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Abstract

We present a computational evaluation of three hypotheses about sources of deficit in

sentence comprehension in aphasia: slowed processing, intermittent deficiency, and

resource reduction. The ACT-R based Lewis & Vasishth (2005) model is used to

implement these three proposals. Slowed processing is implemented as slowed execution

time of parse steps; intermittent deficiency as increased random noise in activation of

elements in memory; and resource reduction as reduced spreading activation. As data,

we considered subject vs. object relative sentences, presented in a self-paced listening

modality to 56 individuals with aphasia (IWA) and 46 matched controls. The

participants heard the sentences and carried out a picture verification task to decide on

an interpretation of the sentence. These response accuracies are used to identify the

best parameters (for each participant) that correspond to the three hypotheses

mentioned above. We show that controls have more tightly clustered (less variable)

parameter values than IWA; specifically, compared to controls, among IWA there are

more individuals with slow parsing times, high noise, and low spreading activation. We

find that (i) individual IWA show differential amounts of deficit along the three

dimensions of slowed processing, intermittent deficiency, and resource reduction, (ii)

overall, there is evidence for all three sources of deficit playing a role, and (iii) IWA

have a more variable range of parameter values than controls. An important implication

is that it may be meaningless to talk about sources of deficit with respect to an abstract

average IWA; the focus should be on the individual’s differential degrees of deficit along

different dimensions, and on understanding the causes of variability in deficit between

participants.

Keywords: Sentence Comprehension; Aphasia; Computational Modeling; Cue-based

Retrieval
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A computational investigation of sources of variability in sentence comprehension

difficulty in aphasia

Introduction

In healthy adults, sentence comprehension has long been argued to be influenced

by individual differences; a commonly assumed source is differences in working memory

capacity (Daneman & Carpenter, 1980; Just & Carpenter, 1992). Other factors such as

age (Caplan & Waters, 2005) and cognitive control (Novick, Trueswell, &

Thompson-Schill, 2005) have also been implicated.

An important question that has not received much attention in the computational

psycholinguistics literature is: what are sources of individual differences in healthy

adults versus impaired populations, such as individuals with aphasia (IWA)?

It is well known that individuals with aphasia often experience difficulties in

comprehending sentences. These difficulties are mainly observable as lower accuracy

scores in comprehension tasks such as sentence-picture matching, in which a picture

must be selected in accordance with the meaning of a sentence, or in

object-manipulation task, in which the meaning of a sentence must be reenacted with

figurines (see literature review in Patil, Hanne, Burchert, De Bleser, & Vasishth, 2016).

Furthermore, eye-tracking during comprehension studies have revealed that IWA exhibit

slower overall processing times (Hanne, Sekerina, Vasishth, Burchert, & Bleser, 2011).

Two factors that are known to affect performance in sentence comprehension tasks

(such as sentence-picture-matching, see Hanne et al., 2011) are canonicity (i.e., word

order), and reversibility of thematic roles of animate nouns. Comprehension difficulties

in IWA are selective in nature and particularly pronounced in sentences that are

semantically reversible and have non-canonical word order, for example passives or

object relative clauses. For these sentence structures, response accuracy is often

indistinguishable from guessing (50% accuracy). Such a pattern is referred to as chance

performance. On the other hand, performance for canonical structures (e.g., actives or

subject relative clauses) and irreversible sentences is often within normal range (Hanne

et al., 2011). While chance performance is a typical trait of Broca’s aphasia, it can be
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observed in other aphasia syndromes as well.

Regarding the underlying nature of this deficit in IWA, two primary approaches

have been proposed in the literature: representational vs. processing accounts. Whereas

representational accounts (Grodzinsky, 1995) argue that chance performance is caused

by impaired syntactic representations on which the parser operates, processing accounts

assume an underlying deficit in parsing procedures proper. The exact nature of the

impairment in mechanisms that are employed in parsing operations, however, are still

not clear, and several proposals have been made. In this paper, we focus on processing

accounts of sentence comprehension deficits in IWA and, specifically, evaluate three

influential proposals (for a detailed evaluation of representational accounts, see Patil et

al., 2016):

1. Slowed processing: Burkhardt, Piñango, and Wong (2003) argue that a slowdown

in parsing mechanisms can best explain the processing deficit.

2. Intermittent deficiencies: Caplan, Michaud, and Hufford (2015) suggest that

occasional temporal breakdowns of parsing mechanisms capture the observed

behavior.

3. Resource reduction: A further hypothesis, due to Caplan (2012), is that the deficit

is caused by a reduction in resources related to sentence comprehension.

Computational modeling can help evaluate these different proposals quantitatively.

Specifically, the cue-based retrieval account of Lewis and Vasishth (2005), which was

developed within the ACT-R framework (Anderson et al., 2004), is a computationally

implemented model of unimpaired sentence comprehension that has been used to model

a broad array of empirical phenomena in sentence processing relating to similarity-based

interference effects (Engelmann, Jäger, & Vasishth, 2016; Jäger, Engelmann, &

Vasishth, 2017; Nicenboim & Vasishth, 2018) and the interaction between oculomotor

control and sentence comprehension (Engelmann, Vasishth, Engbert, & Kliegl, 2013).1

1The model can be downloaded in its current form from https://github.com/felixengelmann/act-r-

sentence-parser-em.
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The Lewis and Vasishth model (and its more recent version by Engelmann, 2015)

integrates top-down predictions into bottom-up, word-by-word parsing steps by using a

left-corner parsing algorithm. The model assumes that words are being read on a

(simulated) screen. Simplifying somewhat, the processing cycle consists of the following

stages, which are repeated until there are no more words to process: (1) lexical access

and integration with the current parse, (2) predictive structure building; and (3)

dependency completion (e.g., connecting a grammatical subject and a verb) through a

so-called retrieval process. The Lewis and Vasishth (2005) model is particularly

attractive for studying sentence comprehension because the retrieval process relies on

the general constraints on cognitive processes that have been laid out in the ACT-R

framework. This makes it possible to investigate whether sentence processing could be

seen as being subject to the same general cognitive constraints as any other information

processing task (of course, this does not entail that there are no language-specific

constraints on sentence comprehension). A further advantage of the Lewis and Vasishth

(2005) model in the context of theories of processing deficits in aphasia is that several of

its numerical parameters (which are part of the general ACT-R framework) can be

interpreted as implementing the three proposals mentioned above.

The objective of the present paper is to demonstrate that it is possible to map the

three types of deficits mentioned above to three distinct parameters (described below)

of the ACT-R architecture, and to use, for each individual IWA, the best-fitting values

of these parameters as a means to distinguish between impaired and unimpaired

individuals.

In Patil et al. (2016), the Lewis and Vasishth (2005) architecture was used to

model aphasic sentence processing on a small scale, using data from seven IWA. They

modeled proportions of fixations in a visual world task, response accuracies and

response times for empirical data of a sentence-picture matching experiment by Hanne

et al. (2011). Their goal was to test two of the three hypotheses of sentence

comprehension deficits mentioned above, slowed processing and intermittent deficiency.

Their results revealed the best fit for the model that implemented both of the accounts,
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compared to models that only implemented one. Further, the results lead to the

conclusion that IWA exhibit deficits to differing amounts.

One major limitation of the Patil et al. study was the limited data it was based

on: 7 IWA. In the present work, we provide a proof of concept study that goes beyond

Patil et al. (2016) in two respects: first, we use a much larger data-set from Caplan et

al. (2015) with 56 IWA and 46 matched controls; and second, we evaluate the evidence

for all the three hypotheses mentioned above. In future work, we intend to extend the

data that will be used to evaluate the model.

Before we describe the modeling carried out in the present paper and the data

used for the evaluation, we first introduce the cognitive constraints assumed in the

Lewis and Vasishth (2005) model that are relevant for this work, and show how the

theoretical approaches to the aphasic processing deficit can be implemented using

specific model parameters. Having introduced the essential elements of the model

architecture, we simulate comprehension question-response accuracies for unimpaired

controls and IWA, and then fit the simulated accuracy data to published data (Caplan

et al., 2015) from controls and IWA.

When fitting individual participants, we vary three parameters that map to the

three theoretical proposals mentioned above. The goal is to determine whether the

distributions of optimal parameter values computed for individual participants furnish

any support for any of the three sources of deficits in processing. We expect that if

there is a tendency in one parameter to show non-default values in individual model fits

for IWA, for example slowed processing, then there is support for the claim that slowed

processing is an underlying source of processing difficulty in IWA. Similar predictions

hold for the other two constructs, intermittent deficiency and resource reduction; and

for combinations of the three proposals.

Constraints on sentence comprehension in the model

In this section, we describe some of the constraints assumed in the Lewis and

Vasishth (2005) sentence processing model. Then, we discuss the model parameters that
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can be mapped to the three theoretical proposals for the underlying processing deficit in

IWA.

ACT-R is a computational framework for modeling cognitive processes. Within

this framework, domain-specific models are usually developed that are intended to

explain some specific aspect of cognition; for example, a word-list memorization task.

The Lewis and Vasishth (2005) model is an example of such an implementation, and

aims to spell out the link between general memory constraints and sentence processing.

It is useful for computational evaluations of empirical data because it is possible to

calculate quantitative predictions for sentence comprehension phenomena, in the form

of reading times and response accuracies.

The Lewis and Vasishth model adopts the ACT-R distinction between long-term

declarative memory and procedural knowledge. In the sentence processing context, the

latter is a set of parsing rules. These rules operate on units of information known as

chunks to build syntactic structure. Chunks are elements in declarative memory that

are defined in terms of feature-value specifications, much as in the syntactic formalism

head-driven phrase structure grammar (Sag, Wasow, Bender, & Sag, 1999). In the

context of sentence comprehension, both single words and syntactic subtrees, such as

verb phrases, are chunks in memory. As an example of a chunk, a noun like book could

be stored as a feature-value matrix that states that the part-of-speech is nominal,

number is singular, and animacy status is inanimate:


pos nominal

number sing

animate no


Each chunk is associated an activation, a numeric value that determines the

probability and latency of access from declarative memory. Accessing chunks in

declarative memory happens via a cue-based retrieval mechanism that is specified in

ACT-R. For example, when we read a sentence like The book is a good read, at the

auxiliary verb is, a dependency must be built between book and is in order to arrive at

the meaning of the sentence. In the Lewis and Vasishth model, this dependency is built
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by a parsing rule triggering an access at the auxiliary for a noun that has certain

features. The lexical specification of the auxiliary verb demands that the subject have

the following feature specification: {part-of-speech nominal, number singular, and

animate no}. These retrieval cues are used to search for and access the relevant chunk

in memory. Retrieval only succeeds if the activation of a to-be-retrieved chunk is above

a minimum threshold, which is a parameter in ACT-R. If retrieval fails, we say that

there was a retrieval failure.

The retrieval of a chunk described above depends on its activation level, which is

determined by several constraints; we discuss a subset of these next. Let C be the set of

all chunks in declarative memory. The total activation of a chunk i ∈ C equals

Ai = Bi + Si + ε, (1)

where Bi is the base-level or resting-state activation of the chunk i; the second

summand Si represents the spreading activation that a chunk i receives during a

particular retrieval event; and ε is noise that is logistically distributed, approximating a

normal distribution, with mean 0 and standard deviation ANS; the noise term is

generated at each new retrieval request. The time it takes for a chunk i to be retrieved

Ti depends on its activation Ai via Ti = F exp(−Ai), where F is a scaling constant

which we kept constant at 0.2 here.

The parameter ANS of the logistic distribution from which ε is generated can be

interpreted as implementing the intermittent deficiency hypothesis, because higher

values of ANS will tend to lead to more fluctuations in activation of a chunk and

therefore higher rates of unsuccessful retrievals.2 Increasing ANS leads to a larger

influence of random fluctuation in activation on a chunk’s activation, which represents

the core idea of intermittent deficiency: that there is not a constantly present damage

to the processing system, but rather that the deficit occasionally interferes with parsing,
2Note that Patil et al. (2016) implemented intermittent deficiency using another source of noise in

the model which affects not activation levels but rather the odds of a processing operation being chosen.

In future work, we will compare the relative change in quality of fit when intermittent deficiency is

implemented in this way.
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leading to more errors.

The second summand in (1) represents the process of spreading activation within

the ACT-R framework. For a given chunk i to be retrieved, and given retrieval cues

j ∈ {1, . . . , J}, the amount of activation spread to the chunk i as a function of the

retrieval cues is quantified by computing:

Si =
J∑

j=1
WjSji. (2)

The weighting term Wj is assumed by default to be GA
J
, where GA is an ACT-R

parameter3 and Sji is a value that reflects the strength of association between the

retrieval cue j and the chunk i. To give a simplified example of what spreading

activation does, assume that two chunks i1 and i2 are in memory, and there are two

retrieval cues c1 and c2 that are being used to search for a chunk. Chunk i1 matches

fully with the two retrieval cues, and chunk i2 matches with only one of the retrieval

cues, say c2. Suppose also that the strength of association Sji between a retrieval cue j

and a chunk i is 1 if the retrieval cue matches a feature on the chunk, and 0 otherwise.

Assume that GA is 1. Then, the activation spread to item i1 as a function of the two

retrieval cues is:

Si1 = W1S11 +W2S21 = 1/2× 1 + 1/2× 1 = 1 (3)

and the activation spread to item i2 is:

Si2 = W1S12 +W2S22 = 1/2× 1 + 1/2× 0 = 1/2 (4)

More activation is spread to chunk i1 than to chunk i2 due to a full match with the

retrieval cues. Now consider the case where GA = 2. Now, Si1 = 2/2× 1 + 2/2× 1 = 2

and Si2 = 2/2× 1 + 2/2× 0 = 1. Thus, with a higher GA value, more activation is

spread to a chunk in memory when it matches the retrieval cues.

The parameter GA therefore determines the total amount of activation increase in

a chunk as a function of the number of retrieval cues it matches. It is a free parameter
3GA stands for goal activation in ACT-R, for reasons that are not relevant here.
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in ACT-R. This parameter has already been used to model individual differences in

working memory capacity (see, for example, Daily, Lovett, & Reder, 2001 and

Engelmann, 2015). The lower the GA value, the lower the increase in activation of the

chunk i due to a match with the retrieval cues. Low GA values thus model low working

memory capacity: when an item needs to be retrieved from memory using certain

retrieval cues, the probability of successful retrieval will go down if GA is lower.

Similarly, higher GA values model higher working memory capacity. Thus, it can be

seen as one way (although by no means the only way) to implement the resource

reduction hypothesis.

Finally, the hypothesis of slowed processing can be mapped to the default action

time (DAT) parameter in ACT-R. This defines the constant amount of time it takes a

selected parsing rule to “fire”, i.e., to start the actions specified in the action part of the

rule. Higher values would lead to a greater delay in firing of parsing rules. Due to the

longer decay in this case, retrieval may be slower and more failed retrieval attempts

may occur.

In the following section, we evaluate the model’s performance on the empirical

data for IWA and unimpaired individuals, implementing the three theoretical claims by

varying the three parameters described above.

Simulations

In this section we describe our modeling method and the procedure we use for

fitting the model results to the empirical data from Caplan et al. (2015).

Materials

We used the data from 56 IWA and 46 matched controls published in Caplan et

al. (2015). In this data-set, participants listened to recordings of sentences presented

word-by-word; they paced themselves through the sentence, providing self-paced

listening data. Participants processed 20 examples of 11 spoken sentence types and

indicated which of two pictures corresponded to the meaning of each sentence. This

yielded accuracy data for each sentence type.
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Out of the 11 sentence types, we chose the subject/object relative clause contrast

for the current simulation: subject relatives (The woman who hugged the girl washed the

boy) represent the arguments of the sentence (woman, girl) in canonical order, whereas

in object relatives (The woman who the girl hugged washed the boy), they occur in

non-canonical order. We chose relative clauses for two reasons. First, relative clauses

have been very well-studied in psycholinguistics and serve as a typical example where

processing difficulty is (arguably) experienced due to deviations in canonical word

ordering (Just & Carpenter, 1992). Second, the Lewis and Vasishth model already has

productions defined for these constructions, so the relative clause data serve as a good

test of the model as it currently stands.

Parameter estimation

We used grid search to find the best fitting parameters. We refer to the parameter

space Πi as the set of all vectors (GA,DAT,ANS) with GA, DAT, ANS ∈ R. For

computational convenience, we chose a discretisation of Π by defining a step-width and

lower and upper boundaries for each parameter. In this discretised space Π′, we chose

GA ∈ {0.2, 0.3, . . . , 1.1}, DAT ∈ {0.05, 0.06, . . . , 0.1}, and ANS ∈ {0.15, 0.2, . . . , 0.45}.4

Π′ could be visualised as a three-dimensional grid of 420 dots, which are the elements

p′ ∈ Π′.

The default parameter values were included in Π′. This means that models that

vary only one or two of the three parameters were included in the simulations.

For all participants in the Caplan et al. data-set, we calculated comprehension

question response accuracies, averaged over all items of the subject / object relative

clause condition. For each p′ ∈ Π′, we ran the model for 1000 iterations for the subject

and object relative tasks. From the model output, we determined whether the model

made the correct attachment in each iteration, i.e., whether the correct noun was

selected as subject of the embedded verb, and we calculated the accuracy in a

simulation for a given parameter p′ ∈ Π′ as the proportion of iterations where the model
4The standard settings in the Lewis and Vasishth (2005) model are GA = 1, DAT =

0.05 (or 50 ms), and ANS = 0.15.
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made the correct attachment. We counted a parsing failure, where the model did not

create the target dependency, as an incorrect response.

The problem of finding the best fit for each subject can be phrased as follows: for

all subjects, find the parameter vector that minimises the absolute distance between the

model accuracy for that parameter vector and each subject’s accuracy. Because there

might not always be a unique p′ that solves this problem, the solution can be a set of

parameter vectors. If for any one participant multiple optimal parameters were

calculated, we averaged each parameter value to obtain a unique parameter vector. This

transforms the parameter estimates from the discretised space Π′ to the original

parameter space Π.

Results
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Figure 1 . Marginal distributions of each of the three parameters for subject relatives in

controls (solid lines) vs. IWA (dotted lines). The vertical line shows the default setting

for the respective parameter.

In this section we presents the results of the simulations and the fit to the data.

First, we describe the general pattern of results reflected by the distribution of

non-default parameter estimates per subject. Following that, we test whether tighter

clustering occurs in controls.

Distribution of parameter value estimates. Table 1 shows the number of

participants for which a non-default parameter value was predicted. We refer to the
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Figure 2 . Marginal distributions of each of the three parameters for object relatives in

controls (solid lines) vs. IWA (dotted lines). The vertical line shows the default setting

for the respective parameter.

values GA = 1, DAT = 0.05 (or 50 ms), and ANS = 0.15 as the default values, as set in

the ACT-R architecture. It is clear that, as expected, the number of subjects with

non-default parameter values is always larger for IWA vs. controls, but controls show

non-default values unexpectedly often. In controls, the main difference between subject

and object relatives is a clear increase in elevated noise values in object relatives.

For IWA in subject relatives, the single-parameter models are very similar,

whereas in simple object relatives, most IWA (95%) exhibit elevated noise values, while

a far smaller proportion (71%) showed reduced goal activation values.

Figures 1 and 2 illustrate the smoothed marginal distributions of parameter value

estimates, for subject and object relative clauses, respectively. Most importantly, it is

visible in both subject and object relatives that the distributions of controls’ estimates

have their point of highest density around the default value of the respective parameter.

Deviations from this observation are mainly visible in the distributions for object

relatives, where a second peak further away from the default is visible for each

parameter. Distributions for IWA, on the other hand, are much flatter, and most

density is concentrated relatively far away from the default parameter setting. This

situation is exacerbated in object relatives compared to subject relatives.

Overall, most IWA exhibit non-default parameter settings ANS and DAT, and to
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GA DAT ANS GA & DAT GA & ANS DAT & ANS GA & DAT & ANS

SR control 19 24 18 18 11 16 10

IWA 38 41 42 32 33 36 27

OR control 21 26 36 21 20 25 20

IWA 40 48 53 38 40 48 38
Table 1

The number of participants in subject / object relatives (SR/OR) for which

non-default parameter values were predicted, in the subject vs. object relative tasks,

respectively; for goal activation (GA), default action time (DAT) and noise (ANS)

parameters.

a lesser extent in GA. Table 1 shows further that the only combined model (i.e., the

model that varied two or more parameters instead of keeping the other two at their

default value) that matches the single variation model for DAT or ANS is the one

combining DAT and ANS. We suspect that the lower number of IWA for which

non-default GA values were estimated are due to GA and ANS eliciting similar model

behavior. We address this point in the discussion below.

Cluster analysis. In order to investigate the predicted clustering of parameter

estimates, we performed a cluster analysis on the data too see to which degree controls

and IWA could be discriminated. If our prediction is correct that, compared to IWA,

clustering is tighter in controls, we expect that a higher proportion of the data should

be correctly assigned to one of two clusters, one corresponding to controls, the other one

corresponding to IWA. We chose hierarchical clustering to test this prediction

(Friedman, Hastie, & Tibshirani, 2001).

We combined the data for subject and object relatives into one respective data set.

We calculated the dendrogram and cut the tree at 2, because we are only looking for the

discrimination between controls and IWA. The results of this are shown in Table 2. The

clustering is able to identify controls better than IWA, but the identification of IWA is

better than chance (50%). Discriminative ability might improve if all 11 constructions

in Caplan et al. (2015) were to be used; this will be investigated in future work.
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Subject relatives Object relatives

predicted group controls IWA controls IWA

control 34 21 42 24

IWA 12 35 4 32

accuracy 74% 63% 91% 57%
Table 2

Discrimination ability of hierarchical clustering on the combined data for subject /

object relatives. Numbers in bold show the number of correctly clustered data points.

The bottom row shows the percentage accuracy.

Discussion

The simulations and cluster analysis above demonstrate overall tighter clustering

in parameter estimates for controls, and more variance in IWA. This is evident from the

clustering results in Table 2. These findings are consistent with the predictions of the

small-scale study in Patil et al. (2016). However, there is considerable variability even

in the parameter estimates for controls, more than expected based on the results of

Patil et al..

The distribution of non-default parameter estimates (see Figures 1, 2 and Table 1)

suggest that all three hypotheses are possible explanations for the patterns in our

simulation results: compared to controls, estimates for IWA tend to include higher

default action times and activation noise scales, and lower goal activation. These effects

generally appear to be more pronounced in object relatives vs. subject relatives. This

means that all the three hypotheses can be considered viable candidate explanations.

Overall, more IWA than controls display non-default parameter settings. Although there

is evidence that many IWA are affected by all three impairments in our implementation,

there are also many patients that show only one or two non-default parameter values.

Again, this is more the case in object relatives than in subject relatives.

In general, there is evidence that all three deficits are plausible to some degree.

However, IWA differ in the degree of the deficits, and they have a broader range of



COMPUTATIONAL INVESTIGATION OF APHASIA 16

parameter values than controls. Nevertheless, even the controls show a broad range of

differences in parameter values, and even though these are not as variable as IWA, this

suggests that some of the unimpaired controls can be seen as showing slowed

processing, intermittent deficiencies, and resource reduction to some degree.

There are several problems with the current modeling method. First, using the

ACT-R framework with its multiple free parameters has the risk of overfitting. We plan

to address this problem in three ways in future research: (1) Testing more constructions

from the Caplan et al. (2015) data-set might show whether the current estimates are

unique to this kind of construction, or if they are generalisable. (2) We plan to create a

new data-set analogous to Caplan’s, using German as the test language. Once the

English data-set has been analysed and the conclusions about the different candidate

hypotheses have been tested on English, a crucial test of the conclusions will be

cross-linguistic generalisability. (3) A systematic model comparison method such as

k-fold cross-validation might serve as a means to formally compare the implementations

of the theoretical claims of aphasic sentence processing.

Second, the use of accuracies as modeling measure has some drawbacks.

Informally, in an accuracy value there is less information encoded than in, for example,

reading or listening times. In future work, we aim to implement an approach modeling

both accuracies and listening times (Nicenboim & Vasishth, 2018). Also, counting each

parsing failure as ‘wrong’ might yield overly conservative accuracy values for the model;

this can be addressed by assigning a random component into the calculation. This

reflects more closely a participant who guesses if he/she did not fully comprehend the

sentence.

Third, related to the overfitting problem addressed above, at least two of the

varied parameters – goal activation and activation noise – lead to similar effects when

manipulated in the way described here. More specifically, the decision to use the ANS

parameter makes the assumption that the high noise levels for IWA influence all

declarative memory retrieval processes, and thus the whole memory, not only the

production system. Similarly, assuming lower GA values for IWA amounts to assuming
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generally lower working memory capacity in those participants, not specifically lower

verbal working memory. Both parameters lead to a higher rate of retrieval failures.

Because of this, it will be worth investigating in future work whether other sources of

noise in the ACT-R framework may be a better way to model intermittent deficiencies

(see Patil et al., 2016 for an example).

Lastly, simulating the subject vs. object relative tasks separately yields the

undesirable interpretation of participants’ parameters varying across sentence types.

While this is not totally implausible, estimating only one set of parameters for all

sentence types would reduce the necessity of making additional theoretical assumptions

on the underlying mechanisms, and allows for easier comparisons between different

syntactic constructions. We plan to do this in future work.

Although our method, as a proof of concept, showed that all three hypotheses are

supported to some degree, it is worth investigating more thoroughly how different

ACT-R mechanisms are influenced by changes in the three varied parameters in the

present work. Implementing more of the constructions from Caplan et al. (2015) will,

for example, enable us to explore how the different hypotheses interact with each other

in our implementation.

One possible way to delve deeper into identifying the sources of individual

variability in IWA could be to investigate whether sub-clusters show up within the IWA

parameter estimates. For example, different IWA being grouped together by high noise

values could be interpreted as these patients sharing a common source of their sentence

processing deficit (in this hypothetical case, our implementation of intermittent

deficiencies). We will address this question once we have simulated data for more

constructions of the Caplan et al. (2015) data-set.

Concluding remarks

We evaluated three well-known verbally stated hypotheses about causes of deficits

in sentence comprehension in aphasia: slowed processing, intermittent deficiency, and

resource reduction. We implemented these hypotheses within a computational model of
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sentence processing, the Lewis and Vasishth (2005) model of cue-based retrieval. The

three hypotheses can be implemented by changing the default values of three different

parameter values within the Lewis and Vasishth model. Using a large data-set from

IWA and unimpaired controls, we estimated the optimal values for each of these

parameters for each individual separately. We found that, compared to controls, IWA

have more variable optimal parameter values than controls, and that IWA show

differential degrees of deficit, where a deficit is considered to exist if an optimal

parameter value for an individual deviates from the default value of the parameter.

Thus, all three hypotheses about deficits in sentence comprehension may be viable

explanations of processing difficulty; however, for each individual, the degree of

impairment along each of these dimensions of slowed processing, intermittent deficiency,

and resource reduction is likely to differ. An important implication is that it is not

meaningful to state hypotheses about deficits in IWA in terms of average behavior:

multiple causes of deficit may exist in any one individual, and the degree of deficit along

each dimension in each individual may differ. Understanding deficits in IWA requires

shifting the focus toward understanding the nature of the variability between

individuals.
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