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S  NP VP Det  a,the NP  Det N
N  man, dog V  ran, saw VP  V

VP  V NP

INPUT: the
GOAL CATEGORY STACK: [ S ]
ACTIONS: If the is the left corner of any phrase structure rule
then replace the stack content with the LHS of that rule. Repeat
this left-corner rule until no further steps are possible. Wait for
next input word. These actions yield the structure to the right:

S

�� ⇥⇥
NP

��⇥⇥
the N

VP

INPUT: dog
GOAL CATEGORY STACK: [ N NP VP S ]
ACTIONS: Use the left-corner rule to expand dog to N. Since
N is predicted in the incremental structure built so far (Step 1),
integrate the N built up bottom-up into the tree. Since no further
applications of the left-corner rule are possible, wait for the next
input.

S

�� ⇥⇥
NP

�� ⇥⇥
the N

dog

VP

INPUT: ran
GOAL CATEGORY STACK: [ VP S ]
ACTIONS: Use the left-corner rule to expand ran to V, and ap-
ply this rule once again to expand to VP. Since a VP is predicted
in the structure, integrate this with the tree.

S

�� ⇥⇥
NP

�� ⇥⇥
the N

dog

VP

V
ran

Figure 3. A simple example of left-corner parsing, demonstrating the mix of bottom-up and top-
down control with prediction. At top is the phrase structure grammar; the three panels and trees show
the incremental parsing of the dog ran.

Note that the goal category “IP” is a primitive symbol; it is
not an actual constituent. Access to the IP node in the parse
requires a retrieval. A useful way to think of the syntactic
goal category symbols is that they form a set of control states
for the sentence processor.

These rules are a compiled form of the parsing and gram-
matical knowledge represented in the left-corner algorithm
plus phrase structure rules like those in Figure 3. There are
many other specific instances of these two rules classes, but
for a given phrase structure rule set (or schema set), the set
is finite. The direct mapping from specific context to specific
actions that the rules embody is similar to the precompiled
indexing schemes used in highly efficient left-corner parsers
(Noord, 1997).

The elimination of the stack and serial order information.
In the ACT-R model, there is no separate stack or chart data
structure. The memory consists exclusively of the chunks
representing the syntactic structure built thus far, and the
only access to that memory is via the retrieval mechanisms
described above. These chunks also double as a representa-
tion of the information in the control stack; a feature “next-
goal” on each constituent chunk specifies the goal-category
that should be pursued once the constituent is complete.

Furthermore, there is no explicit serial order representa-
tion (Lewis, 2000, cf. McElree et al., 2003). This does not
mean that word order plays no role—word order constraints
are deeply embedded in the structure of all the production
rules, because they depend on a distinction between the word
being processed now and what has come before (what must
be retrieved). The critical problem is distinguishing the rel-
ative order of two items in the past. Instead of adopting a
serial order mechanism, we are initially pursuing an extreme
hypothesis about serial order representation in the human
parser: there is none. Instead, the processor relies on the
ability of retrieval cues to discriminate candidate attachment
sites, and in cases where retrieval cues cannot discriminate,
the processor relies (implicitly) on activation level. We ex-
plore the implications of this assumption later in the simula-
tions of center-embeddings.

Retrieval cues for embedded structures and gapped struc-
tures. One virtue of using a top-down goal-category to guide
behavior is that the processor can be sensitive to whether
or not it is processing an embedded clausal structure or
gapped structure (such as a relative clause). For gapped
structures this is useful because it provides the triggering
cue to attempt retrieval of the dislocated element. (We as-
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 2. Overview of the model, showing the critical focus buffers (control buffer, lexical buffer, and retrieval buffer) and processing
dynamics (time flows left to right). The three key working memory processes are shown in gray: (3) a production rule encoding grammatical
knowledge sets cues for retrieval of a prior constituent; (4) a prior constituent is retrieved from working memory via parallel associative
access; and (6) a second production rule creates the new structure and attaches it to the retrieved constituent.

worth the potential loss of the unification of lexical and syn-
tactic processing? We believe it is, for three reasons: two
based on independent empirical evidence, and one based on
ACT-R itself.

First, empirical evidence suggests that not all syntactic
knowledge is lexicalized. Although early presentations of
the lexicalist approach (e.g., MacDonald et al., 1994) em-
phasized the effects of traditional lexical features such as ar-
gument structure, it is now clear that a fully lexical parser
must contain much more elaborated syntactic representations
that go beyond argument structure. In particular, Frazier
(1995, 1998) has pointed out that a lexical parser must have
the ability to project structure beyond argument structure if
it is to handle adjunct attachment and phenomena in head-
final constructions (Frazier, 1987b; Bader & Lasser, 1994;
Konieczny, Hemforth, Scheepers, & Strube, 1997; Inoue &
Fodor, 1995; Hirose & Inoue, 1997). Some highly lexical-
ized grammar formalisms such as LTAG have the necessary
properties (Schabes & Joshi, 1991; Srinivas & Joshi, 1999),
such as adjunct positions encoded in lexicalized forms. How-
ever, recent empirical work consistently points to distinc-
tions between argument and adjunct attachment that are un-
expected under the lexicalized account (Boland et al., 2004;
Boland & Blodgett, 2001).

In sum, these considerations weigh against loading all the
syntactic information into the declarative lexicon. A first

sight it may appear that this claim is inconsistent with well-
known syntactic priming effects (Bock, 1986). However,
syntactic priming can be explained within the ACT-R archi-
tecture in terms of the decay of production-relevant infor-
mation (in addition to decay of declarative chunks); Lovett
(1998) motivates this approach in the related and more gen-
eral area of choice in human perceptual and response pro-
cesses. In fact, recent work on syntactic priming is consistent
with this approach: (Bock & Griffin, 2000) suggests that the
persistence of priming over long periods favors a long-term
adjustment within a sentence production system rather than
a transient memory account.

Second, the goal of rapid processing mitigates against
extra declarative retrievals in ACT-R. Even if all syntactic
knowledge is not lexicalized, it still might be possible to
declaratively represent and access abstract structures, as in
models based on construction grammars (e.g., McKoon &
Ratcliff, 2003; Jurafsky, 1996). However, doing so would in-
cur extra time cost in ACT-R. In general, ACT-R theory has
always assumed that skill acquisition involves a shift from
declarative to procedural processing. Because we are mod-
eling a highly practised behavior, when the choice arises it
makes sense to assume information is proceduralized rather
than remaining in declarative form.

Third, cognitive neuroscience evidence suggests that the
lexicon and grammar do map onto distinct underlying

4
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(3a) (DISTANCE = 1) The administrator who the nurse1
supervised scolded the medic while. . .

(3b) (DISTANCE = 2) The administrator who the nurse1
from the clinic2 supervised scolded the medic
while. . .

(3c) (DISTANCE = 3) The administrator who the nurse1 who
was2 from the clinic3 supervised scolded the medic
while. . .

According to the dependency locality theory, reading
times at the embedded verb ‘supervised’ should be a
function of distance; that is, the fastest times should be
observed in (3a), with progressively slower times in (3b)
and (3c). This is the pattern reported by Grodner and
Gibson [36] in a self-paced reading study involving these
constructions.

This relatively simple complexity metric can account
for a variety of offline and online behavioral data, at least
in English and Japanese [2,8,34]. The basis of the metric
in discourse processing complexity receives support from
a study [37] that manipulated the referential type of
intervening noun phrases while keeping length constant;
reading times were faster at crucial verbs when the
intervening nouns were referentially more accessible.
We suggest that locality effects have their source in both
interference and decay but first we will discuss the
surprising presence of antilocality effects, which place
considerable constraint on any processing explanation of
locality.

Antilocality effects
Recent crosslinguistic studies have indicated that there are
both limits to locality and direct counterexamples to it. For
example, locality effects were not observed at themain verb
as a function of the distance to the head noun of the subject
noun phrase, using the same distance manipulations as
used in example (3) above [36], suggesting that locality
mightbemost evidentatpoints thatarehigher inprocessing
load for independent reasons [22].

Direct evidence against locality comes from cases where
increasing distance speeds processing. Such antilocality
effects have been observed in studies of head-final
languages. For example, in a German self-paced reading
study, Konieczny [9] showed that in (4a) the verb ‘hingelegt’
was read faster than in (4b), despite the longer distance
between the verb and its argument.
(4a) (DISTANCE = 2) Er hat das Buch, das Lisa gestern

gekauft hatte, hingelegt
He has the book, that Lisa yesterday bought had, laid
down
‘He has laid down the book that Lisa had bought
yesterday’.

(4b) (DISTANCE = 0) Er hat das Buch hingelegt, das Lisa
gestern gekauft hatte
He has the book laid down, that Lisa yesterday
bought had
‘He has laid down the book that Lisa had bought
yesterday’.

Figure 2. The activation profiles over time of three items in memory undergoing a series of hypothetical retrievals. These activation profiles are generated by a set of simple
mathematical equations that form the basis of the ACT-R theory of declarative memory, and provide a unified account of interference, locality, antilocality and storage
effects in sentence processing. Locality effects are a consequence of activation decay; antilocality results from repeated activation boosts at retrieval. Similarity-based
retrieval interference arises because the strength of association from a cue is reduced as a function of the number of items associated with the cue, reducing the activation
boost at retrieval.

Opinion TRENDS in Cognitive Sciences Vol.10 No.10 451

www.sciencedirect.com
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .

6
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .

(P set-retrieval-cues-IP-goal-input-DET 
   =goal> 
      ISA               comprehend-sentence 
      state             "read" 
      goal-cat          IP-goal 
   =retrieval> 
      isa               lexical-entry 
      word              =word 
      cat               DET 
==> 
   =lex> =retrieval 
   =goal> 
      state             "wm-retrieval" 
      cue1              wait-for-IP 
   +retrieval> 
      ISA               syn-obj 
      waiting-for-cat   wait-for-IP 
) 

(P attach-DP-as-subject-of-predicted-IP 
   =goal> 
      ISA               comprehend-sentence 
      state             "wm-retrieval" 
   =retrieval> 
      isa               syn-obj 
      cat               IP 
      ID                =ID-RETR 
      head              nil 
      waiting-for-cat   wait-for-IP 
   =lex> 
      isa               lexical-entry 
      cat               DET 
      word              =word 
      number            sing-plural-lex 
==> 
   =goal> 
      state             "read" 
      goal-cat          NP-goal 
   +DPb> 
      isa               syn-obj 
      cat               DP 
      ID                =ID-DP 
      head              =word 
      spec-of           =ID-RETR 
      number            sing-plural 
      waiting-for-cat   wait-for-NP 
      next-goal         next-VP-goal 
   =retrieval> 
      spec              =ID-DP 
      waiting-for-cat   wait-for-VP 
)



(P set-retrieval-cues-IP-goal-input-DET 
   =goal> 
      ISA               comprehend-sentence 
      state             "read" 
      goal-cat          IP-goal 
   =retrieval> 
      isa               lexical-entry 
      word              =word 
      cat               DET 
==> 
   =lex> =retrieval 
   =goal> 
      state             "wm-retrieval" 
      cue1              wait-for-IP 
   +retrieval> 
      ISA               syn-obj 
      waiting-for-cat   wait-for-IP 
) 
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .

Goal stack
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      isa               syn-obj 
      cat               IP 
      ID                =ID-RETR 
      head              nil 
      waiting-for-cat   wait-for-IP 
   =lex> 
      isa               lexical-entry 
      cat               DET 
      word              =word 
      number            sing-plural-lex 
==> 
   =goal> 
      state             "read" 
      goal-cat          NP-goal 
   +DPb> 
      isa               syn-obj 
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      ID                =ID-DP 
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .

16

(P set-retrieval-cues-…) (P attach-…)

The writer surprised the editors.
Goal stack

VP 
DONE

Lewis & Vasishth (2005) Parser



4 LEWIS AND VASISHTH

IP

�����

⇥⇥⇥⇥⇥

DP

�� ⇥⇥
det
the

NP

N
writer

VP

���
⇥⇥⇥

V
surprised

DP

�� ⇥⇥
det
the

NP

N
editors

IP3 

     
 

cat : IP
num : sing
spec : DP3
comp : VP7
tense : past
finite : finite

 

     
 

DP3 

 
 

cat : DP
num : sing
head : the
comp : NP6

 

 
 

NP6 

 
 

cat : NP
case : nom
num : sing
head : writer

 

 
 

VP7 

   
 

cat : VP
num : sing-plural
tense : past
head : surprised
comp : DP9

 

   
 

DP9 

 
 

cat : DP
num : plural
head : the
comp : NP14

 

 
 

NP14 

 
 

cat : NP
case : acc
num : plural
head : editors

 

 
 

Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln
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This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln

 
n

∑
j=1

t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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Figure 1. An example of chunks in ACT-R’s declarative memory, showing the chunk representation (right) of a syntactic structure (left).

is based on two observations. The first observation is that
the answer is implicit in principle A1: a chunk is the repre-
sentational element that enters into novel relations with other
elements. The feature contents of two items and the novel re-
lation between them cannot be represented in a single chunk.
The second observation is that learning can of course change
the representational vocabulary so that single symbols can
come to denote more and more structure (Miller, 1956)—
which is why we carefully restricted the first observation to
novel relations. We take sentence comprehension to be prin-
cipally a task of composing novel combinatorial representa-
tions, so the theoretical degrees of freedom in deciding what
a single chunk contains are quite restricted.
(A3) All chunks have a fluctuating activation level, which

is a function of usage history and decay. Equation 1 gives the
equation for the base level activation of item i, t j is the time
since the jth retrieval of the item, and the summation is over
all n retrievals.

Bi = ln
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∑
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t j
⇥d

 

(1)

This equation is based on the rational analysis of Anderson
and Schooler (1991) and is intended to track the log odds that
an item will need to be retrieved, given its past usage history.
The parameter d is estimated to be 0.5 in nearly all ACT-
R models (Anderson et al., 2005) and we adopt this value.
A critical feature of this equation is that it does not yield a
smoothly decaying activation from the initial encoding to the
present time; rather, the curve has a series of spikes corre-
sponding to the retrieval events.
The total activation of a chunk is the sum of its base ac-

tivation (given in Equation 1) and an associative activation
boost received from retrieval cues in the goal buffer. The
activation of chunk i is defined as:

Ai = Bi+∑
j

WjS ji (2)

where Bi is the base activation, Wj’s are weights associated
with elements of the goal chunk, and S ji’s are the strengths of

association from elements j to chunk i. The total activation
of a chunk determines both retrieval latency and probability
of retrieval. The weightsWj’s are not generally free param-
eters in ACT-R models but are set to G/ j, where j is the
number of goal features, and the G is the total amount of
goal activation available, also set by default to 1.

Associative retrieval interference arises because the
strength of association from a cue is reduced as a function
of the number of items associated with the cue. This is cap-
tured by Equation 3, which reduces the maximum associative
strength S by the log of the “fan” of item j, i.e., the number
of items associated with j.

S ji = S ⇥ ln( f an j) (3)

The final equation we require maps activation level onto
retrieval latency. The latency to retrieve chunk i is given by

Ti = Fe⇥Ai (4)

F is a scaling constant that varies across ACT-R models; in
the sentence processing model we fix F to be 0.14 and use
this for all the simulations.

Principles A1–A4 in Table 1 and associated Equations 1–
4 together form a simple theory of associative memory re-
trieval specified in enough detail to make quantitative pre-
dictions. What remains to have a computationally complete
framework is an answer to the question: how are the memory
retrievals organized in the service of cognition?

Principle A5 gives ACT-R’s answer. Cognition is
controlled by production rules (Newell, 1973)—sets of
condition-action pairs. In ACT-R, all conditions are con-
strained to match against the contents of buffers, and all ac-
tions are constrained to make changes to buffers. The form
of a typical ACT-R production is given in (3) below.

(3) IF control state is . . .
and chunk just retrieved has features . . .
and problem state has features . . .
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head
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The writer surprised the editors.

(ps "the writer surprised the 
editors *")  
(setf *real-time* T)
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(load "../actr6/load-act-r-6.lisp")  
(run-environment) OR (start-environment)  
(load “sp-lv05.lisp") 

(ps "the writer surprised the editors *”) 

(delete-output)  
(setf *real-time* T)  
(sgp :gram-lf 0.8)  
(ps *gg-or*) 

(re 'gg-exp1 60)

Exercise
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ACTIVATION-BASED MODEL OF SENTENCE PROCESSING 13
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Figure 5. Model-generated and observed self-paced reading times on embedded verbs and main verbs in subject relative and
object-relative clauses. Data from Experiment 1, Grodner & Gibson (2005).
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Figure 6. Model-generated and observed processing times on the final verb as a function of interpolated structures. Data from
Experiment 2, McElree, Foraker & Dyer (2003). None = no interpolation, OR = interpolated object relative, OR-PP = interpolated
prepositional phrase and object relative, OR-SR = interpolated subject relative embedded within object relative.

Example: Relative Clauses
Grodner & Gibson (2005)

SR: The reporter who sent the photographer to the editor hoped for a story.
OR: The reporter who the photographer sent to the editor hoped for a story.


