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The Gibson and Wu (2013) data-set has a two-condition design. This section presents
a varying intercepts, varying slopes model for a 2 x 2 factorial design. Because of the more
general matrix formulation we use here, the Stan code can be deployed with minimal changes
for much more complex designs, including correlational studies.

Our example is the 2 x 2 repeated measures factorial design of Husain, Vasishth, and
Srinivasan (2014, Experiment 1), also a self-paced reading study on relative clauses. The
dependent variable was the reading time rt of the relative clause verb. The factors were
relative clause type, which we code with the predictor so (so = +1 for object relatives
and so = —1 for subject relatives) and distance between the head noun and the relative
clause verb, which we code with the predictor dist (dist = +1 for far and dist = —1 for
near). Their interaction is the product of the dist and so contrast vectors, and labeled as
the predictor int. The 60 subjects were speakers of Hindi, an Indo-Aryan language spoken
primarily in India. The 24 items were presented in a standard, fully balanced Latin square
design. This resulted in a total of 1440 data points (60 x 24 = 1440). The first few lines

from the data frame are shown below.

The theoretical interest is in determining whether relative clause type and distance
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row subj item so dist rt
1 1 14 s n 1561
2 1 16 o n 959
3 1 15 o f 582
4 1 18 s n 294
5 1 4 o n 438
6 1 17 s f 286

1440 9 13 s tf 516

Table 1
The first sixz rows, and the last row, of the data-set of Husain et al. (2014, Experiment 1),
as they appear in the data frame.

influence reading time, and whether there is an interaction between these two factors. We
use Stan to determine the posterior probability distribution of the fixed effect 5, for relative
clause type, the fixed effect 39 for distance, and their interaction Js.

We fit a varying intercepts, varying slopes model to this data-set. The grand mean [y
of log rt is adjusted by subject and by item through the varying intercepts ug and wg, which
are unique values for each subject and item respectively. Likewise, the three fixed effects
081, B2, and B3 which are associated with the predictors so, dist, and int, respectively, are
adjusted by the by-subject varying slopes u1, u2, and ug and by-item varying slopes w1, wa,
and ws.

It is more convenient to represent this model in matrix form. We build up the model
specification by first noting that, for each subject, the by-subject varying intercept ug and
slopes w1, u2, and usz have a multivariate normal prior distribution with mean zero and
covariance matrix ¥,,. Similarly, for each item, the by-item varying intercept wg and slopes
w1, wa, and ws have a multivariate normal prior distribution with mean zero and covariance

matrix Y,,. We can write this as follows:

uQ 0 wo 0
Ul 0 w1 0
~ N DI ~ N ) B (1)
u9 0 w2 0
us 0 w3 0
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rDat<-read.table ("HusainEtAlexptldata.txt", header=TRUE)
rDat$subj <- with (rDat, factor (subj))
rDat$item <- with (rDat, factor (item))

X <= unname (model.matrix (~l+so+dist+int, rDat))

stanDat <- within(list (),
{
N<-nrow (X)
P <- n_u <- n_w <- ncol (X)

X <= X
Z_u <— X
Z_w <— X

J <- length(levels (rDat$subij))
K <- length(levels (rDat$item))
rt <- rDat$rt
subj <- as.integer (rDat$subij)
item <- as.integer (rDat$item)
}
)
factorialFit <- stan(file="factorialModel.stan",
data=stanDat,
iter=2000, chains=4)

Listing 1: Preparation of data for analyzing the Husain et al. data-set, and running the
model.

The error ¢ is assumed to have a normal distribution with mean zero and standard
deviation oe.

We proceed to implement the model in Stan. First we read in the data-set (see
Listing 1). Instead of passing the predictors so, dist, and their interaction int to stan as
vectors, as we did with so earlier, we make so, dist, and int into a design matrix X using
the function model.matrix available in R.! The first column of the design matrix X consists
of all ones. The second column is the predictor so which codes the factor for relative clause
type. The third column the predictor dist which codes the factor for distance. The fourth
column is the predictor int which codes the interaction between relative clause type and
distance. The model matrix thus consists of a fully factorial 2 x 2 design, with blocks of this
design repeated for each subject. For the full data-set, we could write it very compactly in

matrix form as follows:

'Here, we would like to acknowledge the contribution of Douglas Bates in specifying the model in this

general matrix form.



© 0 N 3 U W N

gLl o @ R AR A A R R R R AR A W W W W W W oW W oW oW NN NNNNNNNN R R e e e e e e e
X KR O © K a9 0 OE B~ O DN ahRE DR RO © K00 A W RO © KN O A W N~ O

INSERT SHORTTITLE COMMAND IN PREAMBLE

data {
int<lower=0>
int<lower=1>
int<lower=0> J;
int<lower=1> n_u;
int<lower=0> K;
int<lower=1> n_w;
int<lower=1, upper=J> subj[N];
int<lower=1, upper=K> item[N];
row_vector[P] X[N];
row_vector[n_u] Z_ul[N];
row_vector[n_w] Z_w[N];
vector [N] rt;

}

parameters {

vector [P] beta;

cholesky_factor_corr[n_u] L_u;
cholesky_factor_corr[n_w] L_w;
vector<lower=0>[n_u] sigma_u;

vector<lower=0>[n_w] sigma_w;
real<lower=0> sigma_e;
vector([n_u] z_ulJ];
vector[n_w] z_wl[K];

}
transformed parameters {
vector[n_u] ulJ];
vector[n_w] wl[K];

{
matrix[n_u,n_u]
matrix[n_w,n_w]

Sigma_u;
Sigma_w;

Sigma_u <- diag_pre_multiply(sigma

trials

fixefs

subjects

subj ranefs

//no items

//no item ranefs

//subject indicator

//item indicator

//fixef design matrix
//subj ranef design matrix
//item ranef design matrix
//reading time

//no
//no
//no
//no

//fixef coefs
//cholesky factor of subj ranef corr matrix
//cholesky factor of item ranef corr matrix

//subj ranef std

//item ranef std

//residual std

//subj ranef

//item ranef

ranefs
ranefs

//subj
//item
//subj ranef cov matrix
//item ranef cov matrix

u,L_u);

Sigma_w <- diag_pre_multiply(sigma_w,L_w);

for(j in 1:J)

ulj] <- Sigma_u * z_uljl;
for(k in 1:K)

wlk] <- Sigma_w * z_wl[k];

}

model {
//priors
L_u ~ lkj_corr_cholesky(2.0);
L_w ~ lkj_corr_cholesky(2.0);

for (3 in 1:J)
z_ul[J] ~ normal(0,1);
for (k in 1:K)
z_wlk] ~ normal(0,1);
//1likelihood
for (i in 1:N)
rt[i] ~ lognormal (X[i] * beta +
Z_uli] = ulsubjl[i]] +
Z_wl[i] * wlitem[i]],

sigma_e);

Listing 2: Stan code for Husain et al data.
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log(rt) = X8+ Zyu+ Zyw + ¢ (2)

Here, X is the N x P model matrix (with N = 1440, since we have 1440 data points;
and P = 4 since we have the intercept plus three other fixed effects), 8 is a P x 1 vector of
fixed effects parameters, Z,, and Z,, are the subject and item model matrices (N x P), and
u and w are the by-subject and by-item adjustments to the fixed effects estimates; these are
identical to the design matrix X in the model with varying intercepts and varying slopes
included. For more examples of similar model specifications in Stan, see the R package

RePsychLing on github (https://github.com/dmbates/RePsychLing).

Having defined the model, we proceed to assemble the list stanDat of data, relying
on the above matrix formulation; please refer to Listing 1. The number N of observations,
the number J of subjects and K of items, the reading times rt, and the subject and item
indicator variables subj and item are familiar from the previous models presented. The
integer P is the number of fixed effects (four including the intercept). Model 2 includes a
varying intercept ug and varying slopes w1, u2, us for each subject, and so the number n_u
of by-subject random effects equals P. Likewise, Model 2 includes a varying intercept wg and
varying slopes wy, we, ws for each item, and so the number n_w of by-item random effects
also equals P. The data block contains the corresponding variables. We declare the fixed
effects design matrix X as an array of N row vectors whose components are the predictors
associated with the N reading times. Likewise for the subject and item random effects design
matrices Z_u and Z_w, which correspond to Z, and Z,, respectively in Model 2. The vector
beta contains the fixed effects Gy, 81, B2, and B3. The matrices L_u, L_w and the arrays
z_u, z_w of vectors (not to be confused with the design matrices Z_u and Z_w) will generate
the varying intercepts and slopes ug, ..., ug and wq, ..., wy. The vector sigma_u contains
the standard deviations of the by-subject varying intercepts and slopes ug, ..., us, and
the vector sigma_w contains the standard deviations of the by-item varying intercepts and

slopes wyg, ..., wg. The variable sigma_e is the standard deviation o, of the error . The
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transformed parameters block generates the by-subject intercepts and slopes uy, . .., uz and
the by-item intercepts and slopes wyg, ..., ws.

We place 1kj priors on the random effects correlation matrices through the
1kj_corr_cholesky(2.0) priors on their Cholesky factors L_u and L_w. We implicitly
place uniform priors on the fixed effects Jy, ..., B3, the random effects standard deviations
Ouls - -5 Ou3, and Ty, ..., 0ws and the error standard deviation o, by omitting any prior
specifications for them in the model block. We specify the likelihood with the probabil-
ity statement that rt[i] is distributed log-normally with mean X[i] * beta + Z_ul[i]
* ulsubj[il] + Z_w[i]l * wlitem[il] and standard deviation sigma_e. The next step
towards model-fitting is to pass the list stanDat to stan, which compiles a C++ program
to sample from the posterior distribution of the model parameters.

Figure 1 plots histograms of the marginal posterior distribution of the fixed effects.
The HPD interval of the fixed effect Bl for relative clause type is entirely below zero. This
is evidence that object relatives are read faster than subject relatives. The HPD interval of
the fixed effect 35 for distance is also entirely below zero. This is evidence of a slowdown
when the verb (where reading time was measured) is closer to the head noun of the relative
clause. The HPD of the interaction Bg between relative clause type and distance is greater
than zero, which is evidence for a greater slowdown on subject relatives when the distance
between the verb and head noun is short.

A major advantage of the above matrix formulation is that we do not need to write a
new Stan model for a future repeated measures factorial design. All we have to do now is
define the design matrix X appropriately, and include it (along with appropriately defined
Z,, and Z,, for the subjects and items random effects) as part of the data specification that

is passed to Stan.
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Figure 1. Marginal posterior distribution and HPD intervals of the fixed effects grand
mean [y, slope [y for relative clause type, slope (s for distance, and interaction (3. All
fixed effects are on the log-scale.
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