assumed to be

faster on average than reading times associated with incorrect responses. The

activation-based model assumes a race between the accumulation of evidence for the

candidates to the retrieval, where the fastest item is the one retrieved. The particular

characteristics of this race-between-accumulators model, which are motivated by ACT-R,

include the assumption of a ballistic race (lack of fluctuations occurring during the

accumulation process or within-choice noise; Brown & Heathcote, 2005) and the same

variance parameter for all the accumulators (i.e., a single between-choice noise). Under this

type of race, the correct responses, which are answered more frequently than the incorrect

ones, will also be the fastest on average.

Even though reading times for correct responses were on average slower than the ones

for incorrect ones, this was not the case for every observation. Model comparison using

cross-validation shows that the advantage of the direct access model is based mainly on

giving a better fit for reading times between 300 and 1000 ms, while the model is worst

suited to predict fast reading times corresponding to correct responses and slow reading

times corresponding to incorrect responses, which are better predicted by the

activation-based model (see Figure 11).

The findings of cross-validation support the direct access model, but do not rule out

others models that assume a race between accumulators of evidence for each retrieval

candidate: the concept of activation determining retrieval latencies and accuracy may still

be fruitful. It may be possible to explain the pattern in the data by including a mixture

process in the race model, that is, if it is assumed, in a similar way as with the direct

access model, that the reading times associated with the correct responses are a mixture of

fast retrievals due to high activation together with repaired wrong or failed retrievals.

However, a model like this would be too flexible for the data at hand and may present

problems of identifiability (since it would be hard to estimate the activation of the

non-retrieved candidates).
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A closely related model that has been proposed to account for fast errors by

Nicenboim et al. (2016) assumes that failed retrievals may take less time than completed

retrieval. This is achieved by assuming that, when the activation is too low, the retrieval is

aborted instead of waiting until the timeout is reached. However, this would only explain

the fast failures (“I don’t know answers” in the multiple choice task), but it would still

leave fast retrievals of competitor NPs unexplained.

As we mentioned before, the activation-based model is based on a specific race model,

namely the lognormal race model, which in turns is a very specific implementation of a

model that assumes the sequential sampling of evidence for a decision (a class of models

that includes the race of accumulators and random walk/di�usion models; for a review, see

Ratcli�, Smith, Brown, & McKoon, 2016). There are other tasks that trigger error

responses that are on average faster than correct responses and have been explained with

sequential sampling models such as the drift di�usion model (Ratcli� & Rouder, 1998;

Wagenmakers, Ratcli�, Gomez, & McKoon, 2008), or the linear ballistic accumulator

(Brown & Heathcote, 2008). Fast errors can be captured by these models by assuming a

lower threshold of evidence for the decisions. This will produce faster responses in general.

However, if the initial bias to the responses is allowed to vary due to noise, the increase in

speed will be larger for incorrect responses, because these responses mostly occur when

there is a strong initial bias (Wagenmakers et al., 2008; Heathcote & Love, 2012). Even

though the aforementioned models could account for the faster average reading times

associated with incorrect responses, they would lose the close connection with the ACT-R

framework that motivated our use of the lognormal race model.

Regarding the lognormal race model, its limitation is that if equal variance is

associated with each accumulator, fast errors on average cannot be predicted because bias

(distance) and rate of accumulation cannot be disentangled (Heathcote & Love, 2012;

Rouder et al., 2014). Fast errors on average can be predicted, if the variance of the

accumulators of the incorrect responses is larger than the one of the correct response.
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Heathcote and Love (2012) propose that poorer matches may spread not only weaker

activation on average but may also be noisier than stronger matches. This idea is also

present in SAM framework of Gillund and Shi�rin (1984), which assumes slower reactions

and more variability for poorer matches than for more precise matches. Figure 12 shows

graphically how the distribution of correct and incorrect retrievals is generated from the

activation-based model with di�erent variances.

In the following section, we evaluate the activation-based model with di�erent

variances, one for the accumulator of target and one for the other accumulators, and we

compare it with the direct access model.

Evaluation of the activation-based model with di�erent variances

We evaluated the activation-based model with di�erent variances using the same data

as with the previous models. As before, we examined the descriptive adequacy of the

model using posterior predictive checking, we estimate its relevant parameters, and finally

we compared it with the direct access model using cross-validation.

The assumptions of the activation-based model with di�erent variances are identical

to the ones of the default activation-based model, except that the noise in the rate of

accumulation of evidence of each chunk can have di�erent variances. This means that the

lognormal distributions associated with each activation have di�erent scale parameters

(which corresponds to the standard deviation of the associated normal distribution). Since

all the competitors were retrieved only 21% of the time, for simplicity (and for improving

the convergence of the models) we assumed only two variances, one for the lognormal

distribution associated with the target, and one for the competitors or the failure timeout.

Results

Posterior predictive check. The posterior predictive check reveals that the

activation-based model with di�erent variances can capture the main characteristics of the

data. Figure 13(a) shows that the model predicts a wide range of reading times associated
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Activation−based model with different variances
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Figure 12 . The figure depicts how the distribution of retrievals is generated from the
activation-based model with di�erent variances. The bottom figure depicts the parameters
of the activation-based model, the full lines in green and red are the mean finishing times
tc=T arget and tc=Competitor, and the broken lines are finishing times one standard deviation
away from the mean. The middle figure shows the distributions of finishing times for target
and candidate; since every chunk is associated a potential finishing time, t, both
distributions have the same number of elements. The top-most figure shows the
distribution of retrieval times (adding the shift parameter Â would transform it to reading
times); since only the winning chunks are retrieved, the distribution of retrieval times for
targets has more elements than the one of the competitors. Notice that even though the
finishing times for the competitors are slower on average than the ones of the targets
(middle plot), the situation is reversed for the retrieval times (top-most plot).
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with the incorrect responses, and most of the predicted reading times associated with

incorrect responses are only slightly faster than the correct ones. Figure 13(b) shows that

the model is able to predict the proportion of responses from the data. Figure 13(c) reveals

that the fit is better for the first half of the quantiles, while for the second half of the

quantiles the predicted data contains the observed quantiles, mainly because of the wide

distribution of predicted reading times.

Estimation of relevant parameters. The estimation of the key parameters and

the relationship between parameters of the activation-based model with di�erent variances

shows similar results to the ones in the default activation-based model. As in the default

model, Figure 14(a) shows that the activation of the target is higher than the activation of

the competitors and of the failure. In addition and also similarly to the case of the default

model, Figure 14(b) shows that the evidence for the e�ect of interference in the target and

competitor NPs is rather weak. There is very weak evidence for interference decreasing the

activation of the target (—̂ = ≠0.01, 95% CrI = [≠0.05, 0.03], P (—̂ > 0) = 0.23) and

increasing the activation of the competitors (for the first competitor: —̂ = 0.09, 95% CrI =

[≠0.05, 0.23], P (—̂ > 0) = 0.9; and for the second competitor: —̂ = 0.06, 95% CrI =

[≠0.11, 0.24], P (—̂ > 0) = 0.77). As we mentioned before, the variance was allowed to be

di�erent for the correct and incorrect retrievals; Figure 15 shows that, as hypothesized, this

allows the scale associated with the distribution of activations of the incorrect retrievals to

be larger than the one associated with correct retrievals.

Cross-validation: activation-based model with di�erent variances vs. direct

access model. A comparison of the activation-based model with di�erent variances and

direct access model using 10-fold cross-validation shows that the estimates of ˆelpd are very

similar, with a very small advantage for the activation-based model with di�erent variances

in comparison with the direct access model, namely an estimated di�erence in ˆelpd of ≠20

(SE = 17); while the advantage of the direct access model in comparison with the default

activation-based model was of ≠110 with SE = 28.
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Activation−based model with different variances
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Figure 13 . The top-most figure shows the fit of the mean reading times (RTs) for response
(a) and proportion of responses (b) of the activation-based model with di�erent variances.
The width of the violin plot represents to the density of predicted mean RTs (a) and
responses (b) generated by the model. The bottom figure (c) shows the fit of the .1-.9
quantiles of the reading times (RTs) for response of the activation-based model with
di�erent variances. The width of the violin plot represents to the density of predicted
quantile generated by the model. The observed means and quantiles are represented with a
cross.
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(b) Effect of interference

Figure 14 . Mean activation of the di�erent chunks assuming an arbitrary threshold of 10
(a), and mean di�erence between the activations due to interference (b). The outer error
bars indicate 95% credible intervals while the inner error bars indicate 80% credible
intervals.

Figure 16 shows that the predictive accuracy of the models is fairly similar with most

of the observations being fit well by both of them. There are, however, some observations

scattered at the bottom left corner of Figure 16, which favors the activation-based model

with di�erent variances. Figure 17 shows in blue cells the di�erence between the ˆelpdf of

both models for every observation corresponding to either a correct or an incorrect

response; and in white cells the previous comparison (from Figure 11) of the default

activation-based model and direct access model. Figure 17 shows that the di�erence

between the activation-based model with di�erent variances and direct-access model is
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Figure 15 . The figure depicts that the scale of the distributions of activations of the target
chunk and of the competitors or timeout. The outer error bars indicate 95% credible
intervals while the inner error bars indicate 80% credible intervals.

smaller than the di�erence between the direct access model and the (default)

single-variance activation-based model. The main di�erence between the fits is that the

activation-based model with di�erent variances is able to account better for some fast and

slow reading times associated with incorrect responses.
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Figure 16 . Comparison of the activation-based model with di�erent variances and the
direct access model in terms of their predictive accuracy for each observation. Each axis
shows the expected pointwise contributions to 10-fold cross validation for each model
( ˆelpdf stands for the expected log pointwise predictive density of each observation). Higher
(or less negative) values of ˆelpdf indicate a better fit. Darker cells represent a higher
concentration of observations with a given fit.

Discussion

The estimation of the relevant parameters of the activation-based model with

di�erent variances shows that the scale parameter associated with the distribution of

activations for incorrect retrievals is larger than the one associated with correct ones, as it

is necessary to account for fast errors. However, this did not change the predicted

interference e�ect compared to the default activation-based model. Similarly, as with the

default model, the parameters that correspond to the e�ect of interference on activation

provide very weak evidence that interference decreases the activation of the target and

increases the activation of the competitors.

Regarding the descriptive adequacy of the model, even though the inclusion of

di�erent variances improves the fit, the posterior predictive checks show more variation on
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Comparison of models
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Figure 17 . Comparison of the activation-based model with di�erent variances and direct
access model in terms of their predictive accuracy for each observation depending on its
log-transformed reading time (x-axis) or accuracy (left panel showing correct responses,
and the second panel showing any of the possible incorrect responses). The y-axis shows
the di�erence between the expected pointwise contributions to 10-fold cross-validation for
each model ( ˆelpdf stands for the expected log pointwise predictive density of each
observation); that is, positive values represent an advantage for the direct-access model
while negative values represent an advantage for the activation model with di�erent
variances. Darker cells represent a higher concentration of observations with a given fit.
The white cells show the comparison (shown earlier in Figure 11) of the default
activation-based model with the direct access model.

the predicted reading times associated with incorrect responses for this model than for the

direct access model. This is not necessarily a disadvantage, and it may indicate that the

direct access model is more flexible and may be slightly overfitting the data, since these

predictions are generated with the best estimates (and posterior distributions) to account



MODELS OF RETRIEVAL 55

for the data. In fact, despite an apparent better fit for the direct access model, the

estimates of predictive accuracy ( ˆelpd) are very similar with a very slight advantage for the

activation-based model with di�erent variances. In contrast with the di�erence between the

fit of the original models (i.e., the default activation-based vs. the direct access model

shown in Figure 11 ), the di�erence between the fit of the activation-based model with

di�erent variances and the direct access model is smaller (see Figure 17), with the new

version of the activation-based model giving a better fit to some of the fast and slow

reading times associated with incorrect responses.

This comparison shows that even though the inclusion of di�erent variances for the

accumulators does not imply a clear superiority over the direct access model, it is possible

to account for the data with a model which is based on a race of accumulation of evidence.

General discussion

We evaluated two models that have been successful in explaining similarity-based

interference in sentence comprehension: Lewis and Vasishth’s (2005) activation-based

model following ACT-R assumptions (Anderson et al., 2004) and McElree’s (2000) direct

access model. We also evaluated a third model, a variation of the activation-based model.

In order to compare the models we implemented them in a Bayesian hierarchical

framework and we fit them to the data of Nicenboim et al. (submitted). Even though the

activation-based model was already implemented computationally (Lewis & Vasishth,

2005), our implementation enabled us to go beyond simulations as they are usually done for

this model (e.g., Vasishth & Lewis, 2006; Nicenboim et al., 2016), and fit the observations

of an experiment accounting for variation coming from participants and experimental

items. For the direct access model, we provide a first computational implementation which

allowed us to derive precise and unambiguous predictions, which are fully transparent in

our instantiation of the model. We first summarize our findings, and we then discuss the

motivation of this work, the implications of the findings, and future work.
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Our evaluation can be summarized in three main results: First, the underlying

parameters of both models behave as expected under interference e�ects. However, the

parameters showed a large degree of uncertainty in their posterior distributions. While this

may be due to the small magnitude of the interference e�ect in the original experiment

(Nicenboim et al., submitted), the findings confirm that, as expected, both models can in

principle explain interference e�ects.

Second, we evaluated the validity of both models in predicting the reading times and

accuracy patterns during retrieval. The posterior predictive checks and the comparison

using cross-validation show that some aspects of the data fit better under the direct access

model than under the default activation-based model. The data showed on average slower

reading times associated with correct responses than with incorrect ones, and this pattern

could be explained only by the direct access model. This suggests that the default

activation-based model may not be flexible enough to accommodate patterns in the data

that go beyond means between conditions.

Third, we show that by introducing a modification to the default activation-based

model, namely, by assuming that the accumulation of evidence for the retrieval of incorrect

items is not only slower but noisier, the new model can provide a fit as good as the one of

the direct access model.

The importance of a formal evaluation of Lewis and Vasishth’s (2005)

activation-based model and McElree’s (2000) direct access model lies in disentangling their

predictions: Since both models assume that dependencies of non-adjacent elements are

created via a content-addressable cue-based retrieval mechanism, they have been used

almost interchangeably to explain interference e�ects (e.g. Van Dyke & McElree, 2006).

For experiments that draw inferences from di�erences in means, these two models yield

identical predictions for the inhibitory e�ect of similarity-based interference: namely, longer

reading times at the retrieval of a dependent and/or a reduction of comprehension accuracy

when several items share a feature associated with a retrieval cue. However, these models
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are based on di�erent underlying assumptions. The activation-based model follows ACT-R

assumptions (Anderson et al., 2004); in this framework, the activation of the items in

memory determines the retrieval accuracy and latency, and the activation of the target of

retrieval is, in turn, adversely a�ected by interference. Crucially, latency and accuracy are

not deterministic because activation fluctuates due to noise in the system. We show that

this process can be seen as a lognormal race between accumulators of evidence with a single

variance for all the accumulators, where activation represents the rate of accumulation of

evidence. In contrast, the direct-access model assumes a model of memory where only the

probability of retrieval can be a�ected by interference, while items take the same time to

be retrieved (if they are not in the focus of attention as it is the case for non-local

dependencies). In this model, di�erences in latencies are a by-product of the possibility of

backtracking and repairing incorrect retrievals. These di�erent assumptions lead to a

di�erent behavior in the relationship between reading times and response accuracy on a

trial-level basis which cannot be examined by only comparing mean reading times or

accuracy between conditions. While acceptability judgment tasks with speed-accuracy

trade-o� (SAT) allow a finer grain look at the reaction times and have been used to argue

in favor of the direct-access model (see, for example, Van Dyke & McElree, 2011), there has

been until now no computational evaluation of the model in reading for comprehension.

While the activation-based model uses the declarative retrieval module of ACT-R,

which has been shown to be an empirically successful model (e.g., Anderson et al., 1998;

Anderson & Reder, 1999; Van Rijn & Anderson, 2003), our findings show that its default

implementation cannot account for wrong retrievals that were generally faster than the

correct ones in our data. The model cannot account for this pattern because items in

memory that match the retrieval cues will have higher activation on average than

competitors that match the retrieval cues only partially. The higher activation on average

leads in turn to faster retrievals on average. In contrast, the direct access model can

successfully accommodate faster incorrect retrievals. This is done by assuming that reading
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times associated with correct responses are generated from a mixture distribution of fast

directly accessed correct retrievals at the first attempt together with slower repaired

retrievals. Reading times associated with incorrect responses, in contrast, belong to a faster

distribution of retrieval latencies of items that are directly accessed. It should be noted

that this repair mechanism that explains slow correct retrievals could in principle be added

to the activation-based model, but it would lead to an unidentified model. The direct

access model, however, is able to account for the data with a very simple architecture that

can integrate this repair mechanism. The direct access model assumes a bipartite

architecture for retrieval (e.g., McElree & Dosher, 1989; McElree, 2006): Items within

focal attention are accessed quickly, but all other items outside attention are accessed more

slowly and with the same retrieval speed.

While the simple architecture of the direct access model may be preferred on grounds

of parsimony, the activation-based model is compatible with a sequential sampling

framework (such as the drift di�usion model: Ratcli�, 1978; the leaky competitive

accumulator: Usher & McClelland, 2001; linear deterministic models: Heathcote & Love,

2012, among others) and has some possibly desirable characteristics. In the sequential

sampling framework, decisions (such as which is the right dependent that needs to be

retrieved) are considered a process of noisy accumulation of evidence, which has been

shown to be compatible with the behavior of populations of neurons (e.g., Zandbelt,

Purcell, Palmeri, Logan, & Schall, 2014). In addition, sequential sampling has been also

linked to theories of optimality (Ratcli� et al., 2016; Summerfield & Tsetsos, 2015), which

compare how an ideal agent would perform (given the levels of uncertainty in the stimuli)

with the actual behavior of participants.

The sequential sampling framework could still be useful to explain retrieval, if we

would assume that the retrieval process behaves similarly to other more complex

accumulator models such as the linear ballistic accumulator (Brown & Heathcote, 2008).

Thus, the fast incorrect retrievals on average could be captured by assuming a lower
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threshold of evidence for the decisions. The initial bias to the candidates (which varies due

to noise) would reduce the latencies for incorrect retrievals, since these mostly occur when

there is a strong initial bias (Wagenmakers et al., 2008). However, this model loses the close

connection with the ACT-R framework that motivated the lognormal race which underlies

the activation-based model. In addition, given that the linear ballistic accumulator model

is more complex than the lognormal race model, it is not clear whether its fit would be

comparable to the fit of the direct access model. A potential future direction of this work

would be to evaluate di�erent plausible accumulator models as models of retrieval.

In the present study, we relaxed one of the assumptions of ACT-R to capture the

patterns of the data: Here we assumed that the activation of chunks that match the

retrieval cues only partially is not only lower but also noisier. This is translated into

assuming di�erent variances for the di�erent accumulators. Heathcote and Love (2012)

show that when the accumulators associated with incorrect responses have a larger

variance than the accumulator of correct responses, the model can account for fast errors

on average. For simplicity, we assumed one variance for the accumulator of the target, and

one for the competitors and failure accumulators. While our study shows that this is

enough to account for the pattern in the data, nothing would prevent all accumulators

from having di�erent variances.

Both the activation-based model with di�erent variances and the direct access model

showed equally good fit to the data. In order to investigate these models relative fit, future

work should replicate the classical interference results (e.g., Van Dyke & McElree, 2006;

Van Dyke, 2007; Van Dyke & McElree, 2011), while including reading times and questions

probing the comprehension of the relevant dependencies.

In addition, there are other phenomena that the models could explain. These are: (i)

the facilitatory interference e�ects found in ungrammatical sentences (Wagers, Lau, &

Phillips, 2009), (ii) the ambiguity advantage in relative clauses (Traxler, Pickering, &

Clifton, 1998) and the e�ect of task demands (Swets, Desmet, Clifton, & Ferreira, 2008),
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and (iii) good-enough processing (Ferreira et al., 2002). Since some of the predictions of

the activation-based model with di�erent variances are not very intuitive, we provide an R

script called race-plot using the Shiny package (Chang, Cheng, Allaire, Xie, & McPherson,

2016) that can help visualizing the predictions.7

Facilitatory interference. Wagers et al. (2009) noticed that the so-called number

attraction e�ect in ungrammatical sentences such as (2), that is, the speedup in are in (2b)

vs. (2a), could be accounted by Lewis and Vasishth’s (2005) activation-based model.

(2) a. * The key
+sing to the cabinet

+sing are in the box.

b. * The key
+sing to the cabinets

+plur are in the box.

In sentences like (2), a cue-based retrieval mechanism would assume that a retrieval is

initiated at the verb (are) with at least two retrieval cues: grammatical subject and plural.

In sentence (2a), the key matches one of the retrieval cues, because it is the grammatical

subject, but mismatches the plural cue. In sentence (2b), both nouns partially match the

retrieval cues: the key matches the grammatical subject cue, while the cabinets matches the

plural cue. An interesting prediction of the activation-based model (confirmed by

experimental findings; see Jäger et al., submitted, for a meta-analysis) is that reading times

are faster at the verb in (2b) than in (2a). This is so because a situation with no

unambiguous match (both nouns are partial matches) leads to statistical facilitation (Raab,

1962), that is, an overall speedup when we examine mean reading times (facilitatory

interference). For facilitatory interference in ungrammatical sentences, the predictions of

the default activation-based model and the activation-based model with di�erent variances

are the same. This situation can be simulated using race-plot script mentioned before, by

assigning arbitrary (but plausible) activations to the candidates to retrieval in (2a) and

(2b): In (2a), the key (partial match) can be assigned an activation of 4 and the cabinet
7
The application can be accessed in the browser with the following commands in R:

i n s t a l l . packages ( c ( " dplyr " , " t i d y r " , " ggp lot2 " , " cowplot " , " sh iny " ) ) #i f needed

l i b r a r y ( shiny ) #load shiny

runUrl ( " http ://www. l i n g . uni≠potsdam . de/~ nicenboim / code / race≠p lo t . z ip " )
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(no match) an activation of 2.5 (and ‡ = 1.5); this would result in a mean reading time of

¥832 ms. Notice that since the process is not deterministic, di�erent simulations will show

di�erent retrieval times; the relationship between the conditions, however, should hold. In

(2b), the key (partial match) can be assigned an activation of 4 and the cabinets (partial

match) an activation of 3.5 (since they will not necessarily reach exactly the same

activation); this would result in a faster reading time on average, namely ¥692 ms.

In contrast to the activation-based model, the direct access model would not predict

a di�erence in reading times at the verb between (2a) and (2b). This is the case since

increased reading times depend only on backtracking, which would only occur to repair an

initially incorrect retrieval. In ungrammatical sentences with partial match, it is unclear

how the repair would work, and why there would be more backtracking in (2a) than in (2b).

The predictions of the activation-based model, however, have not been investigated

taking into account both reading times and comprehension. Even if a speedup compatible

with facilitatory interference has been reported in the literature, the activation-based

model would be accounting for facilitatory interference only if participants reach a di�erent

interpretation of the sentence in (2b) more often than in (2a).8

The ambiguity advantage in relative clauses and task-demands e�ects.

The so-called ambiguity advantage is based on the observation of Traxler et al. (1998), who

found a speedup at mustache in ambiguous conditions such as (3c) in comparison with

unambiguous conditions such as (3a) and (3b), where mustache is the disambiguating word.

(3) a. The driver of the car that had the mustache was pretty cool. (high attachment)

b. The car of the driver that had the mustache was pretty cool. (low attachment)

c. The son of the driver that had the mustache was pretty cool. (globally

ambiguous)

8
Notice that even though it is unlikely that readers would understand that the cabinets are in the box, it

may be that the sentence is reanalyzed when the parser reaches box.
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The account of the activation-based model with di�erent variances is very similar to

the unrestricted race model proposed by van Gompel, Pickering, and Traxler (2000), which

predicts statistical facilitation in the case of ambiguity. According to the unrestricted race

model, the parser starts building all possible structures simultaneously. While the time

taken depends on plausibility, it is also a�ected by noise. This means that the adopted

structure in each trial is the one that takes the least time, leading to shorter time on

average when there are more candidates.

The activation-based model with di�erent variances would yield similar predictions to

the unrestricted race model if the inhibitory e�ect of interference in (3c) is su�ciently

small. Given the relatively small magnitude of interference e�ect in the literature (Jäger

et al., submitted; Nicenboim et al., submitted), this is likely to be the case. In

unambiguous cases such as (3a) and (3b), there is only one NP that matches the retrieval

cue: “being capable of having a mustache” (i.e., the driver). In ambiguous cases such as

(3c), there are two NPs that match the retrieval cue (i.e, The son and the driver).

Therefore, we would expect statistical facilitation (similarly to the case of facilitatory

interference) leading to faster reading times on average. This situation can be simulated

using the race-plot script similarly as before: In (3a) or (3b), the driver (full match) can be

assigned an activation of 5 (and ‡ = 1), and the car (partial match) can be assigned an

activation of 2.5 (and ‡ = 2); this would result in a mean reading time of ¥416 ms. In

(3c), both The son and the driver should have similar activation since there is no penalty

component involved, both are a full match. However, the cue “can have a mustache” does

not uniquely identify any candidate. Given the small magnitude of inhibitory interference

e�ects, we could assume an activation of 4.8 (instead of 5) and the same variance since

there is no mismatch (i.e. ‡ = 1) for both NPs. This would result in a faster reading time

on average, namely ¥349 ms.

Furthermore, the activation-based model may be able to account for Loga�ev and

Vasishth’s (2016) observation that the parser seems to behave in a way that resembles a
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race between interpretations (low attachment vs. high attachment) but it is also

task-dependent (as assumed by Swets et al., 2008). This could be achieved by setting the

timeout (the parameters of the accumulator associated with the retrieval failure) to be

task-dependent: longer timeouts when instructions or context encourage attentive reading

and shorter timeouts when a full interpretation is not needed for successfully completing

the experimental task.

In this case, the direct access model could also predict the ambiguity advantage in a

very simple way: While in (3a) or (3b) it is possible to retrieve the incorrect NP (i.e. “the

car”) leading to a certain proportion of slower backtracked retrievals, in (3c) there should

only be fast directly accessed retrievals, since both NPs (i.e. “The son” and “the driver”)

are correct targets. In addition, for the direct access model, the proportion of incorrect

retrievals that are backtracked could be task dependent, with a larger proportion of

backtracking associated with deeper processing. However, the predictions of both models

would not be identical. The direct access model predicts that the reading times at the

disambiguating region when the incorrect interpretation (or no interpretation) is held in

(3a) or (3b) would be identical to the reading times in (3c). In contrast, for the activation

based-model with di�erent variances, the relationship between reading times at the di�erent

conditions would depend on the comprehension accuracy. Future work that includes

measures of reading times and queries for the comprehension of the relative clause, as well

as manipulates task demands could compare the activation-based model with di�erent

variances, the direct access model, and the model presented in Loga�ev and Vasishth

(2016), which subsumes the unrestricted race model and allows it to be task-dependent.

Good-enough processing. While a comprehensive alternative to good-enough

processing is out of the scope of this section (see Christianson, 2016, for a complete

overview), it should be noticed that without further assumptions the activation-based

model with di�erent variances and the direct access model can account for manipulations

that show (sometimes unexpected) fast reading times which have been attributed to
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good-enough processing. For the activation-based model with di�erent variances, this can

be achieved by associating the timeout with either task demands as suggested previously or

also with individual di�erences. An increase of either timeout speed (i.e., the rate of

accumulation of the retrieval failure) or an increase of its noise (i.e., the variance of the

accumulator associated with retrieval failure) would lead to more frequent shallow parses

with incomplete dependencies which are read faster. Thus, experiments that probe the

comprehension of certain dependencies less often may lead to faster (and maybe noisier)

timeouts, which would in turn lead to shorter mean reading times. Individual di�erences in

participants such as working memory capacity may have a similar e�ect with lower

capacity leading to faster and noisier timeouts in the retrieval process.

Similarly for the direct access model, the probability of backtracking could be

a�ected by task demands or by individual di�erences: A less demanding task would reduce

reading times and comprehension accuracy on average by discouraging backtracking.

Individual di�erences may have a similar e�ect, participants with lower working memory

capacity may be less prone to backtracking. As suggested before, this could be assessed in

future work by including measures of reading times and comprehension accuracy of the

relevant dependencies.

Conclusion

We have provided an evaluation of two theoretically grounded and empirically

successful models in explaining similarity-based interference in sentence comprehension:

Lewis and Vasishth’s (2005) activation-based model built under the assumptions of ACT-R

(Anderson et al., 2004) and McElree’s (2000) direct access model. We also evaluated a

third model, a variation of the activation-based model.

Our evaluation, which consisted in implementing these models in a Bayesian

hierarchical framework, confirms that, as expected, both the activation-based and direct

access models can in principle explain interference e�ects. However, posterior predictive
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checks and model comparison using cross-validation show that some aspects of the data fit

better under the direct access model, in particular, the default activation-based cannot

predict that, on average, incorrect retrievals would be faster than correct ones.

However, we show that by introducing a modification of the activation model,

namely, by assuming that the accumulation of evidence for the retrieval of incorrect items

is not only slower but noisier (i.e., di�erent variances for the correct and incorrect items),

the new model can provide a fit as good as the one of the direct access model.
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Appendix A

Implementation of the activation-based model in Stan

The Stan code (shown in Listing 1) was fit to a Latin-squared design, where only the

sentences of the original experiment (Nicenboim et al., submitted) with questions that

queried the subject of the embedded verb was kept, and it used a non-centered

parameterization to improve convergence (for details see: Papaspiliopoulos, Roberts, &

Sköld, 2007; Stan Development Team, 2016c) in Stan (Stan Development Team, 2016b).

However, to improve clarity, we ignore that each participant did not respond to each

experimental item, and we assume a centered parametrization in the equations below.

Let i = 1, ..., Nsubj, j = 1, ..., Nitems, and c = 1, ..., Nchoices index participants, items,

and choices in the multiple-choice questions (1 is the correct response, the target of the

retrieval, 2 and 3 are incorrect responses, the competitors, and 4 is the option “I don’t

know”, which represents a failed retrieval) respectively. Let wi,j, and RTi,j denote the

response selected and the reading times at the auxiliary verb (hatte) for subject i to the

item j. Then we assume that reading times have the following distribution:

RTi,j ≥ Âi + lognormal(b ≠ –i,j,c=w, ‡) (45)

where Âi is a by-subject shift, b is an arbitrary threshold (set to 10), and –i,j,c=w

represents the rate of accumulation of the “winner” accumulator. The rest of the

accumulators that did not win the race must have been slower in that specific trial. From

this it follows that the accumulators that lost the race have a potential RT Õ
i,j,c ”=w which is

larger than the observed value RTi,j.

If all the answers are selected at least once (and if not, we can safely remove the

accumulator since its rate of accumulation is so low that it never wins), the race turns into

a problem of censored data, where the reading times, RT Õ
i,j,c ”=w, above an upper bound,

RTi,j,c=w, never occur. In order to calculate the posterior of the rate of accumulation, –, of

all the accumulators, we cannot ignore the censored data (Gelman, Carlin, et al., 2014, pp.
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224-227). However, it is not necessary to impute values, and the values can be integrated

out (Stan Development Team, 2016c, pp. 107–110; Gelman, Carlin, et al., 2014, pp.

224-227). Each censored data point has a probability of

Pr[RT Õ
i,j,c ”=w > RTi,j] =

⁄ Œ

RT
i,j

≠Â
i

lognormal(RT Õ
i,j,c ”=w ≠ Âi|–i,j,c ”=w, ‡) (46)

= 1 ≠ �
A

log(RTi,j ≠ Âi) ≠ –i,j,c ”=w

‡

B

(47)

where �() is the cumulative distribution function of the standard normal distribution.

Since the shifts of the distribution, Âi, must be positive, to ensure convergence of the

model we exponentiate a term that is associated with a general shift of the whole reading

times distribution, ÂÕ, and a term that represents the by-participants adjustment, ÂÕ
i:

Âi = exp(ÂÕ + ÂÕ
i) (48)

with the following priors for the by-participant component:

ÂÕ
i ≥ normal(0, ·Â) (49)

·Â ≥ normal(0, 0.5) (50)

In addition, each Âi must be smaller than the shortest reading time of each

participant i (recall that the shift is the lower bound of the distribution). We satisfied the

constraint on the upper bound with the following prior on the general shift:

ÂÕ ≥ normal(0, log(mean(RT )))T [, U ] (51)
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where a normal distribution is truncated on the upper limit, U , which is the smallest

di�erence between log(RT ) and ÂÕ
i.

We assume that the rates of accumulation depend on the experimental condition

(high or low interference) and that the rates may be a�ected by participants and by items.

We can express this in matrix notation for each accumulator as follows:

–c = X—c + Xuc + Xvc (52)

Here X is the Nobs ◊ Npars model matrix, with the number of parameters (so-called

fixed e�ects), Npars, being two: intercept and condition. Each —c is a vector of length Npars

with the estimates of the fixed-e�ect parameters for the accumulator associated with the

choice c. Each uc and vc are the by-participants and by-item adjustments to the fixed

e�ects estimates (so-called random-e�ects) for the accumulator c. We used weakly

informative priors for all the estimates (some estimates were reparametrized in the Stan

implementation, see Listing 1 for details). The priors for the fixed e�ects were set as

follows:

—
0,c ≥ normal(0, 10 ≠ log(mean(RTc))) (53)

—
1,c ≥ normal(0, 1) (54)

Here, —
0,c are the intercepts of the fixed e�ects for choice c, log(mean(RTc)) is the

logarithm of the mean of the reading times when option c was selected, and —
1,c represents

the slopes of the fixed e�ects (i.e., the e�ect of interference).

All the random-e�ects, uc, and vc, were assumed to be sampled from two

multivariate normal distributions with means of zero. The prior of the standard deviations

of the random e�ects was normal(0, 1). We placed lkj priors on the random e�ects

correlation matrices with shape parameter ÷ = 2 (see Lewandowski, Kurowicka, & Joe,
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2009; Sorensen, Hohenstein, & Vasishth, 2016).

Listing 1: Stan code for the activation-based model
1 functions {
2 real shift_max(vector shift_u, int[] subj, vector rt, real logmeanrt) {
3 real shift_max;
4 shift_max <- positive_infinity();
5 for (i in 1:num_elements(rt)){
6 shift_max <- fmin(shift_max,log(rt[i]) - shift_u[subj[i]] );
7 }
8 return (shift_max/logmeanrt);
9 }

10

11 real race_ACTR_log(int winner, real shifted_rt, row_vector activation, real
threshold, real noise){

12 real log_lik;
13 int N_choices;
14 N_choices <- cols(activation);
15 log_lik <- 0;
16 for(l in 1:N_choices){
17 if(l == winner){
18 log_lik <- log_lik + lognormal_log(shifted_rt,threshold-activation[l],

noise);
19 } else {
20 log_lik <- log_lik + lognormal_ccdf_log
21 (shifted_rt,threshold-activation[l], noise);
22 }
23 }
24 return(log_lik);
25 }
26

27 }
28

29 data {
30 int<lower=0> N_obs;
31 vector<lower=0>[N_obs] rt;
32 int N_choices;
33 int<lower=1> winner[N_obs];
34 int N_coef;
35 matrix[N_obs,N_coef] x;
36 int<lower=0> N_coef_u;
37 int<lower=1> subj[N_obs];
38 int<lower=1> N_subj;
39 matrix[N_obs,N_coef_u] x_u;
40 int<lower=0> N_coef_w;
41 int<lower=1> item[N_obs];
42 int<lower=1> N_item;
43 matrix[N_obs,N_coef_w] x_w;
44 }
45

46 transformed data {
47 matrix[N_obs,N_coef-1] x_betas;
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48 int N_tau_u;
49 int N_tau_w;
50 real logmeanrt;
51 vector[N_choices] logmeanrtw; #mean by winner
52 vector[N_choices] mean_rtw; #mean by winner
53 real scaling;
54

55 logmeanrt <- log(mean(rt));
56 x_betas <- x[,2:N_coef];
57 N_tau_u <- N_coef_u * N_choices + 1;
58 N_tau_w <- N_coef_w * N_choices + 1;
59 {
60 matrix[N_obs,N_choices] winner1;
61 for(i in 1:N_obs){
62 for(j in 1:N_choices){
63 winner1[i,j] <- (j == winner[i]);
64 }
65 }
66 mean_rtw <- ((rt' * winner1) / //sum of rts per winner
67 crossprod(winner1))'; # x^T * x (length of winners)
68 logmeanrtw <- log(mean_rtw);
69 }
70 scaling <- 10;
71 }
72

73 parameters{
74 real<lower=0> sigma;
75 real alpha_raw[N_choices];
76 vector<lower=0> [N_tau_u] tau_u; // subj sd
77 cholesky_factor_corr[N_tau_u] L_u; // corr. matrix for random intercepts

and slopes by subj
78 matrix[N_tau_u,N_subj] z_u;
79 vector<lower=0> [N_tau_w] tau_w; // item sd
80 cholesky_factor_corr[N_tau_w] L_w; // corr. matrix for random intercepts

and slopes by items
81 matrix[N_tau_w,N_item] z_w;
82 real<lower=0> tau_shift; // by subj sd of shift
83 vector[N_subj] shift_u_raw; // by subj scaled shift
84 real<upper=shift_max(shift_u_raw * tau_shift, subj, rt, logmeanrt)>

shift_raw;
85 matrix[N_coef-1,N_choices] beta;
86 }
87

88 transformed parameters {
89 matrix[N_coef_u,N_choices] u[N_subj];
90 matrix[N_coef_w,N_choices] w[N_item];
91 vector[N_subj] shift_u; // by subj shift
92 real<lower=0> shift;
93 row_vector[N_choices] alpha;
94

95 {
96 matrix[N_tau_u,N_subj] u_long;
97 matrix[N_tau_w,N_item] w_long;
98 matrix[N_tau_u,N_tau_u] Lambda_u;
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99 matrix[N_tau_w,N_tau_w] Lambda_w;
100 Lambda_u <- diag_pre_multiply(tau_u,L_u);
101 Lambda_w <- diag_pre_multiply(tau_w,L_w);
102 u_long <- (Lambda_u * z_u);
103 w_long <- (Lambda_w * z_w);
104 for (i in 1:N_subj){
105 for (j in 1:N_choices){
106 u[i, , j] <- u_long[(j - 1) * N_coef_u + 1 : j * N_coef_u, i];
107 }
108 }
109

110 for (i in 1:N_item){
111 for (j in 1:N_choices){
112 w[i, , j] <- w_long[(j - 1) * N_coef_w + 1 : j * N_coef_w, i];
113 }
114 }
115 }
116

117 shift_u <- shift_u_raw * tau_shift; // = shift_u ~ normal(0,tau_shift)
118 shift <- shift_raw * logmeanrt;
119

120 for (j in 1:(N_choices))
121 alpha[j] <- scaling - alpha_raw[j] .* logmeanrtw[j];
122 }
123 model {
124 sigma ~ normal(0,2);
125 alpha_raw ~ normal(0,1);
126 to_vector(beta) ~ normal(0,1);
127 to_vector(z_u) ~ normal(0,1);
128 to_vector(z_w) ~ normal(0,1);
129 tau_u ~ normal(0,1);
130 tau_w ~ normal(0,1);
131 L_u ~ lkj_corr_cholesky(2.0);
132 L_w ~ lkj_corr_cholesky(2.0);
133 tau_shift ~ normal(0,.5);
134 shift_u_raw ~ normal(0,1);
135 shift_raw ~ normal(0,1);
136

137 for ( i in 1 : N_obs ) {
138 row_vector[N_choices] A;
139 real shifted_rt;
140 shifted_rt <- rt[i] - exp(shift + shift_u[subj[i]]);
141

142 A[1:N_choices] <- alpha[1:N_choices]
143 + x_betas[i] * beta +
144 x_u[i] * u[subj[i],] +
145 x_w[i] * w[item[i],];
146

147 winner[i] ~ race_ACTR(shifted_rt,A, scaling,sigma);
148 }
149 }
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Appendix B
Implementation of the direct access model in Stan

The code (shown in Listing 2) was fit to the same data as the activation-based model. As
before, to improve clarity, we ignore that each subject did not respond to each item and we
assume a centered parametrization.

Let i = 1, ..., Nsubj, j = 1, ..., Nitems, and c = 1, ..., Nchoices index participants, items,
and choices respectively, where choice 1 is the correct response and choice Nchoices (which
maps to 4) is the response associated with a retrieval failure. Let wi,j, and RTi,j denote the
response selected and the reading times at the auxiliary verb (hatte) for subject i to the
item j.

We implemented the assumptions of the direct access model, by letting w have a
discrete distribution that follows a one-inflated categorical model, where additional
probability mass is added to the outcome 1 (correct response) due to backtracking with
probability Pb as follows:

P (wi,j = 1|◊i,j , Pb) = Categorical(y = 1|◊i,j) + (1 ≠ Categorical(y = 1|◊i,j)) · Pb (55)
P (wi,j = s|◊i,j , Pb) = Categorical(y = s|◊i,j) · (1 ≠ Pb), with s > 1 (56)

where ◊ is a vector of Nchoices rows that represents the probability of each option.
If the answer given is wrong, we assume that there is no backtracking and then

reading times are distributed in the following way:

RTi,j,’w,w>1

≥ Âi + lognormal(Tda,i,j, ‡) (57)

where Âi is a by-subject shift, Tda represents the time needed for the direct access or
failure together with extra processes

If the answer given is right, reading times are assumed to have a mixture distribution.
This is so because there are two “paths” to reach a correct response (see Figure 5): (i) The
chunk that is retrieved is the correct one (at the first try), and this means that there is
direct access and reading times should belong to a distribution similar to the previous one
as shown in Equation (57); or (ii) an incorrect chunk (or no chunk) is retrieved but is
backtracked, and this means that reading times should belong to a distribution with a
larger location than Tda,i,j, namely, Tda,i,j + tb,i,j. Thus RTs should be distributed in the
following way:

RTi,j,w=1

≥Âi (58)
+ P (Categorical(y = 1|◊i,j)|wi,j = 1) · lognormal(Tda,i,j, ‡) (59)
+ P (Categorical(y ”= 1|◊i,j) · Pb|wi,j = 1) · lognormal(Tda,i,j + tb,i,j, ‡) (60)

where, from Equation (55), P (Categorical(y = 1|◊i,j)|wi,j = 1) in (59) is

Categorical(y = 1|◊i,j)
Categorical(y = 1|◊i,j) + (1 ≠ Categorical(y = 1|◊i,j)) · Pb

(61)
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and P (Categorical(y ”= 1|◊i,j) · Pb|wi,j = 1) in Equation (60) is

(1 ≠ Categorical(y = 1|◊i,j)) · Pb

Categorical(y = 1|◊i,j) + (1 ≠ Categorical(y = 1|◊i,j)) · Pb
(62)

Furthermore, the categorical model was fit including a hierarchical structure in ◊Õ,
where ◊Õ is a vector with Nchoices rows with its last row set to zero, so that
softmax(◊Õ) = ◊.9 This way we ensure the identifiability of Categorical(softmax(◊Õ)).

We assume that the probability of each choice depend on the experimental condition
(high or low interference) and that the probabilities may be a�ected by participants and by
items. In matrix notation, the first Nchoices ≠ 1 rows of ◊Õ are structured as the activations
in the activation-based model:

◊c = X—c + Xuc + Xvc (63)

As for the activation-based model, we used weakly informative priors for all the
estimates. The priors for the fixed e�ects were set with the added constraint that —

1,0, the
intercept of the probability of the correct choice (the first choice) in logit-space, was
constrained to be larger than —

2..3,0, the intercept associated with the incorrect responses,
and zero (which is the value associated with the last choice):

—
2..3,c ≥ normal(0, 1) (64)
—

1,0 ≥ normal(2, 2) + max(—
2..3,c, 0) (65)

Pb ≥ beta(1, 1) (66)

In addition, we assumed a hierarchical structure to the parameters associated with
latencies:

Tda,i,j = —T da + uT da,i + vT da,j (67)
Tb,i,j = —T b + uT b,i + vT b,j (68)

with the following priors on the intercepts:

—T da ≥ normal(0, log(mean(RT ))) (69)
—T b ≥ normal(0, 1) (70)

All the random-e�ects, uc, utda, utb, vc, vtda, vtb were assumed to be sampled from
four multivariate normal distributions with means of zero: (i) for the subject adjustment
on probabilities of retrieval, (ii) for a similar adjustment for items, (iii) for the subject
adjustment on latencies, and (iv) for a similar adjustment for items. As before we placed
lkj priors on the random e�ects correlation matrices with shape parameter ÷ = 2.

9
The softmax function is defined as in Stan Development Team (2016c) by softmax(y) =

exp(y)qK

k=1
exp(yk)
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Listing 2: Stan code for the direct access model
1 functions {
2 real shift_max(vector shift_u, int[] subj, vector rt, real logmeanrt) {
3 real shift_max;
4 shift_max <- positive_infinity();
5 for (i in 1:num_elements(rt)){
6 shift_max <- fmin(shift_max,log(rt[i]) - shift_u[subj[i]] );
7 }
8 return (shift_max/logmeanrt);
9 }

10

11 real da_log(int winner, real rt, real P_redo, vector mu_c, real mu_rt, real
12 mu_rt_redo, real sigma){
13 real logP_w1;
14

15 logP_w1 <- log_sum_exp(categorical_logit_log(1,mu_c),
16 log(P_redo) + log1m_exp(categorical_logit_log(1,mu_c))

);
17 if(winner==1) {
18 return logP_w1 + log_sum_exp(log(P_redo) +
19 log1m_exp(categorical_logit_log(1,mu_c)) - logP_w1 +
20 lognormal_log(rt,mu_rt_redo,sigma),
21 categorical_logit_log(1,mu_c) - logP_w1 +
22 lognormal_log(rt,mu_rt,sigma));
23 } else {
24 return log1m(P_redo) + categorical_logit_log(winner,mu_c) +
25 lognormal_log(rt,mu_rt,sigma);
26 }
27 }
28 }
29

30 data {
31 int<lower=0> N_obs;
32 vector<lower=0>[N_obs] rt;
33 int N_choices;
34 int<lower=1> winner[N_obs];
35 int N_coef;
36 matrix[N_obs,N_coef] x;
37 int<lower=0> N_coef_u;
38 int<lower=1> subj[N_obs];
39 int<lower=1> N_subj;
40 matrix[N_obs,N_coef_u] x_u;
41 int<lower=0> N_coef_w;
42 int<lower=1> item[N_obs];
43 int<lower=1> N_item;
44 matrix[N_obs,N_coef_w] x_w;
45 }
46

47 transformed data {
48 matrix[N_obs,N_coef-1] x_betas;
49 matrix[N_coef_u,N_obs] x_ut;
50 matrix[N_coef_w,N_obs] x_wt;
51 int N_tau_u;
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52 int N_tau_w;
53 real logmeanrt;
54 vector[N_choices] logmeanrtw; #mean by winner
55 vector[N_choices] mean_rtw; #mean by winner
56 real scaling;
57

58 logmeanrt <- log(mean(rt));
59 x_betas <- x[,2:N_coef];
60 x_ut <- x_u';
61 x_wt <- x_w';
62 N_tau_u <- N_coef_u*(N_choices-1) ;
63 N_tau_w <- N_coef_w*(N_choices-1) ;
64 {
65 matrix[N_obs,N_choices] winner1;
66 for(i in 1:N_obs){
67 for(j in 1:N_choices){
68 winner1[i,j] <- (j == winner[i]);
69 }
70 }
71 mean_rtw <- ((rt' * winner1) / #sum of rts per winner
72 crossprod(winner1))'; # x^T * x (length of winners)
73 logmeanrtw <- log(mean_rtw);
74 }
75 scaling <- 10;
76 }
77

78 parameters{
79 real<lower=0,upper=1> P_redo; // Prob. of backtracking
80 real<lower=0> mu_add;
81 real<lower=0> sigma;
82 matrix[N_choices-1,N_coef-1] beta; #failure doesn't have betas
83 vector<lower=0>[N_tau_u+2] tau_u; // subj sd
84 cholesky_factor_corr[N_tau_u] L_u; // corr. matrix for r.e. of prob. by subj
85 cholesky_factor_corr[2] L_rt_u; // corr. matrix for r.e. latencies. by

subj
86 matrix[N_tau_u,N_subj] z_u;
87 matrix[2,N_subj] z_rt_u;
88 vector<lower=0>[N_tau_w+2] tau_w; // item sd
89 cholesky_factor_corr[N_tau_w] L_w; // corr. matrix for r.e. of prob. by item
90 cholesky_factor_corr[2] L_rt_w; // corr. matrix for r.e. latencies. by

item
91 matrix[N_tau_w,N_item] z_w;
92 matrix[2,N_item] z_rt_w;
93 real<lower=0> alpha_rt_raw;
94 vector[N_choices-2] alpha_c_wrong;
95 real<lower=0> add_c;
96 real<lower=0> tau_shift; // by subj sd of shift
97 vector[N_subj] shift_u_raw; // subj shift
98 real<upper=shift_max(shift_u_raw * tau_shift, subj, rt, logmeanrt)>

shift_raw;
99 }

100

101 transformed parameters{
102 real<lower=0> alpha_rt;
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103 vector[N_choices-1] alpha_c;
104 matrix[N_choices-1,N_coef_u] u[N_subj];
105 matrix[N_choices-1,N_coef_w] w[N_item];
106 real u_rt[N_subj];
107 real u_rt_redo[N_subj];
108 real w_rt[N_item];
109 real w_rt_redo[N_item];
110 vector[N_subj] shift_u; // subj shift
111 real<lower=0> shift;
112 alpha_c[1] <- add_c + fmax(max(alpha_c_wrong),0);
113 alpha_c[2:] <- alpha_c_wrong;
114 {
115 matrix[N_tau_u,N_tau_u] Lambda_u;
116 matrix[2,2] Lambda_rt_u;
117 matrix[N_subj,N_tau_u+2] u_wide;
118 Lambda_u <- diag_pre_multiply(tau_u[1:N_tau_u],L_u); #removing the ones

that go for RTs
119 Lambda_rt_u <- diag_pre_multiply(tau_u[(N_tau_u+1):(N_tau_u+2)],L_rt_u);
120 u_wide[,1:N_tau_u] <- (Lambda_u * z_u)';
121 u_wide[,(N_tau_u+1):(N_tau_u+2)] <- (Lambda_rt_u * z_rt_u)';
122 for (i in 1:N_subj){
123 for (j in 1:(N_choices-1)){
124 u[i,j,] <- u_wide[i,(j-1)*N_coef_u+1:j*N_coef_u];
125 }
126

127 u_rt[i] <- u_wide[i,N_tau_u+1];
128 u_rt_redo[i] <- u_wide[i,N_tau_u+2];
129

130 }
131 }
132 {
133 matrix[N_tau_w,N_tau_w] Lambda_w;
134 matrix[2,2] Lambda_rt_w;
135 matrix[N_item,N_tau_w+2] w_wide;
136

137 Lambda_w <- diag_pre_multiply(tau_w[1:N_tau_w],L_w);
138 Lambda_rt_w <- diag_pre_multiply(tau_w[(N_tau_w+1):(N_tau_w+2)],L_rt_w);
139 w_wide[,1:N_tau_w] <- (Lambda_w * z_w)';
140 w_wide[,(N_tau_w+1):(N_tau_w+2)] <- (Lambda_rt_w * z_rt_w)';
141 for (i in 1:N_item){
142 for (j in 1:(N_choices-1)){
143 w[i,j,] <- w_wide[i,(j-1)*N_coef_w+1:j*N_coef_w];
144 }
145

146 w_rt[i] <- w_wide[i,N_tau_w+1];
147 w_rt_redo[i] <- w_wide[i,N_tau_w+2];
148

149 }
150 }
151 alpha_rt <- alpha_rt_raw * logmeanrt;
152 shift_u <- shift_u_raw * tau_shift; // =shift_u ~normal(0,tau_shift)
153 shift <- shift_raw * logmeanrt;
154 }
155
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156 model {
157 P_redo ~ beta(1,1);
158 add_c ~ normal(2,2);
159 alpha_c_wrong ~ normal(0,2);
160 sigma ~ normal(0,1);
161 alpha_rt_raw ~ normal(0,1);
162 mu_add ~ normal(0,1);
163 tau_u ~ normal(0,1);
164 tau_w ~ normal(0,1);
165 to_vector(z_u) ~ normal(0,1);
166 to_vector(z_w) ~ normal(0,1);
167 to_vector(z_rt_u) ~ normal(0,1);
168 to_vector(z_rt_w) ~ normal(0,1);
169 to_vector(beta) ~ normal(0,1);
170 tau_shift ~ normal(0,.5);
171 shift_u_raw ~ normal(0,1);
172 shift_raw ~ normal(0,1);
173 L_u ~ lkj_corr_cholesky(2.0);
174 L_w ~ lkj_corr_cholesky(2.0);
175 L_rt_u ~ lkj_corr_cholesky(2.0);
176 L_rt_w ~ lkj_corr_cholesky(2.0);
177

178 for(i in 1:N_obs){
179 vector[N_choices] mu_c;
180 real mu_rt;
181 real mu_rt_redo;
182 real shifted_rt;
183

184 shifted_rt <- rt[i] - exp(shift + shift_u[subj[i]]);
185 mu_c[1:N_choices-1] <- alpha_c + beta * x_betas[,i] +
186 u[subj[i]] * x_ut[,i] + w[item[i]] * x_wt[,i] ;
187 mu_c[N_choices] <- 0;
188 mu_rt <- alpha_rt + u_rt[subj[i]]+ w_rt[item[i]];
189 mu_rt_redo <- mu_rt +mu_add + u_rt_redo[subj[i]]+ w_rt_redo[item[i]];
190

191 winner[i] ~ da(shifted_rt,P_redo,mu_c,mu_rt,mu_rt_redo,sigma);
192 }
193 }
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