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The Gibson and Wu (2013) data-set has a two-condition design. This section presents

a varying intercepts, varying slopes model for a 2 × 2 factorial design. Because of the more

general matrix formulation we use here, the Stan code can be deployed with minimal changes

for much more complex designs, including correlational studies.

Our example is the 2 × 2 repeated measures factorial design of Husain, Vasishth, and

Srinivasan (2014, Experiment 1), also a self-paced reading study on relative clauses. The

dependent variable was the reading time rt of the relative clause verb. The factors were

relative clause type, which we code with the predictor so (so = +1 for object relatives

and so = −1 for subject relatives) and distance between the head noun and the relative

clause verb, which we code with the predictor dist (dist = +1 for far and dist = −1 for

near). Their interaction is the product of the dist and so contrast vectors, and labeled as

the predictor int. The 60 subjects were speakers of Hindi, an Indo-Aryan language spoken

primarily in India. The 24 items were presented in a standard, fully balanced Latin square

design. This resulted in a total of 1440 data points (60 × 24 = 1440). The first few lines

from the data frame are shown below.

The theoretical interest is in determining whether relative clause type and distance
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row subj item so dist rt
1 1 14 s n 1561
2 1 16 o n 959
3 1 15 o f 582
4 1 18 s n 294
5 1 4 o n 438
6 1 17 s f 286
...

...
...

...
...

...
1440 9 13 s f 516

Table 1
The first six rows, and the last row, of the data-set of Husain et al. (2014, Experiment 1),
as they appear in the data frame.

influence reading time, and whether there is an interaction between these two factors. We

use Stan to determine the posterior probability distribution of the fixed effect β1 for relative

clause type, the fixed effect β2 for distance, and their interaction β3.

We fit a varying intercepts, varying slopes model to this data-set. The grand mean β0

of log rt is adjusted by subject and by item through the varying intercepts u0 and w0, which

are unique values for each subject and item respectively. Likewise, the three fixed effects

β1, β2, and β3 which are associated with the predictors so, dist, and int, respectively, are

adjusted by the by-subject varying slopes u1, u2, and u3 and by-item varying slopes w1, w2,

and w3.

It is more convenient to represent this model in matrix form. We build up the model

specification by first noting that, for each subject, the by-subject varying intercept u0 and

slopes u1, u2, and u3 have a multivariate normal prior distribution with mean zero and

covariance matrix Σu. Similarly, for each item, the by-item varying intercept w0 and slopes

w1, w2, and w3 have a multivariate normal prior distribution with mean zero and covariance

matrix Σw. We can write this as follows:
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1 rDat<-read.table("HusainEtAlexpt1data.txt",header=TRUE)
2 rDat$subj <- with(rDat,factor(subj))
3 rDat$item <- with(rDat,factor(item))
4

5 X <- unname(model.matrix(~1+so+dist+int, rDat))
6

7 stanDat <- within(list(),
8 {
9 N<-nrow(X)

10 P <- n_u <- n_w <- ncol(X)
11 X <- X
12 Z_u <- X
13 Z_w <- X
14 J <- length(levels(rDat$subj))
15 K <- length(levels(rDat$item))
16 rt <- rDat$rt
17 subj <- as.integer(rDat$subj)
18 item <- as.integer(rDat$item)
19 }
20 )
21 factorialFit <- stan(file="factorialModel.stan",
22 data=stanDat,
23 iter=2000, chains=4)

Listing 1: Preparation of data for analyzing the Husain et al. data-set, and running the
model.

The error ε is assumed to have a normal distribution with mean zero and standard

deviation σe.

We proceed to implement the model in Stan. First we read in the data-set (see

Listing 1). Instead of passing the predictors so, dist, and their interaction int to stan as

vectors, as we did with so earlier, we make so, dist, and int into a design matrix X using

the function model.matrix available in R.1 The first column of the design matrix X consists

of all ones. The second column is the predictor so which codes the factor for relative clause

type. The third column the predictor dist which codes the factor for distance. The fourth

column is the predictor int which codes the interaction between relative clause type and

distance. The model matrix thus consists of a fully factorial 2×2 design, with blocks of this

design repeated for each subject. For the full data-set, we could write it very compactly in

matrix form as follows:
1Here, we would like to acknowledge the contribution of Douglas Bates in specifying the model in this

general matrix form.
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1 data {
2 int<lower=0> N; //no trials
3 int<lower=1> P; //no fixefs
4 int<lower=0> J; //no subjects
5 int<lower=1> n_u; //no subj ranefs
6 int<lower=0> K; //no items
7 int<lower=1> n_w; //no item ranefs
8 int<lower=1,upper=J> subj[N]; //subject indicator
9 int<lower=1,upper=K> item[N]; //item indicator

10 row_vector[P] X[N]; //fixef design matrix
11 row_vector[n_u] Z_u[N]; //subj ranef design matrix
12 row_vector[n_w] Z_w[N]; //item ranef design matrix
13 vector[N] rt; //reading time
14 }
15 parameters {
16 vector[P] beta; //fixef coefs
17 cholesky_factor_corr[n_u] L_u; //cholesky factor of subj ranef corr matrix
18 cholesky_factor_corr[n_w] L_w; //cholesky factor of item ranef corr matrix
19 vector<lower=0>[n_u] sigma_u; //subj ranef std
20 vector<lower=0>[n_w] sigma_w; //item ranef std
21 real<lower=0> sigma_e; //residual std
22 vector[n_u] z_u[J]; //subj ranef
23 vector[n_w] z_w[K]; //item ranef
24 }
25 transformed parameters {
26 vector[n_u] u[J]; //subj ranefs
27 vector[n_w] w[K]; //item ranefs
28 {
29 matrix[n_u,n_u] Sigma_u; //subj ranef cov matrix
30 matrix[n_w,n_w] Sigma_w; //item ranef cov matrix
31 Sigma_u <- diag_pre_multiply(sigma_u,L_u);
32 Sigma_w <- diag_pre_multiply(sigma_w,L_w);
33 for(j in 1:J)
34 u[j] <- Sigma_u * z_u[j];
35 for(k in 1:K)
36 w[k] <- Sigma_w * z_w[k];
37 }
38 }
39 model {
40 //priors
41 L_u ~ lkj_corr_cholesky(2.0);
42 L_w ~ lkj_corr_cholesky(2.0);
43 for (j in 1:J)
44 z_u[j] ~ normal(0,1);
45 for (k in 1:K)
46 z_w[k] ~ normal(0,1);
47 //likelihood
48 for (i in 1:N)
49 rt[i] ~ lognormal(X[i] * beta +
50 Z_u[i] * u[subj[i]] +
51 Z_w[i] * w[item[i]],
52 sigma_e);
53 }

Listing 2: Stan code for Husain et al data.
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log(rt) = Xβ + Zuu + Zww + ε (2)

Here, X is the N ×P model matrix (with N = 1440, since we have 1440 data points;

and P = 4 since we have the intercept plus three other fixed effects), β is a P × 1 vector of

fixed effects parameters, Zu and Zw are the subject and item model matrices (N ×P ), and

u and w are the by-subject and by-item adjustments to the fixed effects estimates; these are

identical to the design matrix X in the model with varying intercepts and varying slopes

included. For more examples of similar model specifications in Stan, see the R package

RePsychLing on github (https://github.com/dmbates/RePsychLing).

Having defined the model, we proceed to assemble the list stanDat of data, relying

on the above matrix formulation; please refer to Listing 1. The number N of observations,

the number J of subjects and K of items, the reading times rt, and the subject and item

indicator variables subj and item are familiar from the previous models presented. The

integer P is the number of fixed effects (four including the intercept). Model 2 includes a

varying intercept u0 and varying slopes u1, u2, u3 for each subject, and so the number n_u

of by-subject random effects equals P. Likewise, Model 2 includes a varying intercept w0 and

varying slopes w1, w2, w3 for each item, and so the number n_w of by-item random effects

also equals P. The data block contains the corresponding variables. We declare the fixed

effects design matrix X as an array of N row vectors whose components are the predictors

associated with the N reading times. Likewise for the subject and item random effects design

matrices Z_u and Z_w, which correspond to Zu and Zw respectively in Model 2. The vector

beta contains the fixed effects β0, β1, β2, and β3. The matrices L_u, L_w and the arrays

z_u, z_w of vectors (not to be confused with the design matrices Z_u and Z_w) will generate

the varying intercepts and slopes u0, . . . , u3 and w0, . . . , w3. The vector sigma_u contains

the standard deviations of the by-subject varying intercepts and slopes u0, . . . , u3, and

the vector sigma_w contains the standard deviations of the by-item varying intercepts and

slopes w0, . . . , w3. The variable sigma_e is the standard deviation σe of the error ε. The
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transformed parameters block generates the by-subject intercepts and slopes u0, . . . , u3 and

the by-item intercepts and slopes w0, . . . , w3.

We place lkj priors on the random effects correlation matrices through the

lkj_corr_cholesky(2.0) priors on their Cholesky factors L_u and L_w. We implicitly

place uniform priors on the fixed effects β0, . . . , β3, the random effects standard deviations

σu0, . . . , σu3, and σw0, . . . , σw3 and the error standard deviation σe by omitting any prior

specifications for them in the model block. We specify the likelihood with the probabil-

ity statement that rt[i] is distributed log-normally with mean X[i] * beta + Z_u[i]

* u[subj[i]] + Z_w[i] * w[item[i]] and standard deviation sigma_e. The next step

towards model-fitting is to pass the list stanDat to stan, which compiles a C++ program

to sample from the posterior distribution of the model parameters.

Figure 1 plots histograms of the marginal posterior distribution of the fixed effects.

The HPD interval of the fixed effect β̂1 for relative clause type is entirely below zero. This

is evidence that object relatives are read faster than subject relatives. The HPD interval of

the fixed effect β̂2 for distance is also entirely below zero. This is evidence of a slowdown

when the verb (where reading time was measured) is closer to the head noun of the relative

clause. The HPD of the interaction β̂3 between relative clause type and distance is greater

than zero, which is evidence for a greater slowdown on subject relatives when the distance

between the verb and head noun is short.

A major advantage of the above matrix formulation is that we do not need to write a

new Stan model for a future repeated measures factorial design. All we have to do now is

define the design matrix X appropriately, and include it (along with appropriately defined

Zu and Zw for the subjects and items random effects) as part of the data specification that

is passed to Stan.
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Figure 1 . Marginal posterior distribution and HPD intervals of the fixed effects grand
mean β0, slope β1 for relative clause type, slope β2 for distance, and interaction β3. All
fixed effects are on the log-scale.
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