
Sentence	Comprehension	as	a	
Cogni1ve	Process	

Day	2:	Ge9ng	started	with	ACT-
R	modeling	

Shravan	Vasishth	&	Felix	Engelmann	

Source	of	these	slides	

•  These	slides	are	taken	from	Bill	Kennedy’s	
Sept	2011	slides	en1tled:	Notes	on	teaching	
ACT-R	modeling.	

•  I	have	just	adapted	them	for	the	present	
course.		

3

ACT-R	Architecture	Overview	

•  Procedure	core	
•  Buffers	
•  Modules	
•  2	types	of	knowledge	representa1on:	

– declara1ve	(facts,	“chunks”)	
– procedural	(deduc1ons,	“produc1ons”)	

4

Produc1ons	

•  Procedural	knowledge	as	if-then	statements	

•  Basic	process	is:	match,	select,	fire	

•  Many	may	match	current	status	

•  Only	1	selected	to	fire	

5

Produc1ons	

•  Produc1ons	use	buffers	in	IF	&	THEN	parts	

•  IF	part	checks	buffer	contents	or	status	

•  THEN	part,	changes	buffer	values	or	requests	
buffer/module	ac1on	

6

Produc1ons	

•  Useful	to	translate	English	to	ACT-R	

•  eg:	IF	the	goal	is	to	count	to	y	AND	currently	at	x,	AND	
x!=y,	THEN	remember	what	comes	a_er	x.	

7

Produc1on	Design	

•  eg	1:	IF	the	goal	is	to	count	to	y	AND	currently	at	x,	
AND	x!=y,	THEN	remember	what	comes	a_er	x.	

•  but:	
–  this	produc1on	will	always	match	and	fire...	
– another	produc1on	will	deal	with	the	
remembered	fact	

–  it	can	work	with	addi1on	of	a	“state”	variable	

8

Produc1on	Design	

IF	the	goal	is	to	count	to	y	AND	currently	at	x,	AND	x!=y,	THEN	remember	what	comes	
a_er	x.	

	(p	rule-getnext	
	 	=goal>	
	 					isa	 	 	count	
								to		 	 	y	
	 					current	 	x	
	 			-	current	 	y	

											-	state	 	 	recalling-next	
	 	==>	
	 	+retrieval>	
	 					isa 	 	next-fact	
	 					current	 	x	
	 	=goal>	

												state															recalling-next	
)	

count chunk type:
 to <n>
 current <m>
 state <w>

9

Produc1on	Design	2	

	
EXAMPLE:		
	
IF	the	goal	is	to	count	with	current	=	x	AND	“to”	is	not	x,	
THEN	recall	what	comes	a_er	x	
	

10

Produc1on	Design	(core)	

(P	increment	
			=goal>	
						ISA										count-from	
						count							=num1	
				-	end									=num1	
			=retrieval>	
						ISA									count-order	
						first									=num1	
						second			=num2	
	==>	
			=goal>	
						count							=num2	
			+retrieval>	
						ISA										count-order	
						first										=num2	
			!output!							(=num1)	
)	

count-from chunk type:
 end <n>
 count <m>

count-order chunk type:
 first <n>
 second <m>

11

Produc1on	Design	(start)	

(P	start	
			=goal>	
						ISA									count-from	
						start							=num1	
						count							nil	
	==>	
			=goal>	
						count							=num1	
			+retrieval>	
						ISA									count-order	
						first							=num1	
)	

	

12

Produc1on	Design	(stop)	

(P	stop	
			=goal>	
						ISA									count-from	
						count						=num	
						end									=num	
	==>	
			-goal>	
			!output!							(=num)	
)	

13

ACT-R	&	Lisp...	

•  ACT-R	wrifen	in	Lisp	
•  ACT-R	uses	Lisp	syntax	
•  Parts	of	a	model	

– Lisp	code		
– Parameters	
–  Ini1aliza1on	of	memory	(declara1ve	&	proc)	
– Running	a	model	

14

ACT-R	&	Lisp...syntax	

•  ;	comments	
•  “(“	<func1on-name>	<arguments>	“)”	

eg:	(clear-all)	
				(sgp)			<=	lists	all	parameters	&	se9ngs	

						(p	...)		<=	p	func1on	creates	produc1ons	
	

15

ACT-R	&	Lisp...warnings/errors	

•  Lisp	warnings	

#|Warning: Creating chunk BUZZ of default type chunk |#	
Undefined	term,	usually	insignificant	

#|Warning: Invalid chunk definition: (RED
 ISA
 CHUNK) names a

chunk which already exists. |#	
Some	terms	defined	within	ACT-R	as	chunks	(~reserved	words)

16

ACT-R	&	Lisp...warnings/errors	

•  Lisp	/ACT-R	error	example	1:	
> (help)

UNDEFINED-FUNCTION

Error executing command: "(help)":

Error:attempt to call `HELP' which is an undefined
function..

	Non-existent	func1on	call	

17

ACT-R	&	Lisp...warnings/errors	

•  Lisp	/ACT-R	error	example	2:	

 Error Reloading:
 ; loading
 ; c:\documents and settings\bill kennedy\desktop
\psyc-768-s09\demo2.txt

 error reloading model
 error:eof encountered on stream
 #<file-simple-stream
 #p"c:\\documents and settings\\bill kennedy\
\desktop\\psyc-768-s09\\demo2.txt" closed

 @ #x20b2159a>

	Unbalanced	parentheses.	

18

ACT-R	Model	(outline)	

;	header	info	
(clear-all)	
(define-model	<model	name>	

	(sgp	:<parm	name>	<value>	<parm	name>	<value>	...)	
	(chunk-type	<isa	name>	<af1>	<af2>	...)	
	(add-dm	
	 	(<name>	isa	<chunk-type>	<afn>	<value>		
	 	 	 	 						<afm>	<value>	...)	
	 	(<name>	isa	<chunk-type>	<afn>	<value>		
	 	 	 	 						<afm>	<value>	...)	
	 	...	
)	;	end	of	add-dm	
	(p	...)	
	(goal-focus	<chunk-name>)	

)	;	end	of	model	defini1on	
	

19

ACT-R	Model	

(p	<produc1on	name>	
				=goal>	

	 	ISA 	<chunk-type>	
	 	<af>	<value>	
	 	...	
	=retrieval> 	 	 	ç	buffer	(content)	
	 	ISA 	<chunk-type>	
	?retrieval> 	 	 	ç	buffer	(status)	
	 	state	full	

==>	
	=goal>	
	 	<af>	<value>	
	+retrieval> 	 	 	ç	start	a	retrieval	
	 	ISA 	<chunk-type>	
	 	<af>	<value>	
	 	...	
	-goal>	 	 	 	ç	explicit	clearing	of	a	buffer	
	!output! 	(text	text	=variable	text	=variable)	

)	

20

Data	Fi9ng	
•  From	now	on	the	assignments	will	be	compared	to	human	performance	

–  Mostly	Response	1me	
•  Correla1on	and	Mean	devia1on	

•  Provides	a	way	to	compare	and	judge	the	models	
•  Not	the	only	way!	

–  Plausibility		
–  Generality	
–  Simplicity	

•  Make	sure	the	model	does	the	right	thing	before	trying	to	tune	it	with	
parameters!	

20	

21

Subi1zing	(from	ACT-R	tutorial)	

•  Task:	A	bunch	of	objects	appear	on	the	display,	report	the	
number	by	speaking	it	

•  Model	starts	with	the	coun1ng	facts	from	0-11	
•  Will	need	to	manage	visual	afen1on		

– Make	sure	the	model	gets	to	every	item	
–  Needs	to	know	when	its	done	

•  Should	not	need	to	adjust	parameters	to	get	a	reasonable	
fit	to	the	data	

21	

Solu1on	Model	

CORRELATION:		0.980	
MEAN	DEVIATION:		0.230	
Items					Current														Original	
		1									0.54		(T)															0.60	
		2									0.77		(T)															0.65	
		3									1.00		(T)															0.70	
		4									1.24		(T)															0.86	
		5									1.48		(T)															1.12	
		6									1.71		(T)															1.50	
		7									1.95		(T)															1.79	
		8									2.18		(T)															2.13	
		9									2.41		(T)															2.15	
	10								2.65		(T)															2.58	 0	

0.5	

1	

1.5	

2	

2.5	

3	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

data	

soln	

Mechanism	

•  Find,	afend,	count,	repeat	
•  Linear	in	the	number	of	items	
	

24

Memory’s	Subsymbolic	Representa1on	

24	

25

Memory’s	Subsymbolic	Representa1on	

•  At	symbolic	level	
– chunks	in	DM	
–  retrieval	process	

•  When	turned	on,		:esc	t,	
–  retrieval	based	on	chunk’s	“ac1va1on”	

25	

(p	add-ones	
			=goal>	
							isa										add-pair	
							one-ans	busy	
							one1							=num1	
							one2							=num2	
			=retrieval>	
							isa										addiHon-fact	
							addend1	=num1	
							addend2	=num2	
							sum								=sum	
==>	
			=goal>	
							one-ans		=sum	
							carry							busy	
			+retrieval>	
							isa											addiHon-fact	
							addend1	10	
							sum									=sum	
)	

26

Memory’s	Subsymbolic	Representa1on:	
Ac1va1on	

•  Ac1va1on	drives	both	latency	and	probability	of	
retrieval	

•  Ac1va1on	for	chunk	i:	
	 	A	i		=	B	i	+		ε	i 	

•  Retrieved	*if*	ac1va1on	above	a	threshold	
(retrieval	threshold	:rt	default	0,	o_en	-1)	

•  Latency	calculated	from	ac1va1on	

26	

27

Memory’s	Subsymbolic	Representa1on:	
Ac1va1on	

Ac1va1on	for	chunk	i:			

		 		Ai		=	Bi	+	εi	

	Bi		=	“Base-level	ac1va1on”	

εi			=		noise	contribu1on	

27	

28

Memory’s	Subsymbolic	Representa1on:	Base-level	
Ac1va1on	

•  Base-level	ac1va1on	
– Depends	on	two	factors	of	the	history	of	usage	of	
the	chunk:	recency	&	frequency	

–  represented	as	the	log	of	odds	of	need	(Anderson	
&	Schooler,	1991)	

– due	to	math	representa1on,	can	be	nega1ve	
–  includes	every	previous	use	
– affected	most	by	most	recent	use	

28	

29

		

29	

B	

Memory’s	Subsymbolic	Representa1on:	
Base-level	Ac1va1on	

30

		

30	

				

	

Memory’s	Subsymbolic	Representa1on:	
Base-level	Ac1va1on	

31

		

31	

				

	

Memory’s	Subsymbolic	Representa1on:	
Base-level	Ac1va1on	

With	use,	decays	less	

32

Memory’s	Subsymbolic	Representa1on:	Base-level	
Ac1va1on	

•  Chunk	events	affec1ng	ac1va1on	(“event	
presenta1ons”)	
– chunk	crea1on	
– cleared	from	a	buffer	and	entered	into	DM	

– cleared	from	a	buffer	and	already	in	DM	

–  retrieved	from	DM	(credited	when	cleared)	

	

32	

33

Memory’s	Subsymbolic	Representa1on:	Base-level	
Ac1va1on	

•  Base-level	ac1va1on	calcula1on	called	“Base-
Level	Learning”	

•  Key	parameter,	:bll	
–  	the	exponent	in	the	formula		

–  	normal	value:	a	half,	i.e.,	0.5	

	
33	

34

Memory’s	Subsymbolic	Representa1on:	
Ac1va1on	

Ac1va1on	for	chunk	i:			

		 		Ai		=	Bi	+	εi	

	Bi		=	“Base-level	ac1va1on”	

εi			=		noise	contribu1on	

34	

35

Memory’s	Subsymbolic	Representa1on:	
Ac1va1on	Noise	

•  εi	=		noise	contribu1on	
•  2	parts:	permanent	&	instantaneous	

•  both	ACT-R	parameters	:pas		&		:ans	

•  usually	only	adjust	:ans		
•  :ans	se9ng	varies,	from	0.1	to	0.7	

•  noise	in	model	some1mes	necessary	to	match	
noise	of	human	subjects...	

35	

36

Memory’s	Subsymbolic	Representa1on:	
Latency(s)	

•  Ac1va1on	also	affects	latency	(two	ways)	
•  Latency	=	F	*	e-A	

A	is	ac1va1on	

F	is	“latency	factor”		(ACT-R	parameter	:lf	~0.5)	

•  Threshold	se9ng	affects	latency	of	retrieval	
failure	

36	

37

Memory’s	Subsymbolic	Representa1on	

•  Ac1va1on	=	base-level	and	noise	
•  Base-level	dependent	of	recency	&	frequency	
of	previous	chunk	“presenta1ons”	

•  Retrieval	only	when	ac1va1on	above	“retrieval	
threshold”	

•  Ac1va1on	and	threshold	affect	latency	
•  Many	parameters	:esc,	:rt,	:bll,	:ol,	:ans	

37	

Memory	II:		
Other	Sources	of	Ac1va1on	

•  Previously,	chunk’s	ac1va1on	over	1me	

•  Now,	add	the	effect	of	context	(two	types)	

38	

Other	Sources:	Spreading	Ac1va1on	&	
Par1al	Matching	

•  Ac1va1on	(previous):	
		Ai		=	Base	Level	Ac1va1on	+	noise	
							=	Bi	+	εi		

	
•  the	effect	of	context	(new):	
		Ai		=	Bi	+	εi	+	SA	+	PM	

39	

•  Learn	mul1ple	similar	facts,	e.g.,		

	A	hippie	is	in	the	park	
	A	lawyer	is	in	the	cave	
	A	debutante	is	in	the	bank	
	A	hippie	is	in	the	cave	
	A	lawyer	is	in	the	church	

	
40	

Spreading	Ac1va1on	

•  Tests	(seen	before	Y/N?)	

	A	lawyer	is	in	the	park	
	
	A	hippie	is	in	the	cave	

	

41	

Spreading	Ac1va1on	

•  Reponses	1me	increases	linearly	as	number	of	
persons	and	loca1ons	increase,	i.e.,	“fanning	
out”	of	ac1va1on	

•  Foils	take	longer	than	targets	to	decide	

42	

Spreading	Ac1va1on	

•  The	context	affects	retrievals	

•  Contents	of	other	buffers	contribute	to	
retrieval	ac1va1on	calcula1on	for	chunks	in	
DM	

•  Affects	response	1me	

43	

Spreading	Ac1va1on	

•  Consider:	several	matching	chunks	in	memory	
•  How	to	decide	which	to	retrieve?	
•  Ac1va1on	based	on	base	(recency	&	
frequency)	PLUS	small	context	effect	

•  Retrieval	based	on	parts	of	chunk	separates	
exact	matches	from	non-matches	

44	

Spreading	Ac1va1on	

Spreading	Ac1va1on	
•  Ac1va1on	(previous):	

	 	Ai		=	Base	Level	Ac1va1on	+	noise	
	 						=	Bi	+	εi		

	
•  add	context:	effect	of	other	buffers’	chunks	
			Ai		=	Bi	+	εi	+			Σ Σ		(Wkj	Sji))	

																																												buffers(k)		slots(j)	

45	

Spreading	Ac1va1on	

•  add	context:	effect	of	other	buffers’	chunks	
			Ai		=	Bi	+	εi	+			Σ Σ		(Wkj	Sji))	

																																												buffers(k)		slots(j)	

	

Wkj	is	weigh1ng	of	slot	j	in	buffer	k	(normalized)	
	

Sji	is	the	strength	of	the	associa1on	between		
			slot	j	and	chunk	i	

46	

Spreading	Ac1va1on	

•  add	context:	effect	of	other	buffers’	chunks	
			Ai		=	Bi	+	εi	+			Σ Σ		(Wkj	Sji))	

																																												buffers(k)		slots(j)	

	

Wkj	is	weigh1ng	of	slot	j	in	buffer	k	(normalized)	
					(default	is	1	for	goal,	0	for	others)	

Sji	is	the	strength	of	the	associa1on	between		
			slot	j	and	chunk	i		(Sji=0	or	S-ln(fanj))	

47	

Spreading	Ac1va1on	

Fan	Effect	(Anderson	1974)	
•  Fan	effect:	number	of	associa1ons	“fanning	
out”	from	a	chunk	

•  Other	buffers	hold	chunks	
•  Chunk	has	slots	with	other	chunks	
•  How	many	uses	of	a	chunk	affects	its	Ai	

48	

49	

Spreading	Ac1va1on:	Fan	Effect	

S11	

W1	

W2	

S12	
S13	

S21	
S22	

S23	

Slot 1	

Slot 2	

Source1	

Source 2	

chunk1	

chunk2	

chunk3	

Goal	
B1	

B2	

B3	A1	=	B1	+	W1S11	+	W2S21	
A2	=	B2	+	W1S12	+	W2S22	
A3	=	B3	+	W1S13	+	W2S23	

•  Retrievals	based	on	matching	&	ac1va1on	
•  Now,	other	buffers	affect	retrieval	
•  But,	ac1va1on	diluted	by	similar	chunks	

•  Effect:	
	Similar	but	non-matches	slow	retrievals	

50	

Spreading	Ac1va1on:	Fan	Effect	

51	

Other	Sources:	Par1al	Matching	

52	

Other	Sources:	Par1al	Matching	

•  Provides	ACT-R	a	mechanism	to	explain	
errors	of	commission,	retrieving	wrong	
chunk	

•  (previous	ac1va1on	mechanism	explained	
errors	of	omission,	Ai	<	:RT)	

Par1al	Matching	

•  add	context:	effect	of	similar	chunks	

		Ai		=	Bi	+	εi	+			Σ Σ		(Wkj	Sji))	+	Σ	PMli	
																																				buffers(k)		slots(j)																																retrieval	slots	

	

P	is	weigh1ng	of	slot	
	

Mli	is	the	similarity	between	values	in	slot	l	of	retrieval	
and	slot	i	of	chunk	

53	

Par1al	Matching	

•  add	context:	effect	of	similar	chunks	

		Ai		=	Bi	+	εi	+			Σ Σ		(Wkj	Sji))	+	Σ	PMli	
																																				buffers(k)		slots(j)																																retrieval	slots	

	

P	is	weigh1ng	of	slots	(all	equal)	
	

Mli	is	the	similarity	between	values	in	slot	l	of	retrieval	
and	slot	i	of	chunk	

54	

Par1al	Matching	

•  Effect	is	can	retrieve	a	wrong	but	similar	chunk			(...		
IF	chunk	hierarchy	supports	it)	

•  Retrieval	of	wrong	chunk	supports	errors	of	
commission,	taking	wrong	ac1on	vice	no	ac1on	

55	

56

ACT-R	Modeling	

•  ACT-R	Model	Development	

•  ACT-R	Model	Debugging	

56	

57

ACT-R	Model	Development	
1.  Plan	overall	model	to	work	in	stages.	

2.  Start	simple	then	add	details	to	your	model.	

3.  Write	simple	produc1ons	using	simple	chunks.	

4.  Run	the	model	(with	own	trace)	frequently	to	test	
progress	(eg.	with	every	new	or	changed	
produc1on).	

57	

58

ACT-R	Model	Development	

5.  Start	with	produc1ons	doing	one	thing	at	a	
1me	(i.e.,	reference	goal	+	one	buffer)	and	
use	mul1ple	produc1ons.		Combine	later.	

6.  Use	state	variables	to	rigorously	control	
sequencing	un1l	model	works,	then	remove	
as	many	as	possible.		

58	

59

ACT-R	Model	Development	

7.  With	each	buffer	request,	consider	a	
produc1on	for	handling	the	failure.	

	

59	

60

ACT-R	Debugging	Process	

•  Run	ACT-R	up	to	problem...	
–  set	1me	limit	
–  change	produc1on	to	stop	at	problem	step		

•  Check	"why	not"	of	expected	produc1on	
•  Check	buffers	&	buffer	status	
•  Check	visicon	
•  Causes	...	

60	

61

ACT-R	Code	Debugging	

Stops	unexpectedly/expected	produc1on	not	firing:	
–  Condi1ons	not	met	(use	"Why	not"	to	

iden1fy	which)	
–  Condi1ons	over-specified	with	unnec'y	

variable	tests	which	don’t	match	
–  Logic	mismatch	among	condi1ons	
–  nil	will	not	match	=variable	
–  ...	

61	

62

ACT-R	Code	Debugging	

Stops	unexpectedly/expected	produc1on	not	firing	
(con1nued):	

–  Typo	on	variable	name,	i.e.,	not	same	ref.	
–  Wrong	slot	referenced	in	LHS	
–  Time	ran	out	
–  Produc1on	not	in	memory		
–  Error	on	loading	(produc1on	ignored)	
–  Produc1on	overwrifen	by	duplicate	naming	

(warning)	
62	

63

ACT-R	Code	Debugging	

Wrong	produc1on	firing:	
–  Firing	produc1on	also	meets	current	

condi1ons	
–  Condi1ons	do	not	meet	expected	produc1on	

LHS	
	

Produc1on	firing	repeatedly:	
–  LHS	not	changed	by	firing,	i.e.,	s1ll	valid	

63	

64

ACT-R	Code	Debugging	

Buffer	unexpectedly	empty:	
–  Not	filled	
–  Implicit	clearing	(on	LHS	but	not	RHS)	

Buffer	with	unexpected	chunk:	
–  Previous	produc1on	to	fill	it	didn't	fire	
–  Sensor	handling	not	as	expected	
–  Buffer	not	updated/cleared	as	expected	

64	

65

ACT-R	Code	Debugging	

Retrieval	unsuccessful:	
–  Expected	chunk	not	in	memory	
–  Retrieval	specifica1on	unintended	

•  overly	specific	(too	many	slots	specified)	
•  unintended	chunk	type	

–  Expected	chunk’s	ac1va1on	too	low	
–  Wrong	chunk	retrieved		

•  under	specified	(too	few	slots	specified)	
•  par1al	matching	effect	(intended)	

65	

66

ACT-R	Code	Debugging	

Timing	too	slow:	
–  Combine	produc1ons		
–  Driven	by	retrieval	failures	and	:RT	too	low	

Timing	too	fast:	
–  Driven	by	retrieval	failures	and	:RT	too	high	

66	

Unit	4:	Zbrodoff’s	Experiment	

•  alpha	arithme1c,	eg:	A	+	2	=	C:		correct?	
•  possible	addends:	2,	3,	or	4	
•  learning	over:	

– s1muli	set	(24)		
–  repe11on	(5)		
– blocks	(2)		 	=	192	trials	

67	

Model	Design	

•  Given	model	that	counts	to	answer	

•  Process:	read	problem,	count,	answer		

•  Already	creates	saves	chunks	of	answers	

•  Strategy?	

68	

