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This is the first attempt at characterizing reading difficulty in Hindi using naturally
occurring sentences. We created the Potsdam-Allahabad Hindi Eyetracking Corpus
by recording eye-movement data from 30 participants at the University of Allahabad,
India. The target stimuli were 153 sentences selected from the beta version of the
Hindi-Urdu treebank. We find that word- or low-level predictors (syllable length,
unigram and bigram frequency) affect first-pass reading times, regression path dura-
tion, total reading time, and outgoing saccade length. An increase in syllable length
results in longer fixations, and an increase in word unigram and bigram frequency
leads to shorter fixations. Longer syllable length and higher frequency lead to longer
outgoing saccades. We also find that two predictors of sentence comprehension diffi-
culty, integration and storage cost, have an effect on reading difficulty. Integration
cost (Gibson, 2000) was approximated by calculating the distance (in words) between
a dependent and head; and storage cost (Gibson, 2000), which measures difficulty of
maintaining predictions, was estimated by counting the number of predicted heads
at each point in the sentence. We find that integration cost mainly affects outgoing
saccade length, and storage cost affects total reading times and outgoing saccade
length. Thus, word-level predictors have an effect in both early and late measures
of reading time, while predictors of sentence comprehension difficulty tend to affect
later measures. This is, to our knowledge, the first demonstration using eye-tracking
that both integration and storage cost influence reading difficulty.
Keywords: reading, Hindi, eye-tracking, sentence comprehension, inte-
gration cost, storage cost

Introduction

Eyetracking corpora have been widely studied for lan-
guages such as English (Schilling, Rayner, & Chumb-
ley, 1998; Kennedy, 2003) and German (Kliegl, Nuth-
mann, & Engbert, 2006). They have been used to study
not only eye-movement control (Reichle, Rayner, & Pol-
latsek, 2004; Engbert, Nuthmann, Richter, & Kliegl,
2005), but also sentence processing difficulty, specifi-
cally, the predictions of computationally implemented
theories such as surprisal, and working-memory based
accounts (Boston, Hale, Patil, Kliegl, & Vasishth, 2008;
Boston, Hale, Vasishth, & Kliegl, 2011; Demberg &
Keller, 2008). As such, these corpora are interesting
for a wide range of disciplines, encompassing psychol-
ogy, sentence comprehension research in psycholinguis-
tics, and cognitive modeling.

Unfortunately, research on eyetracking corpora in-
volving Asian languages is rare (exceptions are Chinese,

e.g., Yan, Kliegl, Richter, Nuthmann, & Shu, 2010, and
Uighur, Yan et al., 2014). In this paper, we present an
analysis of an eyetracking corpus of Hindi that we have
developed, the Potsdam-Allahabad Hindi Eyetracking
Corpus. Our focus in this paper is on predictors of lan-
guage processing difficulty as indexed by fixation-based
measures.

Hindi is a language spoken primarily in India.
It is difficult to estimate the number of speakers
worldwide; one estimate is 180-258 million speakers
(http://en.wikipedia.org/wiki/Hindi). Hindi belongs to
the Indo-European family and is head-final; i.e., the de-
fault word order is subject-object-verb. It is character-
ized by relatively free word order and overt case-marking
using postpositions.

The Hindi sentences used in the study have several at-
tractive properties: the sentences used in the corpus are
taken from the beta version of the Hindi-Urdu treebank
(Bhatt et al., 2009), and are therefore already anno-
tated for syntactic structure and part-of-speech. This
allows us to compute several low-level (lexical-level)
and high-level (sentence-level) predictors of reading dif-
ficulty. The corpus can therefore serve as a basis for
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investigating theories of eye-movement control and the-
ories of sentence comprehension. It is intended to add
to the existing large-scale naturalistic data-sets that are
available for investigating theories of reading difficulty.

Our study represents a first attempt at characterizing
reading difficulty in Hindi in naturally occurring sen-
tences. We begin by explaining how the Hindi script
(Devanagari) is structured; understanding the details of
the script is important for the various word-level predic-
tors we discuss. Then, we describe the various predic-
tors of reading difficulty that were computed from the
Hindi Treebank. We then provide statistical analyses
using various reading time measures and outgoing sac-
cade length as a dependent variable. In particular, the
effect of the following predictors on reading difficulty
is investigated: graphemic complexity, syllable length,
unigram and bigram frequency, integration and storage
cost.

Devanagari: The Hindi script

Hindi is written in the Devanagari script which has 13
vowels and 33 consonants, in addition, there are three
consonant clusters with special symbols (Kachru, 2006).
Vowels take different forms when they occur indepen-
dently (eg. आ /a/) and when they appear with a con-
sonant (eg. m + a = म + ◌ा → मा /ma/). Conjunct
consonants can sometime appear with a reduced form
(eg. /s/ + /[th@/ = स् + थ → स्थ) or sometimes can
take a different form (eg. /t/ + /r@/ = त् + र → तर्). A
consonant character in Devanagari appears by default
with a schwa sound /@/ (eg. र /r@/). For more details
see Kachru (2006),Wikipedia (2014).

Devanagari is read from left to right; words and case-
marking morphemes are separated by spaces, and there
is no upper- and lower-case distinction. Each word-unit
that is separated by spaces usually has a horizontal
line spanning the characters. Sentence-final full-stops
are written as a vertical line, but standard punctuation
markers such as commas are also used.

An interesting feature of Hindi orthography is that
the linear position of a grapheme in the text does not
always correspond to the order in which the graphemes
are pronounced. For example, vowels can be written as
diacritic symbols below or above a consonant but pro-
nounced after the consonant; and short vowels can occur
before a consonant even though they are pronounced
after the consonant. In all such instances, when this
asymmetry between writing order and pronunciation or-
der occurs, it is possible that the difficulty in reading
increases. Vaid and Gupta (2002) have investigated
this issue, and found some evidence that mismatches
between orthography and pronunciation impact reading
of isolated words.

Method and Materials
Participants

Thirty graduate and undergraduate students of the
University of Allahabad participated in the experiment
for payment. All of them had had an Urdu medium
education until at least high school and described them-
selves as fluent in reading both the Perso-Arabic script
used for Urdu as well as the Devanagari script used for
Hindi.

As noted above, the experiment was conducted in
an urban (university) setting. Mono-lingual readers in
India are rare (especially in an urban areas). Most
educated individuals have considerable familiarity with
more than one script. For example, English is taught in
almost all schools (except remote areas where illiteracy
is also an issue). Therefore familiarity with Latin script
is common. Similarly, all college-going individuals have
good command over the Latin script, as the medium of
higher education in India is often English. The speakers
who participated in this study could read Hindi (in De-
vanagari script) and Urdu (in Perso-Arabic script). In
the part of India where this experiment was conducted,
exposure to Devanagari script happens quite early in
schooling as Hindi is a compulsory subject from pre-
school until at least pre-college education. This holds
true irrespective of whether the medium of instruction
is Hindi, Urdu or English. In addition, individuals often
need to know Hindi in order to negotiate their day-to-
day activities; this is because road signs, advertisements,
shop signs, etc., are often in Hindi. To summarize, in
a setting where this experiment was conducted, mono-
lingual readers are rare and finding such individuals is
very difficult. We decided to make a virtue out of this
difficulty by systematizing the collection of data in the
two languages that readers were likely to be familiar
with in that particular part of India (Allahabad). We
do not report the Urdu data here as it would make the
paper too complex. We plan to discuss the Urdu data
in a separate paper.

Equipment
The experiment was conducted using the SMI iView

X HED eyetracker with 500Hz sample rate. The sub-
ject was seated 50cm from the stimulus screen. Sentence
were shown at the centre of the screen in a single line.
The monitor used to display was Acer 19” LED with
a 1600× 900 screen resolution. The refresh rate of the
monitor was 60Hz. Hindi text was displayed using the
Mangal true-type 17 point font1. On average approxi-
mately 1.8 syllables2 subtend 1◦ of visual angle in this
experimental setup.

Materials
A subset of the Hindi-Urdu treebank data (Bhatt et

al., 2009) which has 400,000 words was used to get the
1 This proportional font type used in the experiment is

supplied by Microsoft and therefore is quite extensively used.
2 A consonant-vowel combination is considered a syllable.

On average 1.6 characters form a syllable in the data. See
section on ’syllable length’ for more details.
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experimental sentences. We transcribed the Hindi data
using the Perso-Arabic script to get the Urdu sentences.
This gave us identical text in two different scripts for
the two languages. This provided us an opportunity
to study reading processes in both languages using our
bilingual subject pool. As noted earlier, while Hindi is
written in the Devanagari script, Urdu is written in the
Perso-Arabic script. Structurally Hindi and Urdu are
almost identical; however some differences exist in the
lexicon. Hindi/Urdu spoken colloquially have a shared
vocabulary as well. Since Hindi treebank text had some
Sanskritized words, which participants may not be fa-
miliar with, these were substituted with more colloquial
alternatives. We used 153 sentences (2610 words) for
each language (Hindi and Urdu), and additionally four
sentences were used as practice sentences. We avoided
using sentences that had a political bent. The target
sentences that were chosen were about topics such as
movies, entertainment, and sports. The target sen-
tences chosen were not isolated sentences, but formed
short narratives consisting of several sentences. Each
sentence from a narrative was presented separately on
a screen, and the end of a narrative was signaled by a
blank screen.

Procedure
Participants were required to read identical texts

in Hindi (Devanagari) script and Urdu (Perso-Arabic)
script. Since the content of the two scripts was identical,
the experiment was conducted in two blocks over two
days. The order of presentation was pseudo-randomized
such that participants were exposed to one of eight com-
binations of these two factors. Table 1 shows all the
groups. Each participant was randomly assigned to one
of these groups. For example, in Group 1, the first part
of Hindi text (74 sentences) was read in the first block
of the first session, then after an interval of 5 minutes,
the second part of the Urdu text (79 sentences) was
read in the second block. In order to reduce the effect
of familiarity, participants read the remaining sentences
of each language after a few days. The reading task on
the second day also consisted of two blocks. The average
gap between the two sessions was 5.7 days. One concern
with such a setup could be that the text read in the sec-
ond session will be influenced by the text read in the
first session. We therefore report the results by using
session id as a factor in the final analysis to determine
whether this had an effect; all interactions with session
were also investigated.

The experiment started with the experimenter orally
briefing the participant as regards the task. This was
followed by subject reading written instructions on the
computer screen. Following this, a 13-point calibration
was performed. The experiment started with four prac-
tice sentences, following which the experimental sen-
tences were presented. A trial started with the presen-
tation of a gaze-correction point on the centre left of the

Table 1
Experiment session groups.
Group Session 1 Session 2

Block 1 Block 2 Block 1 Block 2
Group 1 H1 U2 U1 H2
Group 2 U1 H2 H1 U2
Group 3 H2 U1 U2 H1
Group 4 U2 H1 H2 U1
Group 5 H1 U2 H2 U1
Group 6 U1 H2 U2 H1
Group 7 H2 U1 H1 U2
Group 8 U2 H1 U1 H2

Notes: H and U stand for Hindi and Urdu respectively.
H1 and U1 comprised of 74 sentences, while H2 and
U2 had 79 sentences.

screen. Fixating on this point briefly led to the presen-
tation of the sentences. After reading the sentence, the
participant looked at a small dot on the bottom-right of
the screen and pressed the left-button of a mouse. Re-
calibration was done after every 15 sentences or if the
fixation on the gaze-correction point didn’t trigger the
sentence presentation. A blank screen was presented to
signal the end of a narrative.

Comprehension questions were not asked due to time
constraints. Although participants were instructed to
read the sentences carefully so that they understand its
meaning, it is quite possible that they did not do so
while reading a sentence. However, the results show
that the participants were indeed attending to the sen-
tences carefully. Further evidence comes from the re-
sults that are consistent with reading patterns in other
languages. For example, the effect of word (syllable)
length and word frequency is consistent with previous
literature. In addition to this, we see a significant effect
of sentence-level processing factors such as storage cost
and distance cost; this suggest active involvement of the
subjects during the reading process.

Computing word and sentence level predictors
We computed several measures of processing diffi-

culty for this corpus. It is well-known in the eye-
movement research literature that word length, and un-
igram and bigram frequency are predictors of reading
difficulty (Rayner, 1998; McDonald & Shillcock, 2003;
Kliegl et al., 2006). In addition, due to the special
properties of Devanagari characters, we also developed
a metric for graphemic complexity. We also computed
a metric for sentence comprehension difficulty based on
the work of Gibson (2000); distance cost and storage
cost. Together, these predictors can be seen as repre-
sentative of so-called low-level and high-level predictors
of processing difficulty (Boston et al., 2008, 2011; Dem-
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berg & Keller, 2008). Table 2 shows a summary of the
distributions of the predictors.

A metric for word complexity. In the appendix we
present a first attempt at quantifying the complexity
cost of Hindi characters. The work by Vaid and Gupta
(2002) on the effect of character complexity on read-
ing served as a guide when developing this metric. In
essence, our metric defines a linear penalty metric for
mismatches in character order and pronunciation order:
(a) if a vowel diacritic appears to the left of the conso-
nant but is pronounced after the consonant, the cost is
1; (b) if a diacritic appears above or below a consonant,
the cost is 0.5, (c) if a consonant appears in a consonant
cluster, i.e. without its inherent vowel, the cost is 0.5,
and (d) ligatures get a cost of 1. The assumption here
is that violation of character order (relative to pronun-
ciation order) should get the maximum penalty because
that seems to be the cause of greatest complexity (Vaid
& Gupta, 2002); diacritics and consonants without vow-
els do not violate order as such, but they do require
more processing effort than the cases where character
order matches pronunciation order perfectly. Under this
metric, the mean word complexity in the Hindi text was
0.46 (minimum: 0, maximum: 5.5). We also experi-
mented with a metric that penalizes all deviations from
the simplest case equally; the results were comparable
to the one reported using the metric described above.

Syllable length. The syllable boundary is used for
computing word length, in particular, a consonant-vowel
combination is considered a single unit. For example,
िमल /mIl/ has a syllable length of 2 = 1 (िम) + 1 (ल).
In case of ligatures leading to complex forms or for
composite character, the entire combination is consid-
ered as a single unit, for example, the syllable length
of कािनर्वाल /kArnIval/ will be 4 = 1 (का) + 1 (िनर्) + 1
(वा) + 1 (ल). Likewise, the syllable length of पर्धानमतंर्ी
/pr@dhanm@ntri/ will be 5 = 1 (पर्) + 1 (धा) + 1 (न)
+ 1 (म)ं + 1 (तर्ी). This criterion for segmentation is
also influenced by practical concerns of the eyetracking
paradigm. It would be difficult to ascertain the gaze
position accurately at the level of the individual char-
acter especially in cases such as discussed above. The
mean syllable length in the experimental items was 2.2
(minimum: 1, maximum: 10).

Unlike character-based scripts such as Latin, in De-
vanagari, a consonant or a vowel need not take constant
space. In addition, as stated above the characters com-
bine to form ligatures; they also appear as diacritics
above or below another character. Given these prop-
erties, we found it reasonable to compute word length
based on syllable count. We also computed the stan-
dard definition of computing word length, i.e., counting
the number of consonants and vowels in a word. Word
length computed using this standard definition is cor-
related (.60) with graphemic complexity. The results
obtained using this definition were similar to the one

obtained using the syllable-based word length.

Frequency (unigram and bigram). The unigram and
the bigram frequencies were computed using the beta
version of the Hindi-Urdu treebank data (Bhatt et al.,
2009), which has 400,000 words.

The mean token frequency was 3837 (minimum: 1,
maximum: 19420); while mean type frequency was 6915
(minimum: 1, maximum: 25350). The mean bigram
frequency (token) was 177.8 (minimum: 1, maximum:
6561); while mean bigram frequency (type) was 302.3
(minimum: 1, maximum: 8730). Since token and type
frequencies are highly correlated (cf. Table 3), we only
use token frequencies as predictors in the analysis.

Distance cost. Integration cost is a processing metric
proposed by Gibson (2000) as part of a more general
Dependency Locality Theory (DLT). It intends to cap-
ture the retrieval cost of a dependent at its integration
site (also see Lewis & Vasishth, 2005); in other words,
the integration cost metric aims to characterize the on-
line processing cost of completing the dependency link
between an already seen/heard word and co-dependent
being currently processed. Some examples are subject-
verb dependencies, and antecedent-reflexive dependen-
cies. We computed an approximation of integration
cost: the distance in words between two co-dependents.
For example (1), the distance cost at ‘narrated’ would
be 8 = 5 (for दीिपका) (ne, Abhay, ko, ek, kahaanii), and
3 (for अभय) (ko, ek, kahaanii). The distance cost was
calculated manually; we did not compute dependencies
using a dependency grammar representation because we
wanted to ensure that there was no loss of accuracy.

(1) a. दीिपका ने
Deepika ERG

अभय को
Abhay DAT

एक कहानी
a story

सुनाई
narrated
‘Deepika narrated a story to Abhay.’

The mean distance cost was 1.15 (minimum: 0, maxi-
mum: 66, mean 1.3, sd 4.7). The distribution of distance
scores is well-modeled by an exponential distribution
with rate 0.77.

Storage cost. While integration cost is intended to
characterize the cost of completing a dependency, stor-
age cost was proposed by Gibson (2000) to character-
ize the processing load incurred as a result of maintain-
ing predictions of upcoming heads. In example (1), the
storage cost at the verbal arguments (दीिपका, अभय and
कहानी) would be 1, while the storage cost at the verb is
0. The mean storage cost was 1.01 (minimum: 0, max-
imum: 3). Storage cost was also computed by hand.

The correlations between the predictors are shown
in Table 3. As expected, syllable length and frequency
are negatively correlated (−0.63), word frequency and
bigram frequency have correlation 0.36. Distance cost
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Table 2
Minimum, first quartile, median, mean, third quartile and maximum values of all the predictors.

Minimum First quartile Median Mean Third quartile Maximum
syll len 1 1 2 2.2 3 10

word complex 0 0 0.5 0.4 1 5.5
word freq 1 27 395 3837 5500 19420

word bifreq 1 1 3 179.3 25 6561
IC 0 0 0 1.1 0 66
SC 0 1 1 1 1 3

Notes: The abbreviations have the following meaning: syll len: syllable length; word complex: word complexity;
word freq: word unigram frequency; word bifreq: word bigram frequency; IC: integration cost; SC: storage cost.

and storage cost are negatively correlated −0.30; this
is plausible: the longer dependent-head distances would
occur in cases where most of the heads have already
been seen.

Results

Statistical analyses
All analyses for fixation measures were carried out

with Bayesian linear mixed models using Stan, ver-
sion 2.5 (Stan Development Team, 2014). We fit full
variance-covariance matrices for the subject- and item-
level main effects and interactions, including correlation
estimates (i.e., we fit two 14× 14 variance-covariance
matrices for subject and item effects, respectively). One
of the advantages of using Bayesian hierarchical mod-
els rather than frequentist ones is that we can directly
compute the posterior probability of the coefficient of
a particular effect being positive or negative given the
data; unlike the frequentist approach, there is no need to
indirectly draw inferences about the effect by appealing
to the questionable procedure of rejecting a null hypoth-
esis and computing a p-value (see, for example, Gelman
(2013)). Another advantage is that we can fit a statis-
tical model that takes into account all possibly relevant
variance components. This currently cannot be done
with the frequentist tools available, because of conver-
gence or estimation failures. Bayesian hierarchical mod-
els do not suffer from this problem because mildly infor-
mative priors are defined over all parameter estimates; if
there is insufficient data to estimate the parameters, the
prior will dominate in determining the posterior distri-
bution, and will ensure that the posterior mean is near
0.

The details of the Bayesian model-fitting proce-
dure are discussed in detail in (Sorensen & Va-
sishth, 2014) and in the R package RePsychLing,
available on github. The source code for the
models fit in the present paper is available from
https://github.com/vasishth/StanJAGSexamples. The
Stan analyses are summarized in the tables below using

means and 95% posterior credible intervals for each co-
efficient. Credible intervals present the bounds within
which we can be 95% certain that the true value of the
parameter lies (given our particular data). We assume
that an effect is present if the 0 value is not within the
95% credible interval.

All predictors were scaled; each predictor vector
(centered around its mean) was divided by its standard
deviation. Saccade and fixation detection was done
using the saccades package developed by von der
Malsburg (https://github.com/tmalsburg/saccades).
Fixation measures were computed using the R package
em2 (Logačev & Vasishth, 2014) (downloadable from
http://cran.r-project.org/src/contrib/Archive/em2/).
We present analyses for one representative first-pass
measure, first-pass reading time, and two representative
measures that often show the effects of sentence
comprehension difficulty, regression-path duration and
total reading time (Clifton, Staub, & Rayner, 2007;
Vasishth, von der Malsburg, & Engelmann, 2012).
First-pass reading time on a word refers to the sum of
the fixation durations on the word after it has been
fixated after an incoming saccade from the left, until the
word is exited to the right. Regression path duration on
a word refers to the sum of the first-pass reading times
and all fixations on preceding words, until the word is
exited to the right. Total reading time is the sum of
all fixations on a word; in other words, it is the sum
of first-pass reading times and re-reading times. Each
word served as a region of interest. All data points
recorded with zero ms for these fixation measure (about
25% of the data) were removed, and the data analysis
was done on log-transformed reading times to achieve
approximate normality of residuals. Most of the zero
ms fixations were due to short words being skipped
entirely; this is quite normal in eyetracking data.

We also computed the length of the outgoing saccade
(in syllables) from each word. This is defined as the
length of a rightward saccade from a given word to a
subsequent word during any pass, first-pass, or a revisit.
The distribution of the saccade lengths can be modeled
as an exponential distribution, with rate 0.36. Minimum
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Table 3
The upper triangular correlation matrix for the predictors.

word complex word freq type freq word bifreq type bifreq word len IC SC
syll len 0.35 -0.63 -0.69 -0.20 -0.23 0.85 0.02 0.08

word complex -0.19 -0.14 -0.10 -0.14 0.65 -0.03 0.02
word freq 0.84 0.36 0.45 -0.58 -0.12 -0.16
type freq 0.21 0.25 -0.56 -0.08 0.01

word bifreq 0.88 -0.24 -0.06 -0.23
type bifreq -0.27 -0.06 -0.29

word len 0.03 0.08
IC -0.30

Notes: The abbreviations have the following meaning: syll len: syllable length; word complex: word complexity;
word freq: word unigram frequency; type freq: type unigram frequency; word bifreq: word bigram frequency;
type bifreq: type bigram frequency; word len: word length; IC: integration cost; SC: storage cost.

outgoing saccade length was 1 and maximum 60, with
mean 3 and sd 1.7. We used log saccade length as a
dependent variable to investigate whether our predic-
tors could influence saccade length. Although saccade
length is not standardly used in sentence comprehen-
sion research, there is evidence that reduced processing
difficulty could lead to longer outgoing saccade lengths
(eg. Jacobson and Dodwell (1979); Rayner and Pol-
latsek (1989); Rayner, Ashby, Pollatsek, and Reichle
(2004); White and Liversedge (2006); Wei, Li, and Pol-
latsek (2013)). Moreover, it is well known at least since
Rayner (1979) that the length of an outgoing saccade
depends partly on the length of the word fixated next;
this is because the reader attempts to direct the saccade
to the preferred viewing location of the next word. This
preferred viewing position is slightly to the left of the
center of a word. There is of course much more to be
said about constraints on saccade launch and landing;
but since our primary interest is in measures of sentence
comprehension difficulty, we do not discuss these details
any further.

Reading time and outgoing saccade length anal-
ysis

In log first pass reading times, we see effects of sylla-
ble length and bigram frequency in the expected direc-
tions: increase in syllable length leads to slower reading
times, and higher bigram frequency leads to faster read-
ing times. The credible intervals for unigram frequency
include 0, but the posterior probability of the coefficient
for frequency being less than 0 is 0.79. The distance
cost metrics of integration cost and storage also have
credible intervals including 0; the posterior probability
of the IC coefficient being positive is 0.88, and of the
SC coefficient is 0.67. Thus, there is only weak evidence
for distance cost playing a role even in this relatively
early measure of reading difficulty. Finally, although
the credible interval for the effect of session includes

0, the posterior probability of the coefficient for session
being less than 0 is 0.94; in other words, in the second
session, readers tended to read faster. None of the inter-
actions between session and the other factors seem have
a large effect.

In log regression path durations, we see effects of
syllable length and bigram frequency in the expected
directions. The credible intervals for all other predic-
tors include 0. Perhaps surprisingly, the coefficient for
storage cost is negative, with a posterior probability of
the coefficient being negative being 0.91. Thus, in log
regression-path duration, we see faster reading times
with increasing storage cost. We return to this point
in the general discussion.

In log total reading time, we see effects of syllable
length, unigram and bigram frequency, in the expected
directions. In addition, we see an effect of storage cost,
with higher cost leading to longer log total reading time.
There is evidence for a session effect as well, with the
second session leading to faster log reading time. None
of the interactions between session and the other pre-
dictors seem to be relevant.

In log outgoing saccade length, we find effects of syl-
lable length and unigram and bigram frequency. The
effect of syllable length of the current word on log sac-
cade length is consistent with the findings reported by
Rayner (1979). As expected, the length (in syllables)
of the word fixated next also has an effect: the out-
going saccade length is longer if the word fixated next
is longer. This is due to the preferred viewing loca-
tion effect discussed earlier. Regarding the syntactic
distance measures, increasing integration cost leads to
shorter saccade length, and increasing storage cost leads
to longer saccade length. No effect of session seems to
be present, and no interactions between session and the
other predictors appears to have an impact.
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Table 4
The effect of the predictors on log first-pass reading time, regression path duration.

Log first-pass reading time
mean lower upper

Int 5.5019 5.4525 5.5507
sl 0.1142 0.0878 0.1417

comp 0.0002 -0.0100 0.0100
freq -0.0055 -0.0189 0.0078

bifreq -0.0124 -0.0206 -0.0041
IC 0.0068 -0.0047 0.0181
SC 0.0029 -0.0102 0.0156

session -0.0156 -0.0360 0.0049
sl x session -0.0046 -0.0125 0.0031

comp x session 0.0003 -0.0042 0.0049
freq x session 0.0052 -0.0037 0.0145

bigram x session -0.0005 -0.0055 0.0045
IC x session -0.0018 -0.0098 0.0060
SC x session -0.0000 -0.0061 0.0060

Log regression path duration
mean lower upper

Int 5.6540 5.5905 5.7175
sl 0.1238 0.0961 0.1504

comp -0.0005 -0.0143 0.0129
freq -0.0064 -0.0245 0.0117

bifreq -0.0225 -0.0321 -0.0136
IC 0.0129 -0.0021 0.0275
SC -0.0117 -0.0289 0.0052

session -0.0299 -0.0499 -0.0101
sl x session -0.0055 -0.0153 0.0044

comp x session 0.0033 -0.0029 0.0096
freq x session 0.0032 -0.0067 0.0130

bigram x session -0.0020 -0.0080 0.0041
IC x session -0.0082 -0.0189 0.0032
SC x session 0.0006 -0.0077 0.0092

Notes: The columns present the results of the Bayesian hierarchical linear models; we show the estimated mean
effect of each predictor, along with 95% credible intervals. All effects that have intervals excluding 0 are in bold.
Int: intercept; sl: syllable length; comp: word complexity; freq: word unigram frequency; bifreq: word bigram
frequency; IC: integration cost; SC: storage cost; session: session id.

Discussion

To summarize the results, in log first pass reading
times we primarily see stronger effects of “low-level” pre-
dictors than for syntactic-level processing difficulty such
as integration cost; we also see some weak evidence for
a session effect, with the second session showing faster
reading times. In log regression path duration, we see
clear effects of syllable length and frequency, and weak
evidence for faster reading time with increasing storage
cost. Log total reading time shows effects of syllable
length and frequency in the expected directions, with
an effect of storage cost, such that increasing SC results
in longer reading times. Session effects are also seen:
the second session is read faster. Finally, consistent

with previous work on reading, log outgoing saccade
length shows effects of syllable length: longer syllable
length leads to longer log saccade length. Frequency
also shows a clear effect: increasing frequency leads to
longer outgoing saccades. Finally, increased integration
cost leads to shorter saccade length.

The effects of low-level predictors on reading times
are consistent with the findings in the literature on
reading: longer syllable length leads to longer fixa-
tions, and higher frequency leads to shorter fixations.
Perhaps surprisingly, we don’t find a reliable effect of
graphemic complexity on reading difficulty. This is sur-
prising because Vaid and Gupta (2002) did find effects
of graphemic complexity. However, this absence of an
effect may be due to several reasons. First, Vaid and
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Table 5
The effect of the predictors on total reading time, and outgoing saccade length.

Log total reading time
mean lower upper

Int 5.6138 5.5462 5.6799
sl 0.1378 0.1104 0.1657

comp 0.0014 -0.0116 0.0144
freq -0.0193 -0.0366 -0.0016

bifreq -0.0206 -0.0339 -0.0092
IC -0.0023 -0.0154 0.0102
SC 0.0185 0.0035 0.0333

session -0.0287 -0.0504 -0.0068
sl x session -0.0076 -0.0161 0.0008

comp x session 0.0032 -0.0021 0.0084
freq x session 0.0072 -0.0036 0.0183

bigram x session -0.0013 -0.0070 0.0044
IC x session -0.0008 -0.0074 0.0060
SC x session -0.0006 -0.0088 0.0077

Log outgoing saccade length
mean lower upper

Int 0.9254 0.8352 1.0148
sl 0.0732 0.0592 0.0877

targetsl 0.0795 0.0670 0.0922
comp -0.0010 -0.0108 0.0084

freq 0.0349 0.0241 0.0449
bifreq 0.0113 0.0027 0.0198

IC -0.0355 -0.0479 -0.0231
SC 0.0268 0.0156 0.0380

session 0.0208 -0.0005 0.0430
sl x session 0.0022 -0.0037 0.0082

targetsl x session -0.0013 -0.0064 0.0037
comp x session -0.0013 -0.0067 0.0040

freq x session 0.0003 -0.0061 0.0064
bigram x session -0.0002 -0.0053 0.0050

IC x session -0.0017 -0.0065 0.0036
SC x session 0.0008 -0.0041 0.0059

Notes: The columns present the results of the Bayesian hierarchical linear models; we show the estimated mean
effect of each predictor, along with 95% credible intervals. All effects that have intervals excluding 0 are in bold.
Int: intercept; sl: syllable length; targetsl: syllable length of the word fixated after the outgoing saccade; comp:
word complexity; freq: word unigram frequency; bifreq: word bigram frequency; IC: integration cost; SC: storage
cost; session: session id.

Gupta did not test natural reading, but rather presented
isolated words to subjects to read out. It is possible that
in natural reading, readers process complex graphemes
as a unit and are not affected by mismatches between
character order and pronunciation order. A second pos-
sibility is that our graphemic complexity metric may not
characterize the sources of difficulty correctly. A third
possibility is that it may simply be a question of low
statistical power. A larger scale study can clarify this
point.

The effects of increasing word frequency on saccade
length are as expected: increasing frequency (unigram

and bigram) leads to longer outgoing saccades. This
frequency effect is easily explained: higher frequency
translates to greater processing ease, which may allow
the current fixation to process more letters, thereby al-
lowing a saccade to be programmed further to the right
(Rayner et al., 2004), (Wei et al., 2013).

The effects of sentence-level processing difficulty are
discussed next. We see reliable effects of dependency-
head distance (integration cost) in log outgoing saccade
length, but only weak evidence for this complexity met-
ric in the reading time measures. The effect of integra-
tion distance on outgoing saccade length is perhaps not
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surprising: increased distance cost represents greater in-
tegration difficulty, which could lead to shorter outward
saccades due to greater processing load. Storage cost
shows an effect in log total reading times and outgoing
saccade length; increased storage cost leads to longer to-
tal reading times, and longer outgoing saccades. Since
no effect was seen in first-pass reading time, the total
reading time result suggests that the storage cost effect
is driven by re-reading times. In other words, it seems to
be a late-emerging effect. It is difficult to be certain that
storage cost does not have any effect in early measures
such as first-pass reading time; it is possible that we
failed to find a storage effect in these measures due to
the relatively small sample size (30 participants; com-
pare this to the Potsdam Sentence Corpus of Kliegl et al.
(2006), which had over 200 participants). With a larger
sample size, storage cost may well have an effect on
early measures. It is interesting that increased storage
cost leads to longer outgoing saccades. Although spec-
ulative, one possible explanation for this result could
be that increased storage cost encourages the reader to
look further to the right in order to verify whether the
predicted head appears further downstream. This is a
possibility worth investigating in a planned experiment.

General Discussion
This study reveals several interesting facts about

Hindi sentence comprehension difficulty. A new result,
not noticed in previous work on eyetracking corpora
from other languages, is that both integration and stor-
age cost impact reading difficulty, but only when we con-
sider so-called late measures (regression-path duration
and total reading time) and outgoing saccade length;
we did not find strong evidence that the early measure,
first-pass reading time, is affected by these variables.

Integration cost estimates the difficulty with which
co-dependents are integrated while parsing a sentence.
A standard assumption, going back to Just and Carpen-
ter (1992) but more fully worked out by Gibson (2000),
and Lewis and Vasishth (2005), is that the greater the
dependent-head distance, the greater the difficulty in
completing the dependency. The cause for this so-called
locality effect could lie in decay (this is how the Depen-
dency Locality Theory explain this, see Gibson, 2000),
or in interference or some combination of interference
and decay (this is how the cue-based retrieval model
of Lewis & Vasishth, 2005 explains it; also see Lewis,
1996). Whatever the underlying explanation, there is
clear evidence for locality effects in planned experiments
(e.g., Grodner & Gibson, 2005; Bartek, Lewis, Vasishth,
& Smith, 2011). However, there are several important
counterexamples too; examples are the German studies
done by Konieczny (2000), and the experiments involv-
ing Hindi by Vasishth and Lewis (2006). Konieczny sug-
gests a variant of the idea that delaying the appearance
of a head (effectively increasing head-dependent dis-
tance) can facilitate processing if the conditional prob-

ability of the head appearing increases with distance
(Levy, 2008). The Vasishth and Lewis proposal is that
if the intervening material activates the upcoming head,
the dependent-head integration could be facilitated to
the head being reactivated. It has been suggested by
Levy, Fedorenko, and Gibson (2013) that these so-called
anti-locality effects may be restricted to head-final lan-
guages. Our results show that, while that could be cor-
rect, at least in the present Hindi data, when depen-
dency distance is increased, there is some evidence that
processing difficulty generally increases.

The effect of storage cost is also quite interesting.
Storage cost characterizes the effort required to main-
tain predictions of upcoming heads. For example, when
reading a main clause, readers may predict an upcom-
ing verb (a storage cost of 1). If a sentence with an
embedded clause is read, then the reader would predict
two heads (one for the embedded clause, and the other
for the main clause), leading to a storage cost of 2. Al-
though some evidence does exist for storage cost (Chen,
Gibson, & Wolf, 2005), the present work may be the first
eyetracking study using naturally-occurring sentences
that investigates this metric. The evidence in favor of
storage cost has interesting implications for theories of
expectation-based processing. The current view in the
field of sentence processing is that the dominant pre-
dictor of expectation cost is surprisal: the conditional
probability of an upcoming part of speech or word given
the left context (Hale, 2001). Our study shows that, at
least in this head-final language, the number of expected
heads may also play a role. An obvious question this
raises is whether surprisal-based expectation has a larger
effect size than integration- and storage-cost effects. To
answer this question, a probabilistic parser needs to be
developed for Hindi, and the surprisal metric computed.
This would allow us to investigate the relative effect size
of storage vs surprisal cost. We expect to take up this
and other issues in future work.

Conclusions

This is, to our knowledge, the first study of Hindi sen-
tence processing difficulty using an eyetracking corpus
containing naturally occurring text. We show that the
standard so-called “low-level” predictors influence read-
ing time in the expected manner. In addition, we show
that two “high-level” predictors of sentence comprehen-
sion difficulty, integration and storage cost, also affect
reading difficulty. The timing with which low-level and
high-level predictors impact reading difficulty seem to
differ in Hindi: first-pass reading difficulty shows effects
only of low-level predictors, while regression-path du-
ration and total reading time show effects due to both
low- and high-level predictors. Outgoing saccade length
is also affected by low- and high-level predictors.
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Appendix A
Details of the word complexity

metric
1. Vowel diacritic appears to the left of a con-

sonant: The short, unrounded, high front vowel (/i/
इ) when appearing with a consonant is represented as
a diacritic ि◌ and precedes the consonant in the text,
for example, in िदन /[dI[n/ the vowel ि◌ /I/ precedes
the consonant द /[d@/ but is pronounced after the con-
sonant. In effect, the written vowel appears displaced
with respect to the point of it utterance. In related
work, Vaid and Gupta (2002) found that words with
such vowels lead to slower naming latencies and higher
naming errors compared to control. In all such cases we
posit a complexity cost of 1; for example, the complexity
cost of िदन /[dI[n/ would be 1.
In addition there is also a cost for the distance of
displacement of the vowel, for example in पĄब्लÙसटी
/p@blIsIúi/ there is an additional consonant ब् /b/ be-
tween the vowel ि◌ /I/ and the consonant its associated
with ल /l@/. In such cases the cost becomes 1+d, where
d is the number of intervening consonants between the
vowel and the consonant its associated with. Note that
this situation will happen in cases where the preceding
consonant appears without its inherent vowel. So the

total cost for a word like पĄब्लÙसटी would be 3.5 = 2 (for
the ि◌ in Ąब्ल) + 1 (for the ि◌ in Ùस) + .5 (for the ब;् see
below)

2. Diacritic above a consonant: Although all
vowels in Hindi have an independent form, when they
combine with a consonant some of them can appear
above the consonant. In all such cases (see, table A1)
we assume a complexity cost of .5.

Table A1
Diacritics appearing above a consonant

◌े /e/ ◌ै /E/ ◌ँ /˜/ ◌ं /m/ ◌ॅ /o/ ◌ॉ /5/

3. Diacritic below a consonant: Similar to the
vowel that can appear above a consonant, some vowels
can appear below a consonant. In all such cases (see,
table A2) we assume a complexity cost of .5. Note that
some consonants are Perso-Arabic borrowings, and in
those cases the diacritic ◌़ is added to already existing
letters. These are क़ /q/, ख़ /x/, ग़ /G/, ज़ /z/, फ़ /f/
(Kachru, 2006).

Table A2
Diacritics appearing below a consonant

◌ु /u/ ◌ू /U/ ◌़ (see footnote 1)

4. Consonant without inherent vowel: Conso-
nants, when occurring without the inherent vowel, are
written with a slightly different form, in many cases the
vertical bar associated with the consonant is missing (eg.
घ् + ट→ घ्ट /ghú/), while in some cases a special diacritic
called halant (◌्) is added below the character (eg. ट्
+ क → ट्क /úk/). This will arise when the consonant is
part of a conjunct consonant. In all such cases a cost of
.5 is assumed.

5. Ligatures and composite characters: Unlike
the above cases of conjunct consonants, lack of vowel on
one of the consonant can some times cause the ligature
to take a complex form (for example, /t/ + /r@/ = त् +
र → तर्; /r/ + /t@/ = र् + त → तर्; /k/ + /t@/ = क् + त →
क्). In all such cases a cost of 1 is posited. A cost of 1
is also posited for composite characters such as क्ष /kù@/
and ज्ञ /gy@̃/.
In addition, in cases such as कािनर्वाल /kArnIval/ where
/r/ has been displaced further due to the intervening ि◌
/I/, the cost incorporates the distance of displacement.

The mean word complexity in the Hindi text was 0.46
(minimum: 0, maximum: 5.5).
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Table A3
Word complexity cost
Factor Cost Additional

displacement
cost

Vowel appears to the 1 Yes
left of a consonant
Diacritic above a consonant 0.5 No
Diacritic below a consonant 0.5 No
Consonant (no inherent vowel) 0.5 No
Ligatures 1 Yes

Appendix B
The sentences used in the

study
The complete set of items are available from:

http://web.iitd.ernet.in/∼samar/data/hindi-data.tar.
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