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Which repair strategy does the language system deploy when it gets garden-pathed, and
what can regressive eye movements in reading tell us about reanalysis strategies? Several
influential eye-tracking studies on syntactic reanalysis (Frazier & Rayner, 1982; Meseguer,
Carreiras, & Clifton, 2002; Mitchell, Shen, Green, & Hodgson, 2008) have addressed this
question by examining scanpaths, i.e., sequential patterns of eye fixations. However, in
the absence of a suitable method for analyzing scanpaths, these studies relied on simplified
dependent measures that are arguably ambiguous and hard to interpret. We address the
theoretical question of repair strategy by developing a new method that quantifies scan-
path similarity. Our method reveals several distinct fixation strategies associated with
reanalysis that went undetected in a previously published data set (Meseguer et al.,
2002). One prevalent pattern suggests re-parsing of the sentence, a strategy that has been
discussed in the literature (Frazier & Rayner, 1982); however, readers differed tremen-
dously in how they orchestrated the various fixation strategies. Our results suggest that
the human parsing system non-deterministically adopts different strategies when con-
fronted with the disambiguating material in garden-path sentences.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Eye tracking is a very productive methodology in sen-
tence processing research. Beginning with classic work such
as Just and Carpenter (1980) and Frazier and Rayner (1982),
reading studies involving eye tracking continue to provide a
rich array of empirical evidence that inform competing the-
ories of human sentence parsing. This entire body of work
rests on some degree of belief on an assumption articulated
first by Just and Carpenter (1980), the eye-mind assumption.
As they put it (p. 331): ‘‘there is no appreciable lag between
what is being fixated and what is being processed.’’ Taken
literally, this assumption is clearly false; this is evident from
two facts: (i) preview effects which indicate that processing
of a word can start even before the eyes fixate it for the first
time (Rayner, 1998, 2009); (ii) the spillover-effects where
processing initiated at one word can continue even after
the eyes move to fixate another word (Rayner & Duffy,
. All rights reserved.

r Malsburg).

lsburg, T., & Vasishth, S. W
l.2011.02.004
1986). We can therefore safely assume that no eye tracking
researcher believes in the strict formulation of the eye-mind
hypothesis. At the other extreme, if we were to assume that
the eye-mind assumption is completely false, then the eye
movement record would be difficult to interpret because fix-
ation durations would have no straightforward relationship
with processing difficulty. Clearly, this extreme position is
also untenable given the largely replicable findings in the
sentence comprehension literature (cf. Clifton, Staub, &
Rayner, 2007, for a review of the empirical results).

This leaves us with an intermediate version of the eye-
mind assumption: fixation durations reflect processing dif-
ficulty, but lags in processing and constraints arising from
oculo-motor control (Rayner, 1998) have the potential to
complicate the interpretation of the eye movement record.
Indeed, theories of eye movement control such as E-Z
Reader 10 (Reichle, Pollatsek, Fisher, & Rayner, 1998;
Reichle, Warren, & McConnell, 2009) standardly assume
such a lag.

A particularly interesting situation arises when the
eyes, instead of making the prototypical forward saccade,
hat is the scanpath signature of syntactic reanalysis?. Journal of
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carry out a regression. Such a regressive eye movement is
interesting from the parsing perspective because it could
be driven at least in part by parser actions that began when
the launch site of the regression was fixated. The question
then arises: to what degree are the eyes coupled to and di-
rected by the parser’s actions? Are they tightly coupled (as
the strict form of the eye-mind assumption would assert),
are they completely uncoupled, or is there a loose coupling
(as the intermediate form of the eye-mind assumption
would predict)? Moreover, the degree of coupling could
be modulated and depend on, for instance, the particular
type of processing difficulty encountered by the parser.

This question has been the focus of a trio of papers by
Frazier and Rayner (1982), Meseguer et al. (2002) and
Mitchell et al. (2008). Frazier and Rayner suggested that
when the parser initiates a reanalysis action, detaching a
constituent from the incremental tree built so far and
attaching it to another part of the tree, the eyes carry out
a regressive saccade to follow the parser’s actions: as the
parser intelligently searches for an alternative attachment
site in the sentence, the eyes follow along. For example, in
the sentence Since Jay always jogs a mile seems like a very
short distance to him the noun phrase (NP) a mile is initially
mis-attached to the verb jogs as its direct object; when the
next word, seems, is processed, a reanalysis process begins
whereby the NP is reattached as a subject of a main clause
headed by the verb seems. Frazier and Rayner named this
intelligent reanalysis process Selective Reanalysis, and ar-
gued that the eyes closely follow the parser’s processing
steps: ‘‘The selective reanalysis hypothesis predicts that
eye movements should regress from the disambiguating
region to the ambiguous region of the sentence’’ (p. 204).

Note, however, that Selective Reanalysis does not pre-
suppose the strict form of the eye-mind assumption; it is
consistent with the intermediate version of the eye-mind
assumption, since the eyes could be following—with a
lag—the parser’s repair actions.

Twenty years after the Frazier and Rayner proposal,
Meseguer et al. presented more evidence for Selective
Reanalysis from Spanish. They examined garden-path sen-
tences in Spanish where an adverbial phrase could attach
high or low. They found evidence in favor of Selective
Reanalysis (this work is discussed in detail below). In sub-
sequent work, Mitchell et al. (2008) challenged the idea
that the eyes regress in lock-step with the parser’s actions.

Mitchell et al.’s alternative proposal was that the cogni-
tive system that drives parsing may want to avoid moving
forward to take in new information when reanalysis is trig-
gered. It therefore takes a ‘‘time-out,’’ which results in a
regression (presumably because moving to the right would
bring new information in, which is undesirable in the face
of increased processing load).1 In their analysis, Mitchell
et al. were also concerned with eye movement patterns,
1 In order to prevent upcoming material from interfering with the
processing of earlier material, the eyes could of course just stay on the word
that caused the processing difficulty. Mitchell suggests (personal commu-
nication) that the oculo-motor system might have a strong drive to keep up
the pace. Since the way forward is blocked, a random-walk on the previous
part of the sentence ensues. This resulting scanpath would be influenced by
the physical arrangement of the sentence on the screen but not by its
linguistic structure.
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but relied on ‘‘regression signatures’’ instead of qualitative
assessments as Frazier and Rayner did; these are probabili-
ties of the eye landing on any word preceding the word from
which the regression started.

In these three papers, the crucial evidence for (and
against) the coupling of eye movements with parsing ac-
tions dictated by Selective Reanalysis hinged on analyzing
eye movement patterns rather than just fixation durations
or regression probabilities; scanpaths are the principal ob-
ject of inquiry. This makes sense because the question lit-
erally is: what patterns of regressive eye movements result
when reanalysis begins? (Eye-tracking researchers often
refer to ‘patterns’ of eye movements where they really
mean fixation durations; in the present case, ‘patterns’
stands for scanpaths.)

Since there exists no suitable quantitative way to eval-
uate the similarity of one eye movement pattern with an-
other, the three sets of authors mentioned above were
forced to either look at scanpath patterns qualitatively
(e.g. Frazier & Rayner, 1982, p. 196) or to reduce scanpaths
to scalar duration measures and transition probabilities in
order to derive conclusions about participants’ behavior
(e.g. Frazier & Rayner, 1982, pp. 199–200). Due to the
unavailability of a method for quantitatively studying spa-
tio-temporal fixation patterns, subjective descriptions
were necessary. It is worth quoting one such description
(Frazier & Rayner, 1982, pp. 196–197) to underline the fact
that a major issue of interest is indeed eye movement pat-
terns, i.e. scanpaths, and not only transitional probabilities:

. . .three or four patterns of eye movement behavior
occurred which we shall attempt to characterize. In
some cases, subjects read the ambiguous noun phrase
and upon reading the disambiguating region made very
long fixations. These long fixations were also accompa-
nied by very short saccades . . . Upon reading the end of
the sentence, the subject then made a long regression to
the beginning of the sentence and reread the sentence.
The long fixations and short saccades in the disambigu-
ating region and thereafter may also have been accom-
panied by short regressions, but the reader did not
regress at that point back to the beginning of the sen-
tence or to the ambiguous region. We shall characterize
this behavior as chaos in that the reader apparently was
having great difficulties understanding the sentence but
seemed to have no insights as to what the nature of the
processing difficulties were. This pattern of eye move-
ments was particularly noticeable among three of the
subjects and occurred less frequently with most of the
other subjects.

Thus, it is clear that the debate about how eye move-
ments are driven by a sequence of parsing actions needs
a method for characterizing scanpath patterns and their
relative similarities to each other or to theoretically pro-
posed patterns of regressions.2 In this paper, we provide
such a method, along with freely available software for
exploring eye movement patterns. We also reanalyze
2 We use the term regression not only for a single regressive saccade but
also to refer to a scanpath that starts with a regressive saccade and ends
when the eyes return to the origin of this saccade.

hat is the scanpath signature of syntactic reanalysis?. Journal of
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Meseguer et al.’s data (which they generously provided to
us) using this method to demonstrate the gain in informa-
tion when we rely on a formal characterization of scanpath
patterns rather than qualitative evaluations of scanpaths
and regression signatures. One contribution of this paper is
to provide such an additional analytical tool for directly
evaluating scanpaths where these are at issue theoretically.

The present investigation was motivated by two main
aspects of the above-mentioned studies on reanalysis.
First, although the analytical methods used by Frazier
and Rayner, Meseguer et al. and Mitchell et al. are
undoubtedly informative, it is possible that aggregated
eye-tracking measures are misleading because they could
in principle arise from a blend of several classes of fixation
patterns. Increased transition probabilities in one condi-
tion might be caused by changes in different underlying
populations of scanpaths. For example, if there is a higher
probability of transitions from region 9 to region 2 and
from 2 to 7, we cannot decide if this was caused by pat-
terns that went with transitions 9 ? 2 ? 7 or by one class
of patterns with occurrences of transition 9 ? 2 and an-
other with transitions 2 ? 7. In principle, one could calcu-
late transition probabilities that are conditional on the
previous transitions. In a typical reading study, however,
there are hardly enough data points to reliably estimate
unconditioned transition probabilities, let alone condi-
tional probabilities. In general, if the aggregated data stem
from different populations, it can be very difficult to infer
anything precise about the various strategies used by the
reader as they relate to eye movement patterns.

Second, in both the Mitchell et al. and Meseguer et al.
studies, many regressions ensued after reading the disam-
biguating material in the non-reanalysis condition. In fact
Meseguer et al. recorded 700 regressions in the reanalysis
condition and 667 in the non-reanalysis condition. This
means that most regressions produced by participants can-
not plausibly be explained by any of the competing theories,
which predict that long-range regressions occur only in the
garden-path condition. The observed regression patterns
are, however, only problematic if we assume a strictly deter-
ministic parser that always adopts the preferred structure
during ambiguous segments of the sentence. In this frame-
work garden-pathing takes place in only one condition;
Frazier and Rayner (1982) made this assumption explicit
by invoking the late closure and minimal attachment princi-
ples (Frazier, 1979) in order to explain the occurrence of
regressive eye movement patterns in reanalysis conditions.

Evidence for Selective Reanalysis clearly exists in the
above-mentioned data, but this evidence comes in the
form of a slightly increased probability of regressions to
particular words. However, if the eye-mind assumption—
which is the basis for reasoning in favor of Selective
Reanalysis—holds, then we have to ask what process is
driving the numerous regressions in the non-reanalysis
conditions. Even the Time-out hypothesis, which seems
to partly reject the eye-mind assumption in the case of
regressions, has not much to offer when it comes to
explaining regressions in the non-reanalysis condition.
Thus, the data suggest that there is a lot more to the issue
of regressions than meets the eye.
Please cite this article in press as: von der Malsburg, T., & Vasishth, S. W
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2. Scanpath similarity and its application

In previous work (e.g. Brandt & Stark, 1997), one ap-
proach for quantifying scanpath similarity was to use a type
of edit distance, e.g., the Levenshtein metric (Levenshtein,
1966). Edit distances define the similarity of two sequences
of symbols as the minimal number of edit operations that
have to be performed on one of these sequences in order
to transform it into the other. The minimal number of edits
can be computed using the Needleman–Wunsch algorithm
which has been used in bioinformatics for analyzing DNA
sequences (Needleman & Wunsch, 1970). The edit
operations are usually deletion, insertion, or substitution of
a symbol. This distance measure can be applied to eye
movements by representing scanpaths as a sequence of
symbols where the nth symbol specifies the region of inter-
est (e.g., word) that was targeted by the nth fixation.

However, there are several problems with this measure
when analyzing eye movements in reading. The first con-
cerns the proper treatment of differences in fixation dura-
tions. In conventional methods, the only information that
is available for each fixation is its target location; fixation
durations play no role in the edit distance calculations. This
is problematic because fixation durations are one of the
most important sources of evidence in eye movements.
The second problem with standard edit distances is that
the spatial configuration of fixation targets is not taken into
account; in standard approaches, fixations are only evalu-
ated with respect to the identity of their targets. Therefore,
the distance measure cannot penalize large spatial diver-
gence between two scanpaths more than small ones. The
third problem relates to regions of interest. A scanpath
analysis based on regions of interest works only if those re-
gions are sufficiently large, so that there is a substantial
chance that fixations that functionally serve the same pur-
pose are targeted at the same region. In reading, natural re-
gions of interest such as words or phrases do usually serve
this purpose. However, when the visual stimuli cannot be
partitioned in such a natural way, or if one wants to retain
information as to where in a region the fixation was, it
would be more suitable to have a measure that does not
necessitate discretization of the stimulus into regions.

In the remainder of this section we describe a new kind
of edit distance that addresses these problems and, in
doing so, provides a better tool for investigating regression
patterns than visual inspection, conventional edit distance
based metrics, and transition probabilities.

As already mentioned, the core idea of edit distances is
to quantify the dissimilarity of two sequences as the min-
imal number of edit operations necessary to transform one
sequence into the other. This involves finding and aligning
parts of the two sequences that are similar already. Con-
sider this example: if the letters of the alphabet stand for
regions of interest in a visual stimulus, we can define a
scanpath s as the sequence ABCF. This sequence means that
the eyes first fixated on region A, then B, C, and finally at
region F; every letter represents one fixation. Now, con-
sider another scanpath, t, which is defined as ABCDEF.
The scanpaths s and t differ in that t has fixations on D
and E that are missing in s. Thus, an alignment that
hat is the scanpath signature of syntactic reanalysis?. Journal of
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minimizes the dissimilarities between s and t when com-
paring them letter by letter is:
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s:
 A
 B
 C
 –
 –
 F
t:
 A
 B
 C
 D
 E
 F
The dissimilarity of s and t under the Levenshtein met-
ric is then 2 because there are two positions, 4 and 5, in
which s and t differ. Here is a more complex example: s0

is defined as ABCDEFG, and t0 as XBCDFGH. The optimal
alignment is then:
Fixation:
 1
 2
 3
 4
 5
 6
 7
 8
s0:
 A
 B
 C
 D
 E
 F
 G
 –

t0:
 X
 B
 C
 D
 –
 F
 G
 H
The Levenshtein distance of s0 and t0 is then 3 because in

scanpath s0 we have to carry out a substitution in position 1,
a deletion in position 5, and an insertion in position 8, in or-
der to transform s0 into t0. Our critique of the Levenshtein
metric then amounts to stating that accounting a penalty
of 1 for every edit operation is too crude. It neglects the
durations of the affected fixations and, in the case of a sub-
stitution, the spatial distance of the replaced fixations from
its replacement: if X is close to A, we should assign a smaller
penalty than if X is far from A, because in the former situa-
tion the divergence between s0 and t0 is smaller. We simplify
the matter by treating insertion and deletion as special
cases of substitution where the substituted fixation or the
substituting fixation are null-fixation with duration 0 ms.
Our task is therefore to find a suitable cost function for cal-
culating the penalty of a substitution of two fixations. This
involves enriching the representation of scanpaths; letters
are not sufficient because they do not encode the duration
and precise position of the fixation. Instead of letters we
will use tuples of fixation position and fixation duration in
milliseconds. Note that when analyzing scanpaths, the sub-
stitution will be the default case because two fixations
hardly ever have the exact same position and duration.

There are two extreme cases that we have to consider.
One is that the position of two fixations f and g is the same.
In this case, the penalty is straightforward and consists of
the difference in the fixation durations since there is no
other difference between them. The other case occurs
when f and g are extremely far apart. Here, we might say
that the longer each fixation is, the larger the penalty
should be. On the other hand, if both fixations are short,
the penalty should be small as well. In other words, it is
not the difference between the fixation durations that
counts but rather their sum. Intermediately, this leaves
us with this penalty function for the substitution of f and
g (dur(f) is the duration of a fixation f):
3 Fixations are usually described in terms of pixel coordinates on the
screen. Conversion to visual field coordinates, i.e. latitude and longitude,
can be achieved using the inverse gnomonic projection.
dðf ;gÞ

¼
jdurðf Þ � durðgÞj if f and g have the same location;
durðf Þ þ durðgÞ if f is extremely far apart from g:

�

ð1Þ
asishth, S. W
The remaining question is: what should the penalty be
in cases where f and g are only slightly apart? We need to
define a smooth transition from one extreme case to the
other, a means for calculating weights for the two terms
in Eq. (1) that determine how much each of them contrib-
utes to the overall penalty.

There is one fundamental fact about human vision that
has to be reflected by this transition: the much higher visual
acuity in the center of the visual field, the fovea, and the low
resolution in the periphery. The intuition is this: if a word is
in the center of the fovea and we move it 5� away, this has a
large effect on the word’s readability. First, it is easy to read,
but after moving it away reading it becomes quite hard. But
when the word is already 10� away from the fovea, moving
it 5� further away will not have a large effect on its readabil-
ity; it is hard to read in both positions. Electrophysiological
and psychophysical studies have shown that the drop in
sensitivity from the fovea towards the periphery is roughly
exponential (cortical magnification, Daniel & Whitteridge,
1961; Rovamo, Virsu, & Näsänen, 1978). A simple exponen-
tial function of the distance of f and g in the visual field can
be used to approximate the drop in acuity:3 mdistance(f,g).
Minimizing the squared deviations of this exponential
function from the values measured by Rovamo et al. results
in a value of 0.83 for m.

Can we derive the desired weights using this exponen-
tial function? These are the requirements: if the distance
between f and g is 0, the weight for the first term in Eq.
(1) should be 1 and the weight for the second term should
be 0. If f and g are extremely far apart, the first term should
have weight 0 and the second should have weight 1. Final-
ly, if we are in a situation where f and g are close, we are in
an intermediate situation where we want to have an influ-
ence of both terms. When the distance between f and g is 0,
mdistance(f,g) is 1. When the distance is large, the value of the
function approaches 0. Hence, we can use mdistance(f,g) for
weighting the first term and 1 �mdistance(f,g) for the second
term. The dissimilarity of f and g is then quantified as the
sum of the weighted terms. We get the following penalty
function for the substitution of fixations f and g:

dðf ; gÞ ¼ jdurðf Þ � durðgÞj �mdistanceðf ;gÞ

þ ðdurðf Þ þ durðgÞÞ � 1�mdistanceðf ;gÞ� �
ð2Þ

Note that this function computes penalties for all four
situations that can arise in an alignment of scanpaths: (i)
substitution of dissimilar fixations, (ii) insertion and (iii)
deletion, because they are treated as substitutions by or
of a null-fixation which has duration 0, and lastly (iv) the
no-edit situation: if there is no difference in position and
duration, the result of the penalty function is 0, hence there
is no penalty.

We calculate the overall dissimilarity of two scanpaths
by aligning them with the Needleman–Wunsch algorithm
and by summing the substitution penalties for the corre-
sponding pairs of fixations. To summarize how our mea-
sure works:
hat is the scanpath signature of syntactic reanalysis?. Journal of
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1. We use the Needleman–Wunsch algorithm to align
similar parts in two scanpaths. Null-fixations are intro-
duced where no matching fixations exit.

2. The similarity of two fixations is determined by the pen-
alty function (Eq. (2)) which incorporates their positions
and durations. If two fixations have the same position,
their dissimilarity is given by the difference of their fixa-
tion durations. If they have extremely different targets,
their dissimilarity is the sum of their fixation durations.

3. The Levenshtein metric operates in a binary fashion: if
two fixations have exactly the same position, their dif-
ference is zero, otherwise it is a constant value no mat-
ter what their distance is. Our measure replaces this
binary behavior with a smooth transition from one
extreme case to the other. The shape of this transition
mimics human cortical magnification.

4. The dissimilarity of two scanpaths is the sum of the dis-
similarities of their matching fixations.

We shall call this measure Scasim for scanpath similar-
ity. See Table 1 for two example calculations.
2.1. Discussion of Scasim

Fixation durations can be arbitrarily long and can there-
fore increase differences between two scanpaths indefi-
nitely. Differences in position, however, are bounded
because our visual field is limited. This is reflected in our
similarity measure in an additive effect of differences in
fixation durations and an asymptotic effect of differences
in position. See Fig. 1 for an illustration.

Previously proposed approaches to analyzing scanpaths
based on edit distances (e.g. Brandt & Stark, 1997; Cristino,
Mathôt, Theeuwes, & Gilchrist, 2010) or transition proba-
Table 1
Scasim calculations for two pairs of scanpaths. Both pairs start out with
fixations on the same locations. In the course of the following four fixations
they diverge until their distance is 20� of the visual field. In the first pair, s
and t, the fixation durations are similar. For both scanpaths they are
sampled from a normal distribution with mean 200 ms and sd 30 ms. In the
second pair, s0 and t0 , the fixation durations are more different. In s0 they
have a mean of 200 ms, whereas in t0 they are sampled from a normal
distribution with mean 400 ms. Term 1 is the difference of the fixation
duration of two corresponding fixations weighted by mdistance. Term 2 is the
sum of the fixation durations weighted by 1 �mdistance (see Eq. (2)). The
increased fixation durations in t0 have an additive effect on the Scasim
value. See also Fig. 1.

Similar fixation durations
Fixation 1 2 3 4 5
Distance 0� 5� 10� 15� 20�
mdistance 1.00 0.39 0.16 0.06 0.02
Durations s (ms) 190 203 211 201 216
Durations t (ms) 209 220 212 185 157
mdistance� term 1 19.0 6.7 0.2 1.0 1.4
mdistance� term 2 0 256 357 362 364P

19 263 358 363 365 Scasim = 1368

Dissimilar fixation durations
Durations s (ms) 208 216 217 206 156
Durations t (ms) 361 394 423 341 410
mdistance� term 1 153 70 32 8 6
mdistance� term 2 0 370 541 514 552P

153 440 573 522 558 Scasim = 2246

Please cite this article in press as: von der Malsburg, T., & Vasishth, S. W
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bilities (e.g. Meseguer et al., 2002; Salvucci & Anderson,
2001) require the definition of discrete regions of interest.
This has two potential drawbacks: (i) spatial information is
lost by this discretization as these approaches only retain
information about which region was gazed at in a fixation,
but not the precise location of the fixation, (ii) the defini-
tion of proper regions is to some extent arbitrary; in read-
ing research some studies use words while others use
phrases. Our measure, however, operates on the continu-
ous coordinates of fixations and is therefore spatially more
sensitive than measures that require discrete regions of
interest. Deciding on reasonable definitions for those re-
gions becomes a non-issue because none are needed. If a
discrete model of space is desired, the coordinates of fixa-
tions can be mapped to the center of the region of interest
enclosing them. If additionally the distances between the
regions should not be taken into account, as in the
Levenshtein metric, m can be set to 0 in Eq. (2). Then the
measure distinguishes only between same and different
fixation target but differs from the Levenshtein metric in
that it takes fixation durations into account. Finally, when
m is set to 1, scanpaths are evaluated only with respect to
their temporal dynamics; in this case spatial information is
completely ignored. Whether this mode of operation has
useful applications remains to be seen (but this issue is
orthogonal to the goals of the present paper).

It is reasonable to ask how well a much simpler mea-
sure would perform compared to Scasim. One obvious in-
stance of a whole class of simple measures is the sum of
the spatial distances of two scanpaths at each point in
time. Example (i) in Fig. 2 illustrates this measure which
quantifies the dissimilarity between scanpaths s and t as
the area between the two scanpaths in the plot.4 There
are four problems with this measure: consider the two scan-
paths in panel 1 in Fig. 2 which are perfectly similar except
that in s reading starts immediately whereas in t the eyes
spend additional 400 ms on the first word before they move
on. The first problem is that t has a longer tail that does not
have a counterpart in s. Second, a reasonable similarity value
would consist of a penalty that is a function of the delay in t.
If the delay is 0 ms instead of 400 ms, the two scanpaths are
exactly the same; the longer the delay, the larger the dissim-
ilarity. The simple measure, however, behaves very differ-
ently: it does not see the similarity of s and t after the
delay, because the similar part is shifted in time, and the
overall dissimilarity will be mainly determined by the
length of s and t, not by the length of the delay. Specifically,
we get this paradoxical result: the longer the similar part is,
the smaller the similarity as seen by this measure. The prob-
lem is that it is not trivial to decide which part in t corre-
sponds to which part in s. The Needleman–Wunsch
algorithm offers a solution for this problem. Third, the sim-
ple measure compares s and t sample-by-sample of the eye
movement record. In principle, we could apply the align-
ment detection to samples instead of fixations, but this
would render the calculation of scanpath similarity very
4 For convenience, we use scanpaths in which fixations vary only
horizontally but not vertically. That allows us to plot position vs. time.
The scanpaths in this section can be thought as being obtained in a reading
task in which one sentence was presented on one line.

hat is the scanpath signature of syntactic reanalysis?. Journal of
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Fig. 2. Scanpaths as they typically occur in reading illustrating properties
of Scasim. Panel 1: Highly similar scanpaths; in t, the first fixation is
longer than in s. The size of the gray area between s and t can be used as a
simple similarity measure. Panel 2a, 2b: Two pairs of scanpaths with
similar patterns but different reading speed (t and t0 are slower). The raw
Scasim score of s and t is half of the score of s0 and t0 . Compared to that, the
Scasim score per fixation is the same for both pairs, and therefore an
indicator of speed differences that is not confounded by scanpath length.
Panel 3: Two scanpaths in which the same time is spend on the same
regions of the sentence. Scanpath s, however, has a refixation that is
absent in t. Scasim is highly sensitive to these refixations. If this is not
desired, adjacent fixations can be merged before applying a Scasim-based
analysis. Panel 4a, 4b: Three scanpaths; s has no regression, t a short one,
and u a regression that is twice as long as that in t. Scasim assigns a
similar similarity score to s and t as to t and u because it does not make
assumptions about the special theoretical status of regressions in reading.
It is theory-agnostic because it is supposed to test theories about eye
movements.
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costly: the Needleman–Wunsch algorithm takes a number
of processing steps that is proportional to m � n where m
and n are the numbers of items in the two sequences that
are being compared. At a sampling frequency of 500 Hz
and a duration of 10 s per scanpath, this amounts to a very
large number of operations. When calculating the similarity
Please cite this article in press as: von der Malsburg, T., & Vasishth, S. W
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of just two scanpaths this might not pose a problem, but
many analyzes based on scanpath similarity require the cal-
culation of all similarities among a large set of scanpaths.
This has the consequence that one quickly reaches the limits
of what is possible with current desktop computers. Hence,
doing fixation detection and using a measure defined for fix-
ation sequences instead of raw samples is basically a neces-
sary optimization step. However, it complicates the measure
somewhat because fixations, opposed to samples, differ in
their duration. Fourth, the simple measure quantifies the
distance between eye positions in veridical space. This
means that a 1 cm difference in the middle of the visual field
is treated the same as a 1 cm difference in the periphery. As
discussed above, to us this does not seem to be a good de-
sign decision, since we know that human vision is highly
sensitive in the fovea, but has a low resolution in the periph-
ery. In sum, it seems that a simpler measure, like the one de-
scribed above, would yield inferior or even incorrect
similarity values.

In some situations, raw Scasim scores might not be the
most suitable measure of similarity. Consider the pair of
scanpaths s and t in panel 2a that are very similar, both re-
flect left-to-right reading of a sentence, except that the
eyes progress faster in s. Another pair, s0 and t0 in panel
2b, consists of repetitions of s and t: reading the sentence
left-to-right two times in a row. The Scasim score of s0

and t0 will then be twice the score of s and t because there
is a penalty for the dissimilarity in every matching pair of
fixations and there are twice as many such pairs in s0 and t0.
However, we might say that the similarity of the scanpaths
stays the same, no matter how often the pattern is re-
peated. The difference is rather given by the average read-
ing speed in s vs. t which is independent of scanpath
length. In general, it is trivial that scanpaths can be more
different when they are longer. Hence, in many situations
it will be much easier to detect interesting sources of var-
iance by using a similarity measure that is not confounded
by scanpath length. We obtain such a score by normalizing
raw Scasim scores: we can divide them by either the
number of fixations in both scanpaths, yielding similarity
per fixation, or by the total duration of s and t, yielding
similarity per unit of time.

How does Scasim deal with scanpaths that have the
same trajectory but different numbers of fixations? One
such situation arises when two scanpaths, s and t in panel
3, are similar because in both the gaze shifts from word 1
to word 8. They differ, however, in that there is an over-
shoot followed by a small correction saccade in scanpath
s while in t the gaze precisely hits word 9. The fixation pre-
ceding the correction saccade in s lasts 60 ms and the fix-
ation following it 120 ms, the corresponding fixation in t
lasts 180 ms. In this case Scasim will match the 120 ms
and the 180 ms fixations because they are more similar
than the 60 ms and the 180 ms fixation. Now, the 60 ms
fixation does not have a corresponding fixation in t and
thus increases the dissimilarity of s and t. In some situa-
tions, this might not be desirable and one might prefer a
measure that sees s and t as being almost perfectly similar
because in both scanpaths the eyes spend 180 ms overall
on word 8. However, whether or not this reasoning is valid
depends on the question that is investigated. After all, it
hat is the scanpath signature of syntactic reanalysis?. Journal of
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means that saccades leading to refixations would be ig-
nored, which would not be advisable when studying, e.g.,
oculo-motor control in reading, as refixations and correc-
tion saccades play a role in the relevant theories. Moreover,
two subsequent fixations will never have exactly the same
location and it is not clear which saccades qualify as small
enough to be negligible. All in all, Scasim avoids making
assumptions that would be ill-motivated in some situa-
tions. If, however, a researcher has reasons to treat subse-
quent fixations that are nearby as one long fixation, there is
a simple way to achieve this: preprocessing the fixation
data to merge subsequent, nearby fixations before apply-
ing a Scasim-based analysis. This way, all relevant param-
eters, like a threshold distance for merging, are under the
control of the researcher. One possible scheme for such a
merging procedure is this: (i) subsequent fixations that
are closer than, e.g., 0.5� are combined into a new fixation;
(ii) the fixation duration of this fixation is the sum of the
fixation durations of the contributors; (iii) the position of
the new fixation is a weighted average of the positions of
contributing fixations, the weights of which are deter-
mined based on the respective fixation durations: long fix-
ations have a stronger influence on the position than short
ones.

Finally, we would like to discuss a concern about the
validity of our measure in the context of reading research.
Suppose we have three scanpaths, s, t and u in panels 4a
and 4b. The first, s, consists of straight left-to-right reading
of a sentence. In t, the eyes perform a short regression to
the beginning of the sentence after a first pass through
the sentence. In u, the regression trajectory following the
first pass is twice as long as in t. It now appears that the
dissimilarity of s and t according to Scasim is roughly half
the dissimilarity of s and u. This is because the dissimilar
part, the regression, is twice as long in pattern u. One re-
viewer of this article suggested that this behavior of the
measure is not desirable because both patterns t and u ex-
hibit a regression to the beginning of the sentence,
whereas s does not have it. Consequently, the argument
goes, patterns t and u should be more similar than patterns
s and t, but according to Scasim they are not. However, in
order to achieve this, a measure would need built-in
knowledge of the special theoretical status of regressions
in reading and of their functional significance. This knowl-
edge would transform the measure into a theory of eye
movements in reading of its own. While this might be
desirable in some contexts, we consciously decided to de-
sign a measure for eye movements that is theoretically
agnostic because it is supposed to test those very theories
about eye movements. This discussion demonstrates that
Scasim should be used while taking into careful consider-
ation the research questions to be addressed. It should
not be considered a one-size-fits-all tool.

2.2. Related work

While our scanpath measure makes no assumptions
about the processes giving rise to the observed scanpaths,
Salvucci and Anderson (2001) presented an intriguing ap-
proach coming from exactly the opposite direction (see
also Salvucci, 1999). They assume a range of fully
Please cite this article in press as: von der Malsburg, T., & Vasishth, S. W
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spelled-out theories of the processes underlying the eye
movements in a given task. From each of these theories
they derive a hidden Markov model that describes proba-
bility distributions over regions of interest indicating
where the eye should fixate given a particular state of
the cognitive system. Then, the likelihood of the competing
hidden Markov models, given the observed eye move-
ments, is used to decide which of the theories explains
the data better. Reichle et al. (1998) compared E-Z Reader
versions 3 and 5 on the basis of fixation durations and fix-
ation probabilities but this analysis was not able to deter-
mine which version of the model was performing better. In
the evaluation of their method, Salvucci and Anderson
compared the two versions of E-Z Reader and showed that,
with respect to fixation patterns, version 5 generates better
predictions than version 3. This is an interesting result be-
cause it shows that, even in straight left-to-right reading of
simple sentences, differences in scanpath patterns are
informative.

Nevertheless, the method by Salvucci and Anderson has
some limitations when we consider the goals of our inves-
tigation. First, it uses the location of fixations, the sequence
in which they occur, but not their durations. Since we have
no reason to exclude the possibility that fixation strategies
might to some extent be distinguished by fixation dura-
tions, we would like to use a method which is sensitive
to differences in durations. Second, it requires models
making precise predictions about fixation patterns, some-
thing that does not exist in the case of syntactic reanalysis.
The issue is further complicated by the Mitchell et al. find-
ing that the visual presentation of a sentence influences
the distribution of regressive eye movements; however, it
is not well understood how precisely the layout influences
regression guidance. This makes it difficult to apply the
hidden Markov approach to the problem of regression pat-
terns during syntactic reanalysis.

The main difference between Scasim and the method by
Salvucci and Anderson relates to the type of questions that
they can answer. If the question is: which of those theories
does a better job at explaining my data?, the hidden Markov
approach is able to answer that, provided the theories are
explicit enough to allow the construction of working mod-
els. Scasim can produce an answer to this question as well,
and in fact Salvucci and Anderson advocate the use of the
Levenshtein metric for this purpose, but it can also be used
to answer the following question: what fixation strategies
are present in this data set? The literature has little to
offer regarding the scanpath phenomena associated with
syntactic reanalysis. Frazier and Rayner (1982) report a
qualitative analysis, Meseguer et al. (2002) transition prob-
abilities, and Mitchell et al. (2008) the distribution of
landing sites of the first regressive saccade. Hence, we have
little reason to expect a specific type of scanpath pattern
and prefer to use a tool which allows us to explore the data
without committing to any specific theories.

Another approach to analyzing scanpath patterns
has recently been presented by Cristino et al. (2010,
ScanMatch). Like Scasim, this approach uses a kind of edit
distance. Despite some technical similarities, ScanMatch
and Scasim are very different in a number of aspects. One
is the way in which temporal information is treated. An-
hat is the scanpath signature of syntactic reanalysis?. Journal of
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other more important difference is that ScanMatch delivers
a very different concept of similarity and there is perhaps
little overlap in the potential applications of the two
measures.

Cristino et al. (2010) also address the problem of gaze
durations that were ignored in earlier proposals (e.g.
Brandt & Stark, 1997) but they suggest a different solution
than we do. In a first processing step, they detect fixations
and saccades in raw eye movements. Then, however, they
break fixations up into smaller temporal bins of, e.g.,
50 ms. A scanpath in which the gaze trajectory went from
region A to B to C with 80 ms fixation duration on A,
120 ms on B, and 130 ms on C, would then be represented
as the sequence AABBCCC where each symbol accounts for
50 ms of gazing at the respective region. When this se-
quence is compared to the scanpath AABCCC, in which less
time was spent on B, ScanMatch will account for a 50 ms
difference in B. The temporal binning introduces some ali-
asing error and the temporal resolution is restricted to the
size of the temporal bins. Reducing the bin size decreases
this error but also increases the length of the symbol se-
quences and therefore the run time of the algorithm calcu-
lating the overall similarity of the two scanpaths. Cristino
et al. (2010) note that run time costs can be alleviated by
using the BLAST algorithm (Altschul et al., 1997) instead
of the Needleman–Wunsch algorithm but warn that this
algorithm does not guarantee to find the correct solution.
Another potential shortcoming of this approach to
accounting for time is that the symbol sequences on which
ScanMatch operates only preserve information about the
total time spend on regions but not about the fixations that
occurred during that time. The sequence AAA could be the
result of three short fixations on region A, or two fixations,
or just one long fixation on A. In situations where fixations
and refixations matter, this means a loss of relevant infor-
mation. This is certainly the case in the research of oculo-
motor control in reading.

Apart from making the Levenshtein metric sensitive to
gaze durations, Cristino et al. (2010) propose to make it
more flexible by modifying the rules for penalizing differ-
ences between two scanpaths. The Levenshtein distance
assigns a penalty of 1 for every missing, superfluous, or
changed symbol. In ScanMatch, the penalty depends on
the identity of the symbols. This has a variety of interesting
applications, one is when fixations should not be compared
with respect to their location on the screen but rather with
respect to the type of object being looked at. For instance,
when the task is to quickly find a tree in a complex visual
scene, different scanpaths ending at different trees should
be evaluated as being highly similar. Scanpaths that end on
a bush should be evaluated as being less similar when
compared to scanpaths aimed at trees, and scanpaths end-
ing on very different objects, such as cars, should be even
more dissimilar. In this case, the similarity of two fixations
would not be given by their location on the screen but by
the semantic or visual similarity of the material shown at
that location. In ScanMatch, the similarity of two regions
of interest is defined in a data structure called substitution
matrix which can be tailored for a particular experiment to
encode such relations between regions of interest. In the
example above, the substitution matrix would specify that
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fixations on trees are equivalent, fixations on trees and
bushes are somewhat similar, whereas fixations on trees
and cars are very different. This gives a researcher enor-
mous flexibility in designing similarity measures for scan-
paths. Useful applications in psycholinguistics might
include the analysis of eye movement data from visual
world type experiments. However, designing workable
substitution matrices is not entirely trivial: many algo-
rithms that make use of similarities assume that the simi-
larity measure is a metric, i.e. that certain mathematical
constraints hold (reflexivity, symmetry, and subadditivi-
ty).5 Some care must be taken when designing substitution
matrices because a violation of these constraints could yield
incorrect results depending on the type of analysis per-
formed on the similarity values.

In principle, the flexibility of ScanMatch allows it to
approximate the behavior of Scasim to some degree. Tem-
poral and spatial binning, however would render this emu-
lation of Scasim, which has a continuous model of space
and time, coarse. Information about refixations within a re-
gion would be lost altogether.

In sum, we believe that the power of the ScanMatch ap-
proach lies its flexibility. ScanMatch is not a similarity
measure but a powerful framework for building similarity
measures. Defining a suitable measure for a particular task
is, consequently, not necessarily a simple task. Scasim, on
the other hand, commits to a very specific concept of sim-
ilarity and offers only one degree of freedom: the parame-
ter for spatial sensitivity, m, which rarely needs to be
adjusted. As we explained above, in this investigation we
need a scanpath measure that makes as few theoretical
assumptions as possible. Also, we need a measure that is
highly sensitive to fixation durations, which have been a
prime source of evidence in reading research. Scasim eval-
uates scanpaths only with respect to the spatial and tem-
poral properties of the fixations making them up and
therefore fits this order.

2.3. An illustration using hypothetical scanpaths

This section will demonstrate a particularly useful way of
putting Scasim to work: for a toy data set we will fit a map of
scanpath space, i.e. a map on which scanpaths are repre-
sented as points that are located close to each other if they
are similar. These maps provide a vector-representation of
scanpaths that can be conveniently analyzed using a variety
of standard statistical techniques. The data set consists of
three scanpaths each for three virtual readers. These data
were generated by modifying a scanpath recorded in an
eye-tracking study where participants read one sentence
per trial. In the trial from which we took the scanpath, a par-
ticipant first read the sentence, regressed to the beginning of
the sentence, and then reread the sentence skipping several
hat is the scanpath signature of syntactic reanalysis?. Journal of
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T. von der Malsburg, S. Vasishth / Journal of Memory and Language xxx (2011) xxx–xxx 9
words. Using this scanpath as a template, we created new
scanpaths by shortening the regression and by dropping
the regression altogether. A copy of the resulting three
scanpaths was assigned to each virtual reader. Individual
differences in reading speed were simulated by changing
the fixation durations for two of the readers: for each
fixation of reader 2 we sampled a value from a normal distri-
bution centered at 1.3 with standard deviation 0.1 and
multiplied the fixation duration with this factor (the choice
of the sampling distribution parameters is arbitrary). The
same procedure was followed for the reader 3, but this time
1.6 was used as the center of the normal distribution. Fig. 3
shows the resulting data set.

Despite the complex nature of scanpaths compared to
fixation durations and regression probabilities we now
have a simple scalar value to describe them: scanpath sim-
ilarity as given by Scasim.6 The question is, how can we
make good use of these simple values? A similar problem
arises when studying mental conceptual spaces, for in-
stance: what are the dominant dimensions in people’s men-
tal representations of countries? Political alignment,
economic development, religion, or geographic location?
Asking subjects questions about those dimensions directly
is problematic for many reasons. However, presenting pairs
of countries and asking how similar they are is simple and
does not bias participants towards certain answers. A pro-
ductive technique for analyzing these empirically obtained
similarity values has been Nonmetric Multidimensional
Scaling (MDS, Kruskal, 1964). This method reconstructs the
unobservable geometry of the conceptual space of countries
from the pair-wise similarities. This is done by representing
each country as a point on an n-dimensional map. Next, an
iterative procedure optimizes the positions of the countries
until their mutual distances on the map reflect the mutual
similarities as specified by the participants of the experi-
ment. It can then be tested if the dimensions of the map
correspond to hypothesized dimensions such as political
alignment. The same method can be used to reconstruct
the unobservable geometry of scanpath space: if we inter-
pret the similarities between scanpaths – normalized, as de-
scribed above, to unit of time – as distances, we can fit maps
on which each scanpath is represented as a point. On these
maps distances between the points reflect the similarities of
the corresponding scanpaths.

The goodness of fit of such maps can be quantified using
a residual sum of squares called the stress of a map (c.f.
Kruskal, 1964). Stress values are positive and small values
are better, e.g. a stress <5% indicates a good fit, 10% is fair
and 20% poor. Given a particular set of similarities, the
stress also depends on the number of dimensions of the
map. Higher dimensional maps have more degrees of free-
dom to place the items so that the similarities can be rep-
resented more accurately. The choice of the appropriate
number of dimensions depends on several factors. One is
the nature of the data. For instance, if the items are cities
and the similarities their distances, two dimensions might
be sufficient for reconstructing the map if the cities are not
6 From now on, we will, for convenience, talk about similarities although
the numbers technically represent dissimilarities.
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too far apart from each other. When the cities are scattered
over the whole globe, two dimensions are not sufficient
and high stress values will be the consequence. Stepping
to a 3-dimensional map will then yield a precise represen-
tation and low stress values. However, in many applica-
tions it is not trivial to identify the appropriate number
of dimensions. If the items are scanpaths, we do not know
the underlying dimensionality of the data as in the case of
locations on a sphere. In this situation, we have to select a
number empirically so that we get a reasonably good fit of
the map. A problem here is that for many data sets there
exists some number of dimensions that allows an almost
perfectly fitting map. However, if the dimensions to data
points ratio is large, a map might not have a meaningful
interpretation anymore. In this case the model represented
by the map has too many degrees of freedom to be reliably
estimated given a relatively small number of data points
(c.f. Kruskal, 1964). Fortunately, in this investigation we
get sufficiently good fits with only a few dimensions.
Fig. 4 shows the map we get when applying MDS to the
similarities obtained using Scasim. The stress of this map
is 0.0071; in words: the variance in this synthetic data
set with respect to spatio-temporal patterns is almost per-
fectly preserved by the map.7

Once we have such a map, we also have a vector-repre-
sentation of scanpaths and almost the full array of statisti-
cal methods can be used to analyze the distribution of
scanpaths in scanpath space. For example, a simple ap-
7 We also tried Sammon’s method for fitting maps instead of Kruskal’s
(Sammon, 1969). The Sammon maps look slightly different but the results
of the analyzes of those maps were very similar.
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proach is to use the k-means clustering algorithm to check
if there are subsets of scanpaths that have a distinctly in-
creased mutual similarity compared to other subsets.
Fig. 4 shows three such clusters that we identified using
this method.

If there are strong sources of variance in a data set and if
they are weakly correlated – as in our case reading speed
and type of regression pattern – MDS organizes the items
so that one dimension of the map is allocated to each
source of variance. In other words, MDS identifies the la-
tent dimensions inherent in the similarities. This way,
most of the variance in the similarities can be preserved
by the map. In our example the result is that reading speed
is expressed along the vertical axis and type of regression
pattern along the horizontal axis. By finding correlations
of axis and properties of the scanpaths we can infer what
properties are shaping the distribution of scanpath
patterns.

The example demonstrates that this kind of analysis of
scanpaths is sensitive to very different attributes of scan-
paths: a regression pattern is a spatial property expressed
locally, at a particular point in a scanpath, whereas reading
time is a temporal property expressed globally, i.e. in every
fixation.

Armed with this technique, we turn to a re-examination
of the Meseguer et al. data.

3. A re-examination of the Meseguer et al. data set

Meseguer et al. recorded eye movements from 44
undergraduate students who read 48 experimental sen-
tences intermixed with 96 filler items. Two sample sen-
tences can be seen in Table 2. The experiment had a
2 � 2 design; one factor was the attachment site of an
adverbial phrase (high or low), and the other factor
manipulated the surface form of VP2. The second factor
was included in order to check if phonological similarity
of the VP2, which was always in subjunctive mood, influ-
enced processing of the verb in the AdvP. This manipula-
tion was made possible by the fact that in Spanish the
subjunctive has two possible terminations. Since there
was no interaction between the two factors we will not
investigate the influence of the latter manipulation any
further.
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In half of the trials the participants had to answer true/
false comprehension questions on which they performed
with 92% mean accuracy rate. This indicates that they
did not have any significant difficulty in comprehending
the presented material. More information on the stimuli
and the procedure is available from Meseguer et al.
(2002).

Since we had to convert the data format used by
Meseguer et al. to the format used by our software, we first
calculated the means for the fixation durations reported by
Meseguer et al. in order to verify that no errors were intro-
duced in the process. We found the same pattern of results
as Meseguer and colleagues report. From the full scanpaths
we extracted regression patterns by selecting all fixations
that followed the first regressive saccade after reading
the disambiguating material (region 8). Therefore we are
left with some regression patterns in which some earlier
word was fixated (most of the time the disambiguating
region), returned to region 9, and only then a long regres-
sion to early material occurred. While it is possible to treat
these patterns as two separate regressions, we follow
Meseguer et al. in assuming that the two subsequent
regressions are not independent events and might in fact
reflect one strategy or process. Therefore we treat them
as one pattern.

In the data set that we obtained from Meseguer and col-
leagues, no coordinates are specified for fixations located
outside the sentence. We removed these fixations because
they cannot be analyzed with the approach used here. This
affected 4.3% of the fixations most of which happened after
reading of the sentence was finished. If a regression pat-
tern had only one fixation left, we dropped the entire trial
from the analysis. This resulted in the removal of 114 trials
(8.3%).

When preprocessing eye movement data, one applica-
tion of Scasim is the detection of trials in which something
unusual has happened. These trials can be identified using
two criteria. First, for each scanpath, calculate its average
distance to all other scanpaths. A scanpath will be marked
for deletion if this distance is more than two standard
deviations larger than that of the other scanpaths. This
criterion selects all trials that are obviously unusual:
participant looks randomly around, reads the sentence sev-
eral times, etc. This way however, we also select scanpaths
that constitute the tail of a distribution. Since these do not
qualify as outliers, we should retain them. Second, only
those marked trials are dropped that have a distance to
their nearest neighbor that is larger than two times the
mean distance in the whole set. The whole procedure can
be applied iteratively until it leads to no further change.
In the data set examined here, this procedure selects 14
scanpaths. Although this is a small number, it can be advis-
able to remove them: they contribute, by definition, rela-
tively large dissimilarity values, and therefore have a
strong impact on the stress measure that guides map for-
mation in Multidimensional Scaling. If we keep these out-
liers, the map might mainly depict differences between
normal scanpaths and outliers and to a lesser extent differ-
ences among the normal scanpaths. Since the outliers most
likely reflect processes unrelated to our investigation, it
would be reasonable to exclude them from the data set.
hat is the scanpath signature of syntactic reanalysis?. Journal of
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Table 2
Sample item from the Meseguer et al. study. During the experiment, the line-breaks were in the same positions
as in this table.

High attachment to VP1 (dispreferred)
El Profesor [VP1 dijo [CP que los alumnos
[VP2 se levantaran del asiento]] [AdvP cuando los directores entraron en la clase.]]
The teacher [VP1 said [CP that the students
[VP2 had to stand up from their seats]] [AdvP when the directors came INDIC into the room]]

Low attachment to VP2 (preferred)
El Profesor [VP1 dijo [CP que los alumnos
[VP2 se levantaran del asiento [AdvP cuando los directores entraran en la clase.]]]]
The teacher [VP1 said [CP that the students
[VP2 had to stand up from their seats [AdvP when the directors come SUBJ into the room]]]]

Regions:
j El Profesor j dijo j que los alumnos j
1 2 3
j se levantaran j del asiento j cuando j los directores j entraran/entraron j en la clase. j
4 5 6 7 8 9
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However, in this investigation outliers were kept in the
analysis because removing them did not change the
results.
8 Although Fraley and Raftery (2002) propose a Bayesian information
criterion for model selection, we also tried the Akaike information criterion
(AIC, Akaike, 1974). This results in much larger numbers of clusters because
then the penalty for free parameters is only two times the number of
parameters. Fitting a cluster model for the 7-dimensional map of scanpaths
(see below) with the AIC leads to a model with as many as 60 clusters (14
with BIC). Although this model gives us a much more detailed description
of the eye movement phenomena occurring in the data set, we are running
a very real risk of overfitting the data, i.e. many of those clusters might not
reflect underlying populations but might merely be statistical flukes.
Moreover, given the small numbers of members in those clusters (mean:
21, sd: 8.5), deriving statistically reliable statements about the influence of
garden-pathing on those clusters seems futile. As we have no theoretical
reasons to prefer the AIC we stick with the BIC. Still, using the AIC might be
useful when exploring a set of scanpaths. In R, this can be achieved by
overwriting the function bic from the package Mclust with a function that
calculates the AIC.
4. Results

4.1. Which fixation strategy do readers use when reanalyzing?

Participants executed on average 15 regressions from
region 9 in the high-attachment condition and 14 in the
low-attachment condition (t(43) = 2.3, p < .05). The aver-
age length of regressive saccades (measured in regions)
from region 9 was 4.52 in the high condition vs. 4.51 in
the low condition. The distribution of landing sites was
not significantly different (v2 = 4.3, p = .75, df = 7). This
indicates that the effects of reanalysis are rather subtle,
not strongly expressed in simple scalar measures, but bur-
ied in the spatio-temporal patterns formed by fixation se-
quences ensuing after the encounter of the disambiguating
word. Meseguer et al. (2002) teased apart differences be-
tween the conditions using dependent measures tailored
for this particular experiment. Scanpath similarity, how-
ever, provides a general solution for questions of the kind
discussed here.

Since Selective Reanalysis predicts a characteristic fixa-
tion strategy for the garden-path condition, a straightfor-
ward way to test it is to check for clusters of regression
patterns in the whole data set and to see whether (i) they
are associated with one or the other condition and (ii)
whether these patterns resemble a trajectory consistent
with predictions of the Selective Reanalysis Hypothesis.
The underlying reasoning is: clusters correspond to parsing
strategies and strategies occurring more often in one con-
dition address the peculiar problem presented by that con-
dition, in this case reanalysis. Strategies that occur equally
often in the two conditions cannot plausibly be attributed
to reanalysis but might reflect other processes. Therefore,
we are mainly interested in clusters of regression patterns
that have more instances in the high-attachment
condition.
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All data analysis was done in GNU-R (R Development
Core Team, 2009). Maps of scanpaths were fit on similarity
per fixation scores using the function isoMDS from the
package MASS. For the first cluster analysis, we fitted a
2-dimensional map of all 1253 regression patterns. The
stress of this map was 22%. Clusters were detected on this
map by fitting mixture of Gaussians models using entropy
maximization (Fraley & Raftery, 2002). Calculation of the
mixture of Gaussian models was performed using the
mclust package (Fraley & Raftery, 2007). The optimal mod-
el cannot be chosen using only the likelihood of the candi-
date models because they differ in the number of free
parameters, and adding free parameters can only improve
the fit of a model. Hence, the model with the most param-
eters would always be the best. Therefore, a Bayesian
information criterion (BIC) was used. It consists of the
maximized log likelihood of a model minus a penalty for
model complexity (Schwarz, 1978). This penalty is the
number of parameters times the log of the number of data
points. The free parameters of the cluster models were the
position of Gaussians, their dispersion in each dimension,
and their rotation. Only cluster models with 1 up to 20
clusters were examined. The BIC reached a maximum for
relatively small numbers of clusters.8 See Fraley and Raftery
(1998, 2002) for details of the method.
hat is the scanpath signature of syntactic reanalysis?. Journal of
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Fig. 5. Map of all regression patterns in the data set originating from
region 9. Colors indicate clusters that were found using mixture of
Gaussian modeling. The letters mark the positions on the centroids these
clusters.
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Fig. 6. The regression patterns that were closest to the centroids of the
clusters identified on the 2-dimensional map of all regressions from
region 9 (see Fig. 5). We call these the prototypical patterns for a cluster.
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If there is prior knowledge about the structure of cluster
models, it might make sense to impose constraints on the
set of possible models. For instance, one might restrict the
search space to models in which all Gaussians have
the same orientation, the same or even a predetermined
dispersion. In our case, there is no such a priori knowledge
and we allowed the parameters of the Gaussians to vary
freely and independently.

The advantage of mixture of Gaussians modeling over
other clustering procedures is that they can identify clus-
ters even if they intersect or overlap. This is particularly
important in this investigation because the Time-out
Hypothesis predicts random walks, a fixation strategy that
is not characterized by a common spatio-temporal fixation
pattern. On a map of scanpaths this would result in a large
cloud of scanpaths that would overlap other categories of
scanpaths that do exhibit a common pattern. This means
that by combining Scasim with mixture modeling, we
can not only detect categories of similar-looking scanpaths
but also heterogeneous categories in which the scanpaths
are characterized by their mutual dissimilarity. A draw-
back of mixture modeling is, however, that we have to
make assumptions about the distribution of scanpaths in
scanpath space. In the present case, we assume that clus-
ters are well-described by Gaussians, which may not nec-
essarily be appropriate.

The optimal mixture model for the 2-dimensional map
consisted of three clusters. From each cluster a prototype
was selected; this was the pattern that maximized the sim-
ilarity to all other members of the cluster, i.e. the one in
the center of gravity of the cluster. Fig. 5 shows the map
of scanpaths and Fig. 6 shows the prototype of each cluster.
In cluster A, the eyes move back to the beginning of the
sentence and then reread the whole sentence or parts of
it.9 In cluster B, the eyes perform a single saccade to early
material, while in cluster C the gaze shifts to the nearby dis-
ambiguating region. Only cluster A had significantly more
members from the garden-path condition (Cluster A:
v2 = 5.2, p < .05, df = 1, cluster B: v2 = 0.10, p = .75, df = 1,
cluster C: v2 = 0.36, p = .55, df = 1).10 However, this pattern
frequently occurred in both conditions: 136 instances in
the high-attachment condition vs. 101 in the low-attach-
ment condition (cluster B: 310/302, cluster C: 208/196).
The rank order of categories was B (612), C (404), A (237).

Regressions are common even during reading of simple
sentences. An analysis of the Potsdam Sentence Corpus
(Kliegl, Nuthmann, & Engbert, 2005), a German eye track-
ing corpus containing 144 simple everyday language sen-
tences read by 222 readers each, shows that regressions
occur frequently, 8.5% of the saccades are regressive, and
that more than 80% of them are short and targeted at the
directly preceding word. Models of oculo-motor control
in reading predict these regressions as a consequence of
9 It looks as if region 5 was skipped but this is not necessarily real
skipping because region 5 (modification of V2) was not present in all items.

10 Please note that these three v2-tests are not independent. If pattern A
occurs more often in the garden-path condition, there are fewer trials left in
which B and C could possibly occur. In fact, if you know the numbers of
patterns A and B and the numbers of trials without any regression for the
two conditions, the counts for pattern C are fully determined.
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premature forward saccades occurring before lexical ac-
cess of the current word has finished. This raises the ques-
tion: can we safely attribute regressions in cluster C to the
particular syntactic phenomenon studied here? In order to
answer this, we counted, for all regions, the occurrences of
regressions to previous regions to determine whether re-
gion 9 had unusually many such regressions. Region 4 at
the beginning of line 2 had only 28 instances. Apparently
readers do not like to regress if that involves changing
the line (c.f. Mitchell et al., 2008). Region 9 had 517 and
the other regions between 200 and 330 instances, except
region 1 which cannot have any regressions because there
is nothing to regress to. While this suggests that region 9
had more than the usual rate of regressions to the previous
region, this result is at odds with the above finding that
cluster C was not modulated by garden-pathing. We might
conclude that pattern C regressions were induced by the
temporary ambiguity but do not necessarily reflect
reanalysis.

A scanpath is potentially a complex thing that has many
degrees of freedom. Although the stress of the two-
dimensional map (22%) is relatively high, it is surprising
that two dimensions are sufficient to explain a large part
of the variance in the spatio-temporal fixation patterns.
However, given the large number of available data points,
hat is the scanpath signature of syntactic reanalysis?. Journal of
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we can calculate robust maps for higher dimensions. We
fitted maps for 2 up to 15 dimensions. For these maps
we calculated cluster models using the procedure de-
scribed above. Fig. 7 shows the stress of those maps and
the number of clusters obtained as a function of the
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Fig. 7. Stress values and numbers of clusters for increasing numbers of
map dimensions. As the number of dimensions goes up, the stress of
maps decreases, i.e. more variance is explained by higher-dimensional
maps. The number of clusters detected on those maps reaches a plateau at
six dimensions.
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number of dimensions. As we add more dimensions, the
maps represent more variance in regression patterns and
more structure emerges that is conflated when only two
dimensions are available. The number of clusters peaks at
seven dimensions and only little additional variance is ex-
plained when more dimensions are added. A knee in the
stress curve can hint towards the ‘‘true’’ dimensionality
of the data (cf. Kruskal, 1964) but the curve in Fig. 7 does
not offer any such clues. Therefore, we arbitrarily chose se-
ven dimensions for further analysis in order to contrast our
simple two-dimensional model with a more complex one.
The main results come out similarly when we analyze
maps with other numbers of dimensions. Fig. 8 shows pro-
jections of the seven-dimensional map and Fig. 9 shows
the prototypical scanpaths of the detected clusters.

In seven dimensions (stress: 8.1%), strategy A from the
two-dimensional map is preserved as cluster D. Cluster B
breaks up into clusters F–M which differ mostly in the pre-
cise landing position of the regressive saccade. Strategy C
(inspection of the critical word in region 8) splits into N,
O, and P. These differ in whether or not the gaze returns
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to the origin of the regression and in how long region 8 is
fixated. Two new categories that were not detected on the
low-dimensional map are Q, a blend of B and C, and E in
which only the first line (region 1–3) is reread. However,
again only rereading of the whole sentence was signifi-
cantly more frequent in the garden-path condition
(v2 = 3.9, p < .05, df = 1).

Fig. 10 shows a scatter plot of the sizes of clusters D–Q
for the garden-path vs. the non-garden-path condition. The
farther away a cluster is located from the central line, the
more it had a tendency to occur in one of the two
conditions.

We also performed a similar analysis of the 154 regres-
sion patterns that originated on region 8, the disambiguat-
ing word. On a 2-dimensional map (stress: 15.71%) two
clusters were detected, one containing regressions to the
previous word (size: 117) and one heterogenous set of very
different patterns (size: 37). Neither the clusters nor the
whole set of regressions from region 8 were modulated
by garden-pathing. Apparently the scanpath effects of dis-
ambiguation show up only on the following region.

4.2. Do readers differ in their fixation patterns?

All regression patterns in the data set were classified
according to the three main strategies: rereading (A), going
to the beginning of the sentence (B), and rechecking of the
disambiguating word (C). Fig. 11 shows the counts of in-
stances of the main strategies that each reader contributed.
For every pattern there are readers that had a preference
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Fig. 10. Counts of the instances in each cluster on the 7-dimensional map
in the high- vs. low-attachment condition. Pattern D had the most
instances and the most reliable bias towards the high-attachment
condition.
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for it. Many readers show a strong preference for a partic-
ular pattern, mostly B or A, while others produced all pat-
terns equally often. Some readers did not use patterns A or
C but pattern B was found in all participants.

Out of 44 participants 24 had a distribution of patterns
that was significantly different from the overall distribu-
tion across participants (v2, df = 2, p < .05). These are, of
course, many tests, some of which might have resulted in
false alarms. An examination of Spearman rank correla-
tions of counts of patterns per participant revealed that
patterns A and C (q = 0.36, p < .05) and patterns B and C
(q = �0.3, p < .05) were significantly correlated but not pat-
terns A and B (q = �0.23, p = .13). In other words, readers
who produced more type A regressions produced more
type C regressions, while readers who had more type C
regressions had fewer type B regressions. Note that the
occurrence of patterns A, B, and C are not independent
events. If a reader performs many type A regressions, there
are just not many trials left in which patterns B and C could
occur. So if there is no functional relationship between pat-
terns, we would expect a slightly negative correlation be-
tween patterns. This weakens the reliability of the
correlation between B and C but strengthens that of the po-
sitive correlation of A and C.

When we did the same analysis for items instead of par-
ticipants, there were only 4 items that elicited a distribu-
tion of patterns that was significantly different from the
overall distribution. At an alpha level of 0.05, this is
roughly the expected rate of false positives. We conclude
that the items presented in this experiment largely elicited
the same fixation patterns. This also constitutes further
evidence that the inter-individual variation is not due to
random fluctuations but systematic, which in turn shows
that the signal extracted by our method is not spurious
but constitutes genuine and interpretable variance in eye
movements.

We also identified prototypical scanpaths for each par-
ticipant. A cluster analysis of a 2-dimensional map of those
44 regression patterns resulted in the same three catego-
ries as the cluster analysis of the two-dimensional map
of all scanpaths.
5. Discussion

Our main results are the following: in a 2-dimensional
cluster model of regression patterns we found three fixa-
tion strategies (Fig. 6): regressions to the beginning of
hat is the scanpath signature of syntactic reanalysis?. Journal of
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the sentence followed by rereading (A), short regressions
to beginning of the sentence (B), and short regressions to
disambiguating material (pattern C). The same patterns
were detected when we clustered only the preferred
regression patterns of the participants. Only rereading oc-
curred significantly more often in the garden-path condi-
tion. An analysis of a 7-dimensional model revealed more
structure. 14 fixation patterns were identified (Fig. 9):
short regressions to early, intermediate or late material,
rereading of the first line (regions 1–3), and rereading of
the whole sentence. Again, only rereading of the whole
sentence was significantly modulated by attachment site.

The analysis of individual readers showed that there
were strongly expressed differences in how participants
orchestrated the different fixation strategies. Within par-
ticipants, patterns A and C had moderately positive corre-
lation while B and C were negatively correlated.

5.1. How do our results relate to the results of Meseguer et al.
(2002)?

One of the main results of the original study by
Meseguer et al. was that transitions from region 9 to the
main verb (region 2) and to the adverb (region 6) were
more likely in the high-attachment condition. We found
four clusters of regressions that start with fixations to
those regions (patterns E, F, G, and Q in Fig. 9). F and G
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had more instances in the garden-path condition (48 vs.
39, 50 vs. 39) but these differences were not significant
according to Pearson’s v2 tests. This apparent contradiction
is explained by the fact that regression patterns that start
with a fixation to region 2 or 6 diverge in the course of
the following fixations. Consequently they do not form
clusters of their own under our analysis.

One difficulty when testing Selective Reanalysis is that
it is not a fully formalized theory that produces precise
predictions for the eye movement record. Meseguer et al.
considered the possibility of a specific fixation pattern that
would ensue when the need to reanalyze arises. Mitchell
et al. offered a weaker interpretation of Selective Reanaly-
sis; according to them, relevant words exert some attrac-
tion on the eyes, but this does not entail a characteristic
fixation signature because other properties of the text also
influence the sequence of fixations. A signature scanpath,
where certain words are fixated in a certain order, should
be detectable with our method, which was designed to find
such patterns. However, while we in fact found clearly sep-
arated patterns, none of them fit the description of Selec-
tive Reanalysis.

The weaker form of Selective Reanalysis would be
harder to detect using our method, and therefore we argue
that our results neither rule out nor support this variant of
the idea. A certain amount of attraction has been shown to
occur by Meseguer et al. and Mitchell et al. However, we
hat is the scanpath signature of syntactic reanalysis?. Journal of
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could provide clear evidence that there is a class of
fixation sequences that is indicative of an alternative
mechanism for dealing with garden-paths: rereading,
presumably while inhibiting unwanted aspects of the
original parse.

One obvious question is then: why did Meseguer et al.
not find an increased number of regressions to region 1
in the garden-path condition? The simple explanation is
that, in the rereading cluster, the eyes often undershoot
on their way to the first word where rereading begins
(see Figs. 6 and 9). For example, 37 regression scanpaths
in the rereading cluster (A) first visit region 3 before shift-
ing to region 1 (region 4 was visited only eight times in
such regressive patterns). It seems that the eyes first
change the line – there were two lines, and region 3 oc-
curred at the end of line one – and then skip to the begin-
ning of the line. The idea that the eyes initially undershoot
receives further support from the fact that we see the same
pattern in cluster B (short regression to the start of the sen-
tence), where region 3 was the most frequent stepping
stone on the way to region 1. This interpretation is consis-
tent with Mitchell et al. (2008) insofar as they show an
influence of the layout of the text, particularly of the
line-breaks, on regressive fixation patterns. This suggests
that saccade programming is indeed influenced by low-le-
vel properties of the text while a loosely coupled linguistic
system is guiding the overall shape of the trajectory.

Does the fact that we found clear patterns entirely rule
out the possibility, suggested by Mitchell et al. (2008), that
the eyes perform a random-walk on previous material dur-
ing reanalysis in order to buy time for the parser? Not en-
tirely: while the detected categories of patterns occur quite
often, there are also trajectories that fit less well into those
categories. A more in-depth analysis is required in order to
clarify whether these patterns constitute just the tails of
the detected Gaussians, or whether they form a separate
population that is not identified by a common spatio-
temporal fixation pattern.

We see more pattern C regressions than we can explain
by oculo-motor constraints. Hence, pattern C could be seen
as indicative of a parser that operates in a fashion pre-
dicted by Selective Reanalysis: the parser, and the eyes,
target a critical word whose status is decisive for the
success of reanalysis. In this case, however, it is odd that
this pattern is not modulated by the attachment site.

Our findings also show that (a) transition probabilities
alone can render a misleading picture of what is going on
in the individual trials, and (b) by taking the context of fix-
ations into account, we can distinguish functionally differ-
ent transitions between regions, for instance: transition to
region 3 as an intermediate step on the way to region 1 and
eye movements which aim for region 3 in the first place.
5.2. Implications for theories of parsing

As discussed by Frazier and Rayner (1982), two alterna-
tives to Selective Reanalysis are forward reanalysis and
backward reanalysis. According to forward reanalysis, the
parser returns to the beginning of the sentence whenever
an error is encountered and starts re-parsing it. Backward
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reanalysis assumes a stepwise and successive undoing of
the parse from the current word to the previous one.

Assuming (following Frazier & Rayner, 1982) that the
eye movement record reflects parsing processes, we found
evidence showing that, consistent with forward reanaly-
sis, rereading is indeed a strategy readers use to cope with
garden-path material. Such a strategy is also theoretically
well-motivated; for example, as Lewis (1998) points
out:

. . .the backtracking strategy that places the least
demands on memory is forward reanalysis by overt
recomprehension from the beginning of the sentence.
This strategy requires no memory for input or prior
parsing states—it needs just enough memory for the
parser to remember not to continue going down the
same path. The drawback of this method is time, but
it is a reliable strategy when all else fails.

Despite the relative efficiency of this approach, forward
reanalysis seems unlikely to be the only or the default
strategy in general parsing. After all, temporary ambigui-
ties are almost ubiquitous, and rereading in all those cases
would be very costly. However, Grodner, Gibson, Argaman,
and Babyonyshev (2003) argue that re-parsing of earlier
material using first-pass parsing processes might in fact
be the only form of reanalysis. At least they show that it
is sufficient to explain self-paced reading data from their
own study and that reported in Sturt, Pickering, and
Crocker (1999). A reasonable assumption is that the most
common temporary ambiguities can be reanalyzed in-
place, without the eyes having to reread the sentence. In
the Meseguer et al. experiment, this was apparently often
not possible and the alternative strategy was, we specu-
late, constructing a new parse from scratch. Priming and
residual activation should, however, facilitate re-parsing
of material that does not need revision.

The reason for the difficulty of in-place reanalysis might
be that in this study the constituents affected by the
reanalysis (V1, V2, AdvP) were scattered over a long
sentence. This might have induced a significant amount
of retrieval difficulty. Interesting questions for future
research are therefore: under which circumstances is in-
place reanalysis impossible so that the parser has to resort
to rereading? Is the strength of the preference for one
structure the key? Or the distance between the affected
constituents? Or both?

We found no evidence for backward reanalysis, the sec-
ond alternative to Selective Reanalysis. There are only rare
cases of scanning backwards and they do not form a homo-
geneous cluster.

If we assume that rereading reflects reanalysis and fur-
thermore that the parser deterministically selects a pre-
ferred structure during first-pass reading, rereading
should only occur in the garden-path condition. However,
none of the patterns that we identified occurs only in one
condition. Hence, the frequent occurrence of rereading in
the non-garden-path condition could mean two things:
(a) although participants built the correct parse, they re-
read the sentence in order to reconfirm that they built
the correct structure; (b) readers employ a parsing strategy
that non-deterministically builds either structure during
hat is the scanpath signature of syntactic reanalysis?. Journal of
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first-pass reading of the ambiguous material; here, non-
deterministically structure building is intended to mean
that non-syntactic sources of information (such as lexical,
semantic, and discourse factors) can differentially impact
the decision about which structure to build.

The first possibility, (a) above, that participants mainly
reread to make sure they can answer the comprehension
question, could be tested with an extended experimental
design that includes a baseline condition that does not
have any temporary ambiguity: if readers just reread to
check, they should also reread in the non-ambiguous con-
dition. In the present study, we cannot exclude such an
explanation.

Regarding the second possibility, (b), there is indepen-
dent support for the idea that the parser is not restricted
to only syntactic information when making a decision for
a particular structure (see Tanenhaus & Trueswell, 1995,
for a review). In the light of these findings it might seem
plausible that garden-pathing would not only occur in
the high-attachment condition. After all, the material used
here had only a weak preference for low-attachment,
which might give other factors a better chance to override
a syntactic bias. The syntactic information available during
the ambiguity might just not be very predictive of the true
attachment site of the adverbial phrase.11 A problem with
this view is that it attributes variance in structure selection
to differences of the experimental items (lexical, semantic,
etc.). In the discussion above, however, we showed that
the observed eye movement phenomena occurred at similar
frequencies across items.

In sum, the rereading patterns suggest that readers may
be carrying out forward reanalysis, but this is only one of
several strategies readers use. Finally, determining the
underlying reason for the adoption of forward reanalysis
requires further study; it could be the result of a reconfir-
mation process, or it could be due to the parser engaging in
non-deterministic parsing.

5.3. What can individual differences tell us about parsing?

Our analysis of individual differences in regression pat-
terns shows that the preferred regression patterns of read-
ers are categorizable into the three main classes that we
also identified independently when analyzing the whole
set of regressions irrespective of the readers that produced
them. However, readers differ considerably in the degree
to which they draw on those patterns. Rereading (pattern
A), which is the only detected pattern that is clearly asso-
ciated with reanalysis, is produced in more than two thirds
of the trials by some readers while other participants did
not produce this pattern at all. Occurrences of pattern A
and C are positively correlated within participants, which
could mean that they serve a similar purpose or at least
that they are explained by a common cause. Since psycho-
metric measures for the participants of this experiment are
not available, we cannot tell at this point what these differ-
11 A corpus analysis of the relative frequencies could shed light on this but
this would require an annotated corpus of Spanish containing a large
number of such temporary ambiguities; we could not obtain such a corpus
for this study.
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ences reflect. However, working memory seems to be a
candidate that is worth testing. In any case, the pro-
nounced inter-individual differences provide a potentially
rich source of information about determinants in parsing
and eye movement control and models of the related pro-
cesses could gain a lot by seeking to explain them (c.f.
Underwood, 1975).

5.4. The function of regressive eye movements

The statement of the Selective Reanalysis Hypothesis in
Frazier and Rayner (1982) is not explicit with respect to
whether regressive eye movements are driving the parsing
process or if they are just epiphenomenal to parsing. The
latter possibility is motivated by the following dilemma:
after seeing the disambiguating material, if the parser al-
ready knows what the correct attachment site of the
adverbial phrase is, what is the use then of looking at it?
On the other hand, if this information is not available,
how can the parser guide the eyes to the relevant material?
What kind of information is the parser seeking? In the
strict version of the Time-out hypothesis, the function of
regressive eye movements seems to be to keep upcoming
material from interfering with ongoing processing. How-
ever, it remains unclear whether and how the visual input
afforded by regressive eye movements interacts with
reanalysis.

Pattern A, rereading of the sentence, begins with a sac-
cade to an intermediate region, which is perhaps better ex-
plained by undershooting of saccades and layout
constraints á la Mitchell et al. (2008) than by a need of
the parser to pick up information at these positions. During
first-pass reading, visual input is necessarily driving the
parsing process. Since the sequence of fixations in pattern
A looks very much like first-pass reading, we speculate that
similar parsing processes are at work during those regres-
sion paths: the parser is building structure guided by visual
input.

Pattern B, regression to early material, was the most fre-
quent pattern and is negatively correlated with pattern C.
The correlation of B and A was also negative but not signif-
icant (q = �0.23, p = .13). This means that participants who
had few instances of patterns A and C (regressing to the
disambiguating material), which presumably reflect lan-
guage processing, regressed more often to the beginning
of the sentence and finished the trial once they arrived
there. One possible explanation lies in a detail of the proce-
dure of the experiment: after finishing the sentence, par-
ticipants were not required to look to a corner of the
screen in order to terminate the trial as is commonly done
in many experiments. Instead they just had to press a but-
ton. Hence, at least some of the regressions to the begin-
ning of the sentence might be spurious and reflect
anticipation of the next sentence or comprehension ques-
tion; readers who quickly grasp the sentence may be more
likely to anticipate the next trial when they reach the end
of the sentence.

Since transitions from region 9 to 1 in clusters A and B
are distinguished by subsequent fixations, it would be very
difficult to identify these negatively correlated classes of
transitions if one were to only analyze transition probabil-
hat is the scanpath signature of syntactic reanalysis?. Journal of
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ities. Hence, scanpaths seem to be a useful notion and ob-
ject of investigation when researching questions related to
strategies in cognitive processing.

The relatively large number of extra regressions to re-
gion 8, the disambiguating material, suggests that cluster
C consists of at least two separate populations: regressions
due to oculo-motor constraints and regressions triggered
by processes addressing the resolution of the ambiguity.
Since the difference between the two conditions is located
in region 8 and consists of just one letter (entraron vs. entr-
aran) it is likely that readers revisit this region to verify
what they think they saw there.

In sum, we argue that the purpose of regressions in the
Meseguer et al. experiment mainly was to seek out addi-
tional information required by the parser in order to finish
the sentence: in one case, readers wanted to make sure
they got the disambiguating verb right and it was easy to
target because it was close. In the other case, restructuring
of the derived parse might have demanded more resources
than available (or the existing memory representation of
the parse had deteriorated) and the parser had to resort
to rereading from scratch while inhibiting aspects of the
original parse. To which extent these results generalize to
other experiments must be left for future work.
12 http://www.ling.uni-potsdam.de/�malsburg/scasim.
6. Conclusions

In previous studies (Frazier & Rayner, 1982; Meseguer
et al., 2002; Mitchell et al., 2008), analyses of regressive
saccades from the disambiguation region have shown that
linguistically relevant material attracts the eyes during
syntactic reanalysis. From these results it was concluded
that the parser guides the eyes towards relevant material,
suggesting an intelligent repair process. However, at least
in the Meseguer et al. data set, the attraction effect was
weak, and an attempt to identify a signature scanpath of
syntactic reanalysis did not produce conclusive evidence.
We developed a novel method for analyzing sequences of
fixations that attacks the problem of spatio-temporal fixa-
tion patterns in a more direct way. Our re-examination of
the Meseguer et al. data set using the proposed method
showed that a substantial part of the regression trajecto-
ries triggered by the disambiguating material follow pat-
terns that cannot plausibly be explained by Selective
Reanalysis. These scanpath patterns were not detected
using aggregates of the traditional eye-tracking measures,
showing that our method provides novel information from
eye movement data.

In one pattern, participants reread the whole sentence.
This pattern was more frequent in the garden-path condi-
tion and is predicted by forward reanalysis, i.e., reanalysis
by application of first-pass structure building processes
(Frazier & Rayner, 1982; Grodner et al., 2003; Lewis,
1998). In a second pattern, the eyes regressed to the begin-
ning of the sentence. We believe that this pattern was not
related to reanalysis but reflects anticipation of the next
trial. The third pattern, rechecking the disambiguating
material, might be indicative of diagnosis (Fodor & Inoue,
2000). The frequent occurrence of the rereading pattern
suggests that, for the material studied here, targeted repair
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of a parse was often not viable. The fact that all regressive
fixation strategies were common in both experimental
conditions suggests that the parser did not deterministi-
cally select the low-attachment interpretation of the sen-
tence in the first pass.

This leaves us with the possibility of a parsing system
that makes strategic decisions when it encounters the dis-
ambiguating material, the alternatives being: (i) Selective
Reanalysis, which is neither supported nor ruled out by
our results, (ii) re-parsing, and (iii) diagnosis presumably
followed by covert reanalysis if necessary. The evidence
for the parsing system making such decisions is that these
strategies seem to exclude each other. Rereading either oc-
curs immediately or not at all. There is no indication that it
serves as a fall-back when other strategies failed.

Our analysis of individual differences showed that read-
ers differ tremendously in how they orchestrate the vari-
ous fixation strategies. Given the present data set, we can
only speculate about the reasons of these differences, be-
cause psychometric measures were not available for the
participants of the experiment. Theories of parsing and
oculo-motor control might gain a lot by tapping into this
rich source of variance.

Finally, we introduced a new dependent variable for eye
movement research: Scasim. We demonstrated a general
method for analyzing spatio-temporal patterns in eye
movements based on this measure. Since the results of
analyses of the proposed type consist of categories of fixa-
tion patterns and prototypical patterns, interpretation is
straightforward and not prone to pitfalls associated with
analyses of aggregates of eye-tracking measures. However,
our measure is not intended to replace analyses of duration
measures and transition probabilities but rather to com-
plement them. The proposed method is not restricted to
the analysis of regressions in reading, but is applicable in
eye movement research in general because it comes with-
out assumptions specific to reading. Other applications in-
clude evaluation of computational models of oculo-motor
control (Reichle et al., 1998; Engbert, Nuthmann, Richter,
& Kliegl, 2005; Reichle et al., 2009) and visual attention
(Itti, Koch, & Niebur, 1998), analysis of eye movements in
the visual world paradigm, diagnosis of reading impair-
ments, and usability research. A package for the GNU-R
system for statistical computing that implements Scasim,
along with various convenience functions, is freely avail-
able on the web.12
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