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Abstract
With the arrival of the R packages nlme and lme4, linear mixed models

(LMMs) have come to be widely used in experimentally-driven areas like psy-

chology, linguistics, and cognitive science. This tutorial provides a practical

introduction to fitting LMMs in a Bayesian framework using the probabilis-

tic programming language Stan. We choose Stan (rather than WinBUGS

or JAGS) because it provides an elegant and scalable framework for fitting

models in most of the standard applications of LMMs. We ease the reader

into fitting increasingly complex LMMs, using a two-condition repeated mea-

sures self-paced reading study.
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Introduction

Linear mixed models, or hierarchical/multilevel linear models, have become the main

workhorse of experimental research in psychology, linguistics, and cognitive science, where

repeated measures designs are the norm. Within the programming environment R (R De-

velopment Core Team, 2006), the nlme package (Pinheiro & Bates, 2000) and its successor,

lme4 (Bates, Mächler, Bolker, & Walker, 2015) have revolutionized the use of linear mixed

models (LMMs) due to their simplicity and speed: one can fit fairly complicated models

relatively quickly, often with a single line of code. A great advantage of LMMs over tra-

ditional approaches such as repeated measures ANOVA and paired t-tests is that there is

no need to aggregate over subjects and items to compute two sets of F-scores (or several

t-scores) separately; a single model can take all sources of variance into account simultane-

ously. Furthermore, comparisons between conditions can easily be implemented in a single

model through appropriate contrast coding.

Other important developments related to LMMs have been unfolding in computa-

tional statistics. Specifically, probabilistic programming languages like WinBUGS (Lunn,

Thomas, Best, & Spiegelhalter, 2000), JAGS (Plummer, 2012) and Stan (Stan Development

Team, 2014), among others, have made it possible to fit Bayesian LMMs quite easily. How-

ever, one prerequisite for using these programming languages is that some background sta-

tistical knowledge is needed before one can define the model. This difficulty is well-known;

for example, Spiegelhalter, Abrams, and Myles (2004, p. 4) write: “Bayesian statistics has

a (largely deserved) reputation for being mathematically challenging and difficult to put

into practice. . . ”.

The purpose of this paper is to facilitate a first encounter with model specification in
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one of these programming languages, Stan. The tutorial is aimed primarily at psychologists,

linguists, and cognitive scientists who have used lme4 to fit models to their data, but who

may have only a basic knowledge of the underlying LMM machinery. By “basic knowledge”

we mean that they may not be able to answer some or all of these questions: what is a

design matrix; what is contrast coding; what is a random effects variance-covariance matrix

in a linear mixed model; what is the Cholesky decomposition? Our tutorial is not intended

for statisticians or psychology researchers who could, for example, write their own Markov

Chain Monte Carlo (MCMC) samplers in R or C++ or the like; for them, the Stan manual

is the optimal starting point. The present tutorial attempts to ease the beginner into their

first steps towards fitting Bayesian linear mixed models. More detailed presentations about

linear mixed models are available in several textbooks; references are provided at the end

of this tutorial. For the complete newcomer to statistical methods, the articles by Vasishth

and Nicenboim (2016) and Nicenboim and Vasishth (2016) should be read first, as they

provide a grounds-up preparation for the present article.

We have chosen Stan as the programming language of choice (over JAGS and Win-

BUGS) because it is possible to fit arbitrarily complex models with Stan. For example, it is

possible (if time consuming) to fit a model with 14 fixed effects predictors and two crossed

random effects by subject and item, each involving a 14 × 14 variance-covariance matrix

(Bates, Kliegl, Vasishth, & Baayen, 2015); as far as we are aware, such models cannot be

fit in JAGS or WinBUGS.1

In this tutorial, we take it as a given that the reader is interested in learning how to fit

Bayesian linear mixed models. The tutorial is structured as follows. After a short introduc-

tion to Bayesian modeling, we begin by successively building up increasingly complex LMMs

using the data-set reported by Gibson and Wu (2013), which has a simple two-condition

design. At each step, we explain the structure of the model. The next section takes up

inference for this two-condition design.

This paper was written using a literate programming tool, knitr (Xie, 2015); this
1Whether it makes sense in general to fit such a complex model is a different issue; see Gelman et al.

(2014), and Bates, Kliegl, et al. (2015) for recent discussion.
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integrates documentation for the accompanying code with the paper. The knitr file that

generated this paper, as well as all the code and data used in this tutorial, can be downloaded

from our website:

https://www.ling.uni-potsdam.de/~vasishth/statistics/BayesLMMs.html

In addition, the source code for the paper, all R code, and data are available on github at:

https://github.com/vasishth/BayesLMMTutorial

We start with the two-condition repeated measures data-set (Gibson &Wu, 2013) as a

concrete running example. This simple example serves as a starter kit for fitting commonly

used LMMs in the Bayesian setting. We assume that the reader has the relevant software

installed; specifically, the RStan interface to Stan in R. For detailed instructions, see

https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

Bayesian statistics

Bayesian modeling has two major advantages over frequentist analysis with linear

mixed models. First, information based on pre-existing knowledge can be incorporated into

the analysis using different priors. Second, complex models with a large number of random

variance components can be fit. In the following, we will provide a short introduction to

Bayesian statistics which highlights these two advantages of the Bayesian approach to data

analysis.

The first advantage of the Bayesian approach is a consequence of Bayes’ Theorem,

the fundamental rule of Bayesian statistics. It can be seen as a way of understanding how

the probability that a hypothesis is true is affected by new data. In mathematical notation,

Bayes’ Theorem states

P (H | D) = P (D | H)P (H)
P (D) ,

where H is the hypothesis we are interested in and D represents new data. Since D is fixed

for a given data-set, the theorem can be rephrased as

P (H | D) ∝ P (D | H)P (H).



BAYESIAN LINEAR MIXED MODELS: A TUTORIAL 5

0 50 100 150

0.
00

0.
02

0.
04

0.
06

x

D
en

si
ty

Prior
Likelihood
Posterior

0 50 100 150

0.
00

0.
02

0.
04

0.
06

x
D

en
si

ty

Figure 1 . Prior, likelihood, and posterior normal distributions. The likelihood is based on
n = 20 observations with sample mean µ = 100 and standard deviation σ = 40. The prior
(identical in both panels) has mean µ0 = 60 and variance σ2

0 = 1000 (left-hand panel) or
σ2

0 = 100 (right-hand panel), respectively.

The posterior probability that the hypothesis is true given new data, P (H | D), is propor-

tional to the product of the likelihood of the new data given the hypothesis, P (D | H), and

the prior probability of the hypothesis, P (H).

For the purposes of this paper, the goal of a Bayesian analysis is simply to derive the

posterior distribution of each parameter of interest, given some data and prior knowledge

about the distributions of the parameters. The following example illustrates how the pos-

terior depends on the likelihood and prior. Before collecting data, a researcher has some

hypothesis concerning the distribution of the response variable X in an experiment. The

reseacher expresses his or her belief in a prior distribution, say, a normal distribution with

a mean value of µ = 60 and variance σ2 = 1000 (solid density in left-hand panel of Figure

1). The large variance reflects the researcher’s uncertainty concerning the true mean of the

distribution. Alternatively, if the researcher were very certain that µ = 60, then he or she

might choose the much lower variance σ2 = 100 (solid density in right-hand panel of the

right-hand panel of Figure 1).
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The researcher starts to collect data. In our example, there are n = 20 values with a

sample mean x̄ = 100 and sample standard deviation s = 40. The corresponding likelihood

distribution is displayed in Figure 1 (dashed line). The resulting posterior distribution

(dash-dot line) combines the prior and likelihood. Given the prior with the larger variance

(left-hand panel), the posterior is largely influenced by the data. Given the prior with the

smaller variance (right-hand panel), its influence on the posterior is much stronger, resulting

in a smaller shift towards the data mean.

This toy example illustrates the central idea of Bayesian modeling. The prior reflects

our knowledge of past results. In most cases, we will use so-called vague flat priors such that

the posterior distribution is mainly affected by the data. The resulting posterior distribution

allows for making inferences about model parameters.

The second advantage of Bayesian modeling concerns variance components (random

effects). Fitting a large number of random effects in non-Bayesian settings requires a large

amount of data. Often, the data-set is too small to reliably estimate variance component pa-

rameters (Bates, Kliegl, et al., 2015; Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2016).

However, if a researcher is interested in differences between individual subjects or items

(random intercepts and random slopes) or relationships between differences (correlations

between variance components), Bayesian modeling can be used even if there is not enough

data for inferential statistics. The resulting posterior distributions might have high variance

but they still allow for calculating probabilities of true parameter values of variance compo-

nents. Note that we do not intend to criticize classical LMMs, but rather to highlight the

possibilities of Bayesian modeling concerning random effects. For further explanation of the

advantages this approach affords beyond the classical frequentist approach, the reader is

directed to the rich literature relating to a comparison between Bayesian versus frequentist

statistics (such as the provocatively titled paper by Lavine, 1999, and the highly accessible

textbooks by McElreath, 2016 and Kruschke, 2014).
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Example: A two-condition repeated measures design

This section motivates the LMM with the self-paced reading data-set of Gibson and

Wu (2013). We introduce the data-set, state our modeling goals here, and proceed to build

up increasingly complex LMMs, starting with a fixed effects linear model before adding

varying intercepts, adding varying slopes, and finally modeling the correlation between

the varying intercepts and slopes (the “maximal model” of Barr, Levy, Scheepers, & Tily,

2013). We explain these new model parameters as we introduce them. Models of varying

complexity such as these three can be generalized as described in Appendix B. The result of

our modeling is a probability model that expresses how the dependent variable, the reading

time labeled rt, was generated in the experiment of Gibson and Wu (2013). The model

allows us to derive the posterior probability distribution of the model parameters from a

prior probability distribution and a likelihood function. Stan makes it easy to compute

this posterior distribution for each model parameter of interest. The resulting posterior

distribution reflects what we should believe about the value of that parameter, given the

experimental data.

The scientific question. Subject and object relative clauses have been widely used

in reading studies to investigate sentence comprehension processes. A subject relative is a

sentence like The senator who interrogated the journalist resigned where a noun (senator)

is modified by a relative clause (who interrogated the journalist), and the modified noun is

the grammatical subject of the relative clause. In an object relative, the noun modified by

the relative clause is the grammatical object of the relative clause (e.g., The senator who

the journalist interrogated resigned). In both cases, the noun that is modified (senator) is

called the head noun.

A typical finding for English is that subject relatives are easier to process than ob-

ject relatives (Just & Carpenter, 1992). Natural languages generally have relative clauses,

and the subject relative advantage has until recently been considered to be true cross-

linguistically. However, Chinese relative clauses apparently represent an interesting counter-

example to this generalization; recent work by Hsiao and Gibson (2003) has suggested that
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in Chinese, object relatives are easier to process than subject relatives at a particular point

in the sentence (the head noun of the relative clause). We now present an analysis of a

subsequently published data-set (Gibson & Wu, 2013) that evaluates this claim.

The data. The dependent variable of the experiment of Gibson and Wu (2013)

was the reading time rt in milliseconds of the head noun of the relative clause. This was

recorded in two conditions (subject relative and object relative), with 37 subjects and 15

items, presented in a standard Latin square design. There were originally 16 items, but one

item was removed, resulting in 37× 15 = 555 data points. However, eight data points from

one subject (id 27) were missing. As a consequence, we have a total of 555− 8 = 547 data

points. The first few lines from the data frame are shown in Table 1; “o” refers to object

relative and “s” to subject relative.

row subj item so rt
1 1 13 o 1561
2 1 6 s 959
3 1 5 o 582
4 1 9 o 294
5 1 14 s 438
6 1 4 s 286
...

...
...

...
547 9 11 o 350

Table 1
First six rows, and the last row, of the data-set of Gibson and Wu (2013), as they appear
in the data frame.

Fixed Effects Model

We begin by making the working assumption that the dependent variable of reading

time rt on the head noun is approximately log-normally distributed (Rouder, 2005). This

assumes that the logarithm of rt is approximately normally distributed. The logarithm of

the reading times, log rt, has some unknown grand mean β0. The mean of the log-normal

distribution of rt is the sum of β0 and an adjustment β1so whose magnitude depends on

the categorical predictor so, which has the value −1 when rt is from the subject relative
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condition, and 1 when rt is from the object relative condition. One way to write the model

in terms of the logarithm of the reading times is as follows:

log rti = β0 + β1soi + εi (1)

This is a fixed effects model. The index i represents the i-th row in the data-frame (in this

case, i ∈ {1, . . . , 547}); the term εi represents the error in the i-th row. With the above ±1

contrast coding, β0 represents the grand mean of log rt, regardless of relative clause type.

It can be estimated by simply taking the grand mean of log rt. The parameter β1 is an

adjustment to β0 so that the mean of log rt is β0+1β1 when log rt is from the object relative

condition, and β0 − 1β1 when log rt is from the subject relative condition. Notice that 2β1

will be the difference in the means between the object and subject relative clause conditions.

Together, β0 and β1 make up the part of the model which characterizes the effect of the

experimental manipulation, relative clause type (so), on the dependent variable rt. We

call this a fixed effects model because we estimate the parameters β0 and β1, which do not

vary from subject to subject or from item to item. In R, this would correspond to fitting

a simple linear model using the lm function, with so as predictor and log rt as dependent

variable.

The error εi is positive when log rti is greater than the expected value µi = β0 +β1soi

and negative when log rti is less than the expected value µi. Thus, the error is the amount

by which the expected value differs from actually observed value. We assume that the εi

are independently and identically distributed as a normal distribution with mean zero and

unknown standard deviation σe. Stan parameterizes the normal distribution by the mean

and standard deviation, and we follow that convention here by writing the distribution of

ε as N (0, σe). (This is different from the standard notation in statistics, where the normal

distribution is defined in terms of mean and variance.) A consequence of the assumption

that the errors are identically distributed is that the distribution of ε should, at least

approximately, have the same shape as the normal distribution. Independence implies that
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1 # read in data:
2 rDat <- read.table("gibsonwu2012data.txt", header = TRUE)
3 # subset critical region:
4 rDat <- subset(rDat, region == "headnoun")
5

6 # convert subjects and items to factors
7 rDat$subj <- factor(rDat$subj)
8 rDat$item <- factor(rDat$item)
9 # contrast coding of type (-1 vs. 1)

10 rDat$so <- ifelse(rDat$type == "subj-ext", -1, 1)
11

12 # create data as list for Stan, and fit model:
13 stanDat <- list(rt = rDat$rt, so = rDat$so, N = nrow(rDat))
14 library(rstan)
15 fixEfFit <- stan(file = "fixEf.stan", data = stanDat,
16 iter = 2000, chains = 4)
17

18 # plot traceplot, excluding warm-up:
19 traceplot(fixEfFit, pars = c("beta", "sigma_e"),
20 inc_warmup = FALSE)
21

22 # examine quantiles of posterior distributions:
23 print(fixEfFit, pars = c("beta", "sigma_e"),
24 probs = c(0.025, 0.5, 0.975))
25

26 # examine quantiles of parameter of interest:
27 beta1 <- unlist(extract(fixEfFit, pars = "beta[2]"))
28 print(quantile(beta1, probs = c(0.025, 0.5, 0.975)))

Listing 1: R code for the fixed effects model.

there should be no correlation between the errors—this is not the case in the data, since we

have multiple measurements from each subject and multiple measurements from each item.

This introduces correlation between errors.

Setting up the data. We now fit the fixed effects model. For the following discus-

sion, refer to the code in Listings 1 (R code) and 2 (Stan code). First, we read the Gibson

and Wu (2013) data into a data frame rDat in R, and then subset the critical region (List-

ing 1, lines 2 and 4). Next, we create a data list stanDat for Stan, which contains the data

(line 13). Stan requires the data to be of type list; this is different from the lm and lmer

functions, which assume that the data are of type data-frame.

Defining the model. The next step is to write the Stan model in a text file with

extension .stan. A Stan model consists of several blocks. A block is a set of statements
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1 data {
2 int<lower=1> N; //number of data points
3 real rt[N]; //reading time
4 real<lower=-1,upper=1> so[N]; //predictor
5 }
6 parameters {
7 vector[2] beta; //intercept and slope
8 real<lower=0> sigma_e; //error sd
9 }

10 model {
11 real mu;
12 for (i in 1:N){ // likelihood
13 mu = beta[1] + beta[2] * so[i];
14 rt[i] ~ lognormal(mu, sigma_e);
15 }
16 }

Listing 2: Stan code for the fixed effects model.

surrounded by brackets and preceded by the block name. We open up a file fixEf.stan in

a text editor and write down the first block, the data block, which contains the declaration

of the variables in the data object stanDat (Listing 2, lines 1–5). The strings real and

int specify the data type for each variable. A real variable is a real number, and an int

variable is an integer. For instance, N is the integer number of data points. The variables

so and rt are arrays of length N whose entries are real. We constrain a variable to take

only a subset of the values allowed by its type (e.g., int or real) by specifying in brackets

lower and upper bounds (e.g. <lower=-1,upper=1>). The variables in the data block, N,

rt, and so, correspond to the values of the list stanDat in R. The list stanDat must match

the variables of the data block in case, but the order of variable declarations in the data

block does not necessarily have to match the order of values in the list stanDat.

Next, we turn to the parameters block, where the parameters are defined (Listing 2,

lines 6–9). These are the model parameters, for which posterior distributions are of interest.

The fixed effects model has three parameters: the fixed intercept β0, the fixed slope β1, and

the standard deviation σe of the error. We store the fixed effects β0 and β1 in a vector,

which contains variables of type real. Although we called our parameters β0 and β1 in the

fixed effects model, in Stan, these are contained in the vector beta with indices 1 and 2.
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Thus, β0 is in beta[1] and β1 in beta[2]. The third parameter, the standard deviation

σe of the error (sigma_e), is also defined here, and is constrained to have lower bound zero

(Listing 2, line 8).

Finally, the model block specifies the prior distribution and the likelihood (Listing 2,

lines 10–16). To understand the Stan syntax, compare the Stan code above to the spec-

ification of the fixed effects model. The Stan code literally writes out this model. The

block begins with a local variable declaration for mu, which is the mean of rt conditional

on whether so is −1 for the subject relative condition or 1 for the object relative condition.

The for-loop assigns to mu the mean for the log-normal distribution of rt[i], condi-

tional on the value of the predictor so[i] for relative clause type. The statement rt[i]

~ lognormal(mu, sigma_e) in a for-loop means that the logarithm of each value in the

vector rt is normally distributed with mean mu and standard deviation sigma_e.2

The prior distributions on the parameters beta and sigma_e would ordinarily be de-

clared in the model block. If we don’t declare any prior, it is assumed that they have a

uniform prior distribution. Note that the distribution of sigma_e is truncated at zero be-

cause sigma_e is constrained to be positive (see the declaration real<lower=0> sigma_e;

in the parameters block). This means that the error has a uniform prior with lower bound

zero.3

Running the model. We save the file fixEf.stan which contains the Stan code

and fit the model in R with the function stan from the package rstan (Listing 1, lines 15–

16). This call to the function stan will compile a C++ program which produces samples

from the joint posterior distribution of the fixed intercept β0, the fixed slope β1, and the

standard deviation σe of the error.

The function generates four chains of samples. AMarkov chain is a stochastic process,
2One could have equally well log-transformed the reading time and assumed a normal distribution instead

of the lognormal.
3This is an example of an improper prior, which is not a probability distribution. Although all the

improper priors used in this tutorial produce posteriors which are probability distributions, this is not true
in general, and care should be taken in using improper priors (Gelman, 2006). In the present case, a Cauchy
prior truncated to have a lower bound of 0 could alternatively be defined for the standard deviation. For
example code using such a prior, see the KBStan vignette in the RePsychLing package (Baayen, Bates,
Kliegl, & Vasishth, 2015).
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in which random values are sequentially generated. Each sample depends on the previous

one. Different chains are independent of each other such that running a Stan model with

four chains is equivalent to running four (identically specified) Stan models with one chain

each. For the model used here, each of the four chains contains 2000 samples of each

parameter.

Samples 1 to 1000 are part of the warmup, where the chains settle into the posterior

distribution. We analyze samples 1001 to 2000. The result is saved to an object fixEfFit

of class stanFit.

The warmup samples, also known as the burn-in period, are intended to allow the

MCMC sampling process to converge to the posterior distribution. Once a chain has con-

verged, the samples remain quite stable.4 Before the MCMC sampling process, the number

of interations necessary for convergence is unknown. Therefore, all warmup samples are dis-

carded. This is necessary since the initial values of the parameters might have low posterior

probability and might therefore bias the result.

Besides the number of samples, we specified sampling in four different chains. Each

chain is independent from the others and starts with different random initial values. Run-

ning multiple chains has two advantages over a single chain. First, the independent chains

are helpful for diagnostics. If all chains have converged to the same region of the parameter

space, it is more likely that they converged to the posterior distribution. Second, running

multiple chains allows for parallel simulations on multiple cores.

Evaluating model convergence. The number of iterations necessary for conver-

gence to the posterior distribution depends on the number of parameters. The probability

to reach convergence increases with the number of iterations. Hence, we generally rec-

ommend using a large number of iterations although the process might converge after a

smaller number of iterations. In the examples in the present paper, we use 1000 iterations

for warmup and another 1000 iterations for analyzing the posterior distribution. For more

complex models, more iterations might be necessary before the MCMC sampling process

4See, Gelman et al. (2014) for a precise discussion of convergence.
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Figure 2 . Trace plots of the fixed intercept β0 (beta[1]), the fixed slope β1 (beta[2]), and
the standard deviation σe (sigma_e) of the error for the fixed effects model.

Different colours denote different chains.

converges to the posterior distribution. Although there are ways to determine how long the

simulation needs to be run and the number of warmup iterations given the type of posterior

distribution (Raftery & Lewis, 1992), we illustrate below practical convergence diagnostics

for the evaluation of convergence in the samples.

The first step after running the function stan should be to look at the trace plot of

each chain after warmup, using the command shown in Listing 1, lines 13 and 14 (func-

tion traceplot). We choose the parameters βi and σe (pars = c("beta", "sigma_e"))

and omit the warmup samples (inc_warmup = FALSE). A trace plot has the chains plotted

against the sample number. In Figure 2, we see three different chains plotted against sample

number going from 1001 to 2000. If the trace plot looks like a “fat, hairy caterpillar” (Lunn,

Jackson, Spiegelhalter, Best, & Thomas, 2012) which does not bend, this suggests that the

chains have converged to the posterior distribution.

The second diagnostic which we use to assess whether the chains have converged to the

posterior distribution is the statistic Rhat. Each parameter has the Rhat statistic associated

with it (Gelman & Rubin, 1992); this is essentially the ratio of between-chain variance to
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within-chain variance (analogous to ANOVA). The Rhat statistic should be approximately

1 ± 0.1 if the chain has converged. This is shown in the rightmost column of the model

summary, printed in Table 2. The information can be otained with print(fixEfFit),

where fixEfFit is the object of type stan.model returned by the function stan. For

example, see Listing 1, lines 23–24.

Having satisfied ourselves that the chains have converged, next we turn to examine

this posterior distribution. If there is an indication that convergence has not happened,

then, assuming that the model has no errors in it, increasing the number of samples usually

resolves the issue.

parameter mean 2.5% 97.5% R̂

β̂0 6.06 6.01 6.12 1
β̂1 −0.04 −0.09 0.02 1
σ̂e 0.60 0.56 0.64 1

Table 2
Credible intervals and R-hat statistic in the Gibson and Wu data.

Summarizing the result. The result of fitting the fixed effects model is the joint

posterior probability distribution of the parameters β0, β1, and σe. The distribution is joint

because each of the 4000 (4 chains ×1000 post-warmup iterations) posterior samples which

the call to stan generates is a vector θ = (β0, β1, σe)ᵀ of three model parameters. Thus,

the object fixEfFit contains 4000 parameter vectors θ which occupy a three dimensional

space. Already in three dimensions, the posterior distribution becomes difficult to view in

one graph. Figure 3 displays the joint posterior probability distribution of the elements of θ

by projecting it down onto planes. In each of the three planes (lower triangular scattergrams)

we see how one parameter varies with respect to the other. In the diagonal histograms, we

visualize the marginal probability distribution of each parameter separately from the other

parameters.

Of immediate interest is the marginal distribution of the slope β1. Figure 3 suggests

that most of the posterior probability density of β1 is located below zero. One quantitative

way to assess the posterior probability distribution is to examine its quantiles; see Table 2.
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Figure 3 . Samples and level curves of the bivariate joint posterior probability distribution
of each element of θ with each other element (lower triangular) and marginal posterior
probability distribution of each element of θ separately (diagonal). All parameters are on
the log scale, but note the difference in length scale between β1 on the one hand and β0
and σe on the other.

Here, it is useful to define the concept of the credible interval. The (1−α)% credible interval

contains (1 − α)% of the posterior probability density. Unlike the (1 − α)% confidence

interval from the frequentist setting, the (1 − α)% credible interval represents the range

within which we are (1 − α)% certain that the true value of the parameter lies, given the

prior and the data (see Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2015 for further

discussion on confidence intervals vs credible intervals). A common convention is to use the

interval ranging from the 2.5th to 97.5th percentiles. We follow this convention to obtain

95% credible intervals in Table 2. Lines 27–28 of Listing 1 illustrate how these quantiles of

the posterior distribution of β1 (beta[2]) can be computed.
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The sample distribution of β1 indicates that approximately 94% of the posterior

probability density is below zero, suggesting that there is some evidence that object relatives

are easier to process than subject relatives in Chinese, given the Gibson and Wu data.

However, since the 95% credible interval includes zero, we may be reluctant to draw this

conclusion. We will say more about the evaluation of research hypotheses further on, but

it is important to note here that the fixed effects model presented above is in any case not

appropriate for the present data. The independence assumption is violated for the errors

because we have repeated measures from each subject and from each item. Linear mixed

models extend the linear model to solve precisely this problem.

Varying Intercepts Mixed Effects Model

The fixed effects model is inappropriate for the Gibson and Wu data because it does

not take into account the fact that we have multiple measurements for each subject and item.

As mentioned above, these multiple measurements lead to a violation of the independence

of errors assumption. Moreover, the fixed effects coefficients β0 and β1 represent means over

all subjects and items, ignoring the fact that some subjects will be faster and some slower

than average; similarly, some items will be read faster than average, and some slower.

In linear mixed models, we take this by-subject and by-item variability into account

by adding adjustment terms u0j and w0k, which adjust β0 for subject j and item k. This

partially decomposes εi into a sum of the terms u0j and w0k, which are adjustments to

the intercept β0 for the subject j and item k associated with rti. If subject j is slower

than the average of all the subjects, uj would be some positive number, and if item k is

read faster than the average reading time of all the items, then wk would be some negative

number. Each subject j has their own adjustment u0j , and each item its own w0k. These

adjustments u0j and w0k are called random intercepts by Pinheiro and Bates (2000) and

varying intercepts by Gelman and Hill (2007), and by adjusting β0 by these we account for

the variability by speaker and by item.

We assume that these adjustments are normally distributed around zero with un-
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known standard deviation: u0 ∼ N (0, σu) and w0 ∼ N (0, σw). We now have three sources

of variance in this model: the standard deviation of the errors σe, the standard deviation

of the by-subject random intercepts σu, and the standard deviation of the by-item varying

intercepts σw. We will refer to these as variance components.

We now express the logarithm of reading time, which was produced by subjects j ∈

{1, . . . , 37} reading items k ∈ {1, . . . , 15}, in conditions i ∈ {1, 2} (1 refers to subject

relatives, 2 to object relatives), as the following sum. Notice that we are now using a

slightly different way to describe the model, compared to the fixed effects model. We

are using indices for subject, item, and condition to identify unique rows. Also, instead

of writing β1soi, we index β1 by the condition i. This follows the notation used in the

textbook on linear mixed models, written by the authors of nlme (Pinheiro & Bates, 2000),

the precursor to lme4.

log rtijk = β0 + β1i︸︷︷︸
β1soi

+u0j + w0k + εijk (2)

This is an LMM, and more specifically a varying intercepts model. The coefficient β1i

is the one of primary interest; it will have some mean value −β1 for subject relatives and β1

for object relatives due to the contrast coding. So, if our posterior mean for β1 is negative,

this would suggest that object relatives are read faster than subject relatives.

We fit the varying intercepts model in Stan in much the same way as the fixed effects

model. For the following discussion, consult Listing 3 for the R code used to run the model,

and Listing 4 for the Stan code.

Setting up the data. The data which we prepare for passing on to the function

stan now includes subject and item information (Listing 3, lines 2–8). The data block in

the Stan code accordingly includes the number J, K of subjects and items, respectively, as

well as subject and item identifiers subj and item (Listing 4, lines 5–8).

Defining the model. The random intercepts model, shown in Listing 4, still has

the fixed intercept β0, the fixed slope β1, and the standard deviation σe of the error, and
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1 # format data for Stan:
2 stanDat <- list(subj = as.integer(rDat$subj),
3 item = as.integer(rDat$item),
4 rt = rDat$rt,
5 so = rDat$so,
6 N = nrow(rDat),
7 J = nlevels(rDat$subj),
8 K = nlevels(rDat$item))
9

10 # Sample from posterior distribution:
11 ranIntFit <- stan(file = "ranInt.stan", data = stanDat,
12 iter = 2000, chains = 4)
13 # Summarize results:
14 print(ranIntFit, pars = c("beta", "sigma_e", "sigma_u", "sigma_w"),
15 probs = c(0.025, 0.5, 0.975))
16

17 beta1 <- unlist(extract(ranIntFit, pars = "beta[2]"))
18 print(quantile(beta1, probs = c(0.025, 0.5, 0.975)))
19

20 # Posterior probability of beta1 being less than 0:
21 mean(beta1 < 0)

Listing 3: R code for running the random intercepts model, the varying intercepts model.
Note that lines 1–10 and 14 of Listing 1 must be run first.

we specify these in the same way as we did for the fixed effects model. In addition, the

varying intercepts model has by-subject varying intercepts u0j for j ∈ {1, . . . , J} and by-

item varying intercepts w0k for k ∈ {1, . . . ,K}. The standard deviation of u0 is σu and the

standard deviation of w0 is σw. We again constrain the standard deviations to be positive.

The model block places normal distribution priors on the varying intercepts u0 and

w0. We implicitly place uniform priors on sigma_u, sigma_w, and sigma_e by omitting

them from the model block. As pointed out earlier for sigma_e, these prior distributions

have lower bound zero because of the constraint <lower=0> in the variable declarations.

The statement about how each row in the data is generated is shown in Listing 4, lines

26–29; here, both the fixed effects and the varying intercepts for subjects and items deter-

mine the expected value mu. The vector u has varying intercepts for subjects. Likewise, the

vector w has varying intercepts for items. The for-loop in lines 26–29 now adds u[subj[i]]

+ w[item[i]] to the mean beta[1] of the distribution of rt[i]. These are subject- and

item-specific adjustments to the fixed-effects intercept beta[1]. The term u[subj[i]] is
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1 data {
2 int<lower=1> N; //number of data points
3 real rt[N]; //reading time
4 real<lower=-1, upper=1> so[N]; //predictor
5 int<lower=1> J; //number of subjects
6 int<lower=1> K; //number of items
7 int<lower=1, upper=J> subj[N]; //subject id
8 int<lower=1, upper=K> item[N]; //item id
9 }

10

11 parameters {
12 vector[2] beta; //fixed intercept and slope
13 vector[J] u; //subject intercepts
14 vector[K] w; //item intercepts
15 real<lower=0> sigma_e; //error sd
16 real<lower=0> sigma_u; //subj sd
17 real<lower=0> sigma_w; //item sd
18 }
19

20 model {
21 real mu;
22 //priors
23 u ~ normal(0, sigma_u); //subj random effects
24 w ~ normal(0, sigma_w); //item random effects
25 // likelihood
26 for (i in 1:N){
27 mu = beta[1] + u[subj[i]] + w[item[i]] + beta[2] * so[i];
28 rt[i] ~ lognormal(mu, sigma_e);
29 }
30 }

Listing 4: Stan code for running the random intercepts model, the varying intercepts model.

the identifier of the subject for row i in the data-frame; thus, if i = 1, then subj[1] = 1,

and item[1] = 13 (see Table 1).

Running the model. In R, we pass the list stanDat of data to stan, which compiles

a C++ program to sample from the posterior distribution of the random intercepts model.

Stan samples from the posterior distribution of the model parameters, including the varying

intercepts u0j and w0k for each subject j ∈ {1, . . . , J} and item k ∈ {1, . . . ,K}.

It may be helpful to rewrite the model in mathematical form following the Stan syntax

(Gelman & Hill, 2007 use a similar notation); the Stan statements are slightly different from

the way that we expressed the random intercepts model. Defining i as the row number in

the data frame, i.e., i ∈ {1, . . . , 547}, we can write:
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Likelihood :

µi = β0 + u[subj[i]] + w[item[i]] + β1 · soi

rti ∼ LogNormal(µi, σe)

Priors :

u ∼ Normal(0, σu) w ∼ Normal(0, σw)

σe, σu, σw ∼ Uniform(0,∞)

β ∼ Uniform(−∞,∞)

(3)

Here, notice that the i-th row in the statement for µ identifies the subject identifier

(j) ranging from 1 to 37, and the item identifier (k) ranging from 1 to 15.

Summarizing the results. The posterior distributions of each of the parameters

is summarized in Table 3. The R̂ values suggest that model has converged because they

equal one. Note also that compared to Model 1, the estimate of σe is smaller; this is because

the other two variance components are now being estimated as well. Note that the 95%

credible interval for the estimate β̂1 includes zero; thus, there is some evidence that object

relatives are easier than subject relatives, but we cannot exclude the possibility that there

is no difference in the reading times between the two relative clause types.

parameter mean 2.5% 97.5% R̂

β̂0 6.06 5.92 6.20 1
β̂1 −0.04 −0.08 0.01 1
σ̂e 0.52 0.49 0.56 1
σ̂u 0.26 0.19 0.34 1
σ̂w 0.20 0.12 0.33 1

Table 3
The quantiles and the R̂ statistic in the Gibson and Wu data, the varying intercepts model.
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Varying Intercepts, Varying Slopes Mixed Effects Model

The varying intercepts model accounted for having multiple measurements from each

subject and item by introducing random intercepts by subject and by item. This reflects

that some subjects will be faster and some slower than average, and that some items will

be read faster than average, and some slower. Consider now that not only does reading

speed differ by subject and by item, but also the slowdown in the object relative condition

may differ in magnitude by subject and item. This amounts to a different effect size for

so by subject and item. Although such individual-level variability was not of interest in

the original paper by Gibson and Wu, it could be of theoretical interest (see, for example,

Kliegl, Wei, Dambacher, Yan, & Zhou, 2010). Furthermore, as Barr et al. (2013) point out,

it is in principle desirable to include a fixed effect factor in the random effects as a varying

slope if the experiment design is such that subjects see both levels of the factor (cf. Baayen,

Vasishth, Bates, & Kliegl, 2016; Bates, Kliegl, et al., 2015; Matuschek et al., 2016).

Adding varying slopes. In order to express this structure in the LMM, we must

introduce varying slopes. The first change is to let the size of the effect for so vary by subject

and by item. The goal here is to express that some subjects exhibit greater slowdowns in

the object relative condition than others. We let effect size vary by subject and by item by

including in the model by-subject and by-item varying slopes which adjust the fixed slope

β1 in the same way that the by-subject and by-item varying intercepts adjust the fixed

intercept β0. This adjustment of the slope by subject and by item is expressed by adjusting

β1 by adding two terms u1j and w1k. These are random or varying slopes, and by adding

them we account for how the effect of relative clause type varies by subject j and by item

k. We now express the logarithm of reading time, which was produced by subject j reading

item k, as the following sum. The subscript i indexes the conditions.

log rtijk = β0 + u0j + w0k︸ ︷︷ ︸
varying intercepts

+β1i + u1ij + w1ik︸ ︷︷ ︸
varying slopes

+εijk (4)

This is a varying intercepts, varying slopes model.
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1 # 1. Compile and fit model
2 ranIntSlpNoCorFit <- stan(file="ranIntSlpNoCor.stan", data = stanDat,
3 iter = 2000, chains = 4)
4

5 # posterior probability of beta 1 being less
6 # than 0:
7 beta1 <- unlist(extract(ranIntSlpNoCorFit, pars = "beta[2]"))
8 print(quantile(beta1, probs = c(0.025, 0.5, 0.975)))
9 mean(beta1 < 0)

Listing 5: R code for running the varying intercepts, varying slopes model. Note that lines
1-10 and 14 of Listing 1 and lines 2–8 of Listing 3 must be run first.

Setting up the data. Listing 5 contains the R code for fitting the varying inter-

cepts, varying slopes model. The data which we pass to the function stan is the same as

for the varying intercepts model. This contains subject and item information (Listing 3,

lines 2–8).

Defining the model. Listing 6 contains the Stan code for the varying intercepts,

varying slopes model. The data block is the same as in the varying intercepts model, but the

parameters block contains several new parameters. This time we have the vector sigma_u,

which contains the standard deviations (σu0, σu1)ᵀ of the by-subject random intercepts and

slopes. The by-subject random intercepts are in the first row of the 2×J matrix u, and

the by-subject random slopes are in the second row of u. Similarly, the vector sigma_w

contains the standard deviations (σw0, σw1)ᵀ of the by-item random intercepts and slopes.

The by-item random intercepts are in the first row of the 2×K matrix w, and the by-item

random slopes are in the second row of w.

In the model block, we place priors on the parameters declared in the parameters

block (Listing 6, lines 23–26), and define how these parameters generate log rt (List-

ing 6, lines 28–32). The statement u[1] ~ normal(0,sigma_u[1]); specifies a normal

prior for the by-subject random intercepts in the first row of u, and the statement u[2]

~ normal(0,sigma_u[2]); does the same for the by-subject random slopes in the second

row of u. The same goes for the by-item random intercepts and slopes. Thus, there is a



BAYESIAN LINEAR MIXED MODELS: A TUTORIAL 24

1 data {
2 int<lower=1> N; //number of data points
3 real rt[N]; //reading time
4 real<lower=-1,upper=1> so[N]; //predictor
5 int<lower=1> J; //number of subjects
6 int<lower=1> K; //number of items
7 int<lower=1, upper=J> subj[N]; //subject id
8 int<lower=1, upper=K> item[N]; //item id
9 }

10

11 parameters {
12 vector[2] beta; //intercept and slope
13 real<lower=0> sigma_e; //error sd
14 matrix[2,J] u; //subj intercepts, slopes
15 vector<lower=0>[2] sigma_u; //subj sd
16 matrix[2,K] w; //item intercepts, slopes
17 vector<lower=0>[2] sigma_w; //item sd
18 }
19

20 model {
21 real mu;
22 //priors
23 u[1] ~ normal(0,sigma_u[1]); //subj intercepts
24 u[2] ~ normal(0,sigma_u[2]); //subj slopes
25 w[1] ~ normal(0,sigma_w[1]); //item intercepts
26 w[2] ~ normal(0,sigma_w[2]); //item slopes
27 //likelihood
28 for (i in 1:N){
29 mu = beta[1] + u[1,subj[i]] + w[1,item[i]]
30 + (beta[2] + u[2,subj[i]] + w[2,item[i]])*so[i];
31 rt[i] ~ lognormal(mu,sigma_e);
32 }
33 }

Listing 6: Stan code for the varying intercepts, varying slopes model.

prior normal distribution for each of the random effects. These distributions are centered

on zero and have different standard deviations.

Running the model. We can now fit the varying intercepts, varying slopes model

in R (see Listing 5). We see in the model summary of Table 4, obtained as before using

print(ranIntSlpNoCorFit), that the model has converged, and that the credible interval

of the parameter of interest, β1, still includes zero. In fact, the posterior probability of the

parameter being less than zero is now 90%.
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parameter mean 2.5% 97.5% R̂

β̂0 6.06 5.92 6.20 1
β̂1 −0.04 −0.09 0.02 1
σ̂e 0.52 0.48 0.55 1
σ̂u0 0.25 0.18 0.34 1
σ̂u1 0.06 0.01 0.13 1
σ̂w0 0.20 0.12 0.32 1
σ̂w1 0.04 0.01 0.11 1

Table 4
The quantiles and the R̂ statistic in the Gibson and Wu data, the varying intercepts, varying
slopes model.

Correlated Varying Intercepts, Varying Slopes Mixed Effects Model

Consider now that subjects who are faster than average (i.e., who have a negative

varying intercept) may exhibit greater slowdowns when they read object relatives compared

to subject relatives. Similarly, it is in principle possible that items which are read faster

(i.e., which have a large negative varying intercept) may show a greater slowdown in the

object relative condition than in the subject relative condition. The opposite situation

could also hold: faster subjects may show smaller SR-OR effects, or items read faster may

show smaller SR-OR effects. This suggests the possibility of correlations between random

intercepts and random slopes.

In order to express this structure in the LMM, we must model correlation between

the varying intercepts and varying slopes. The model equation, repeated below, is the same

as before.

log rtijk = β0 + u0j + w0k︸ ︷︷ ︸
varying intercepts

+β1 + u1ij + w1ik︸ ︷︷ ︸
varying slopes

+εijk

Introducing correlation between the varying intercepts and varying slopes makes this a

correlated varying intercepts, varying slopes model.

Defining a variance-covariance matrix for the random effects. Modeling

the correlation between varying intercepts and slopes means defining a covariance rela-

tionship between by-subject varying intercepts and slopes, and between by-items varying
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intercepts and slopes. This amounts to adding an assumption that the by-subject slopes

u1 could in principle have some correlation with the by-subject intercepts u0; and by-item

slopes w1 with by-item intercept w0. We explain this in detail below.

Let us assume that the adjustments u0 and u1 are normally distributed with mean zero

and some variances σ2
u0 and σ2

u1, respectively; also assume that u0 and u1 have correlation

ρu. It is standard to express this situation by defining a variance-covariance matrix Σu,

sometimes called simply a variance matrix. This matrix has the variances of u0 and u1

respectively along the diagonal, and the covariances on the off-diagonal. The covariance

Cov(X,Y ) between two variables X and Y is defined as the product of their correlation ρ

and their standard deviations σX and σY : Cov(X,Y ) = ρσXσY .

Σu =

 σ2
u0 ρuσu0σu1

ρuσu0σu1 σ2
u1

 (5)

Similarly, we can define a variance-covariance matrix Σw for items, using the standard

deviations σw0, σw1, and the correlation ρw.

Σw =

 σ2
w0 ρwσw0σw1

ρwσw0σw1 σ2
w1

 (6)

The standard way to express this relationship between the subject intercepts u0 and slopes

u1, and the item intercepts w0 and slopes w1, is to define a bivariate normal distribution as

follows: u0

u1

 ∼ N

0

0

 ,Σu

 ,
w0

w1

 ∼ N

0

0

 ,Σw

 (7)

An important point to notice here is that any n×n variance-covariance matrix has associated

with it an n × n correlation matrix. In the subject variance-covariance matrix Σu, the

correlation matrix is  1 ρ01

ρ01 1

 (8)
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1 ranIntSlpFit <- stan(file = "ranIntSlp.stan", data = stanDat,
2 iter = 2000, chains = 4)
3

4 # posterior probability of beta 1 being less
5 # than 0:
6 beta1 <- unlist(extract(ranIntSlpFit, pars = "beta[2]"))
7 print(quantile(beta1, probs = c(0.025, 0.5, 0.975)))
8 mean(beta1 < 0)
9

10 ## Use the L matrices the compute the correlation matrices
11 # L matrices
12 L_u <- extract(ranIntSlpFit, pars = "L_u")$L_u
13 L_w <- extract(ranIntSlpFit, pars = "L_w")$L_w
14

15 # correlation parameters
16 cor_u <- apply(L_u, 1, function(x) tcrossprod(x)[1, 2])
17 cor_w <- apply(L_w, 1, function(x) tcrossprod(x)[1, 2])
18

19 print(signif(quantile(cor_u, probs = c(0.025, 0.5, 0.975)), 2))
20 print(mean(cor_u))
21 print(signif(quantile(cor_w, probs = c(0.025, 0.5, 0.975)), 2))
22 print(mean(cor_w))

Listing 7: R code for running the correlated varying intercepts, varying slopes model. Note
that lines 1–10 and 14 of Listing 1 and lines 2–8 of Listing 3 must be run first.

In a correlation matrix, the diagonal elements will always be 1, because a variable always

has a correlation of 1 with itself. The off-diagonal entries will have the correlations between

the variables. Note also that, given the variances σ2
u0 and σ2

u1, we can always recover

the variance-covariance matrix, if we know the correlation matrix. This is because of the

above-mentioned definition of covariance.

A correlation matrix can be factored into a matrix square root. Given a correlation

matrix C, we can obtain its square root matrix L. The square root of a matrix is such that

we can square L to get the correlation matrix C back. In the next section, we see that the

matrix square root is important for generating the random intercepts and slopes because of

its role in generating correlated random variables. Appendix A describes one method for

obtaining L, namely, the Cholesky factorization.

Defining the model. With this background, implementing the varying intercepts,

varying slopes model is straightforward; see Listing 7 for the R code and Listing 8 for the
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1 data {
2 int<lower=1> N; //number of data points
3 real rt[N]; //reading time
4 real<lower=-1, upper=1> so[N]; //predictor
5 int<lower=1> J; //number of subjects
6 int<lower=1> K; //number of items
7 int<lower=1, upper=J> subj[N]; //subject id
8 int<lower=1, upper=K> item[N]; //item id
9 }

10

11 parameters {
12 vector[2] beta; //intercept and slope
13 real<lower=0> sigma_e; //error sd
14 vector<lower=0>[2] sigma_u; //subj sd
15 cholesky_factor_corr[2] L_u;
16 matrix[2,J] z_u;
17 vector<lower=0>[2] sigma_w; //item sd
18 cholesky_factor_corr[2] L_w;
19 matrix[2,K] z_w;
20 }
21

22 transformed parameters{
23 matrix[2,J] u;
24 matrix[2,K] w;
25

26 u = diag_pre_multiply(sigma_u, L_u) * z_u; //subj random effects
27 w = diag_pre_multiply(sigma_w, L_w) * z_w; //item random effects
28 }
29

30 model {
31 real mu;
32

33 //priors
34 L_u ~ lkj_corr_cholesky(2.0);
35 L_w ~ lkj_corr_cholesky(2.0);
36 to_vector(z_u) ~ normal(0,1);
37 to_vector(z_w) ~ normal(0,1);
38 //likelihood
39 for (i in 1:N){
40 mu = beta[1] + u[1,subj[i]] + w[1,item[i]]
41 + (beta[2] + u[2,subj[i]] + w[2,item[i]]) * so[i];
42 rt[i] ~ lognormal(mu, sigma_e);
43 }
44 }

Listing 8: The Stan code for the correlated varying intercepts, varying slopes model.
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Stan code. The R list stanDat is identical to the one of the varying intercepts, varying

slopes model, and therefore we will focus on the Stan code. The data block is the same as

before. The parameters block contains several new parameters. As before, we have vectors

sigma_u and sigma_w, which are (σu0, σu1)ᵀ and (σw0, σw1)ᵀ. The variables L_u, L_w, z_u,

and z_w, which have been declared in the parameters block, play a role in the transformed

parameters block, a block which we did not use in the earlier models. The transformed

parameters block generates the by-subject and by-item varying intercepts and slopes using

the parameters sigma_u, L_u, z_u, sigma_w, L_w, and z_w. The J pairs of by-subject

varying intercepts and slopes are in the rows of the J × 2 matrix u, and the K pairs of

by-item varying intercepts and slopes are in the rows of the K × 2 matrix w.

These varying intercepts and slopes are obtained through the statements

diag_pre_multiply(sigma_u, L_u) * z_u and diag_pre_multiply(sigma_w, L_w) *

z_w. This statement generates varying intercepts and slopes from the joint probability

distribution of Equation 7. The parameters L_u, L_w are the matrix square roots (Cholesky

factor) of the subject and item correlation matrices, respectively, and z_u, and z_w are

N (0, 1) random variables. Appendix A has details on how this generates correlated random

intercepts and slopes.

In the model block, we place priors on the parameters declared in the param-

eters block, and define how these parameters generate log rt (Listing 8, lines 30–43).

The statement L_u ~ lkj_corr_cholesky(2.0) specifies a prior for the square root L_u

(Cholesky factor) of the correlation matrix. This prior is best interpreted with respect to

the square of L_u, that is, with respect to the correlation matrix. The statement L_u ~

lkj_corr_cholesky(2.0) implicitly places the lkj prior (so-called because it was first de-

scribed by Lewandowski, Kurowicka, & Joe, 2009) with shape parameter ν = 2.0 on the

correlation matrices  1 ρu

ρu 1

 and

 1 ρw

ρw 1

 , (9)

where ρu is the correlation between the by-subject varying intercept σu0 and slope σu1
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(cf. the covariance matrix of Equation 5) and ρw is the correlation between the by-item

varying intercept σw0 and slope σw1. The lkj distribution is a probability distribution over

correlation matrices. The lkj distribution has one shape parameter ν, which controls the

prior correlation. If ν > 1, then the probability density becomes concentrated about the

2× 2 identity matrix.5 This expresses the prior belief that the correlations are not large. If

ν = 1, then the probability density function is uniform over all 2 × 2 correlation matrices.

If 0 < ν < 1, then the probability density has a trough at the 2 × 2 identity matrix. In

our model, we choose ν = 2.0. This choice implies that the correlations on the off-diagonal

are near zero, reflecting the fact that we have no prior information about the correlation

between intercepts and slopes.

The statement to_vector(z_u) ~ normal(0,1) places a normal distribution with

mean zero and standard deviation one on z_u.6 The same goes for z_w. The for-loop assigns

to mu the mean of the log-normal distribution from which we draw rt[i], conditional on

the value of the predictor so[i] for relative clause type and the subject and item identity.

Running the model. We can now fit the varying intercepts, varying slopes model;

see Listing 7 for the code. We see in the model summary in Table 5 that the model has

converged,7 and that the credible intervals of the parameter of interest, β1, still includes

zero. In fact, the posterior probability of the parameter being less than zero is now 90%.

This information can be extracted as shown in Listing 7, lines 6–8.

Figure 4 plots the varying slope’s posterior distribution against the varying intercept’s

posterior distribution for each subject. The correlation between u0 and u1 is negative, as

captured by the marginal posterior distributions of the correlation ρu between u0 and u1.

Thus, Figure 4 suggests that the slower a subject’s reading time is on average, the slower

they read object relatives. In contrast, Figure 4 shows no clear pattern for the by-item

varying intercepts and slopes. The broader distribution of the correlation parameter for

5The lkj prior can scale up to correlation matrices larger than 2 × 2.
6The function to_vector means that we rearrange the matrix z_u as a vector in order to place the normal

distribution on a vector. This makes the code run faster.
7We do not report the R-hat statistic for parameters ρu, ρw because these parameters converge when R̂

equals one for each entry of the matrices Lu, Lw. This was the case.
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parameter mean 2.5% 97.5% R̂

β̂0 6.06 5.92 6.20 1
β̂1 −0.04 −0.09 0.02 1
σ̂e 0.52 0.48 0.55 1
σ̂u0 0.25 0.18 0.34 1
σ̂u1 0.07 0.01 0.13 1
σ̂w0 0.20 0.12 0.32 1
σ̂w1 0.04 0.0 0.11 1
ρ̂u −0.44 −0.91 0.36
ρ̂w −0.01 −0.76 0.76

Table 5
The quantiles and the R̂ statistic in the Gibson and Wu data, the varying intercepts, varying
slopes model.

items compared to slopes illustrates the greater uncertainty concerning the true value of

the parameter. We briefly discuss inference next.
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Figure 4 . The top row shows the relationship between the posterior mean of the varying
slopes (y-axis) and intercepts (x-axis) for each subject (left panel) and item (right panel).
The bottom row shows the posterior distribution of the parameter of correlation between
the varying slopes and intercepts for each subject (left panel) and item (right panel).

Random effects in a non-Bayesian LMM. We fit the same model also as a

classical non-Bayesian LMM with the lmer function from the lme4 package. This allows
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us to compare the lme4 results with the Stan results. Here, we focus on random effects.

As illustrated in Figure 5, the estimates of the random-effect standard deviations of the

classical LMM are in agreement with the modes of the posterior distributions. The lmer

function does not show any convergence error, but the correlations between the random

intercepts and slopes shows the boundary values −1 and +1,: the variance-covariance ma-

trices for the subject and item random effects are degenerate. By contrast, Stan can still

estimate posterior distributions for parameters in such an overly complex model (Figure

4). Of course, one may want to simplify the model for reasons of parsimony, or easier

interpretability. Model selection can be carried out by evaluating predictive performance

of the model, with methods such as Leave One Out (LOO) Cross-validation, or by using

information criteria like the Watanabe Akaike (or Widely Available) Information Criterion

(WAIC). See Nicenboim and Vasishth (2016) for discussion and example code.
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Figure 5 . The curves show the density of the posterior distributions of the random-effect
standard deviations. The vertical bars indicate the corresponding lmer estimates. The top
row shows the random effects for subjects, the bottom row shows the random effects for
items. Left-hand panels correspond to random intercepts, right-hand panels correspond to
random slopes.
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Figure 6 . Upper and lower bounds on the highest posterior density credible intervals (dashed
lines) plotted over the marginal posterior distribution of the fixed slope β1 (left) and of the
correlation ρu between the by-subject varying intercepts and varying slopes (right).

Inference

Having fit a correlated varying intercepts, varying slopes model, we now explain one

way to carry out statistical inference, using credible intervals. We have used this approach

to draw inferences from data in previously published work (e.g., Frank, Trompenaars, &

Vasishth, 2015, Hofmeister & Vasishth, 2014, Safavi, Husain, & Vasishth, 2016). There are

of course other approaches possible for carrying out inference. Bayes Factors are an example;

see Lee and Wagenmakers (2013) and Rouder and Morey (2012). Another is to define a

Region of Practical Equivalence (Kruschke, 2014). The reader can choose the approach

they find the most appealing. For further discussion of Bayes Factors, with example code,

see Nicenboim and Vasishth (2016).

The result of fitting the varying intercepts, varying slopes model is the posterior

distribution of the model parameters. Direct inference from the posterior distributions is

possible. For instance, we can find the posterior probability with which the fixed intercept

β1 or the correlation ρu between by-subject varying intercepts and slopes take on any given
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value by consulting the marginal posterior distributions whose histograms are shown in Fig-

ure 6. The information conveyed by such graphs can be sharpened by using the 95% credible

interval, mentioned earlier. Approximately 95% of the posterior density of β1 lies between

the 2.5th percentile −0.09 and the 97.5th percentile 0.02. This leads us to conclude that

the slope β1 for relative clause type so is less than zero with probability 90% (see Listing 7,

line 8). Since zero is included in the credible interval, it is difficult to draw the inference

that object relative clauses are read faster than subject relative clauses. However, one could

perhaps still make a weak claim that object relatives are easier to process, especially if a

lot of evidence has accumulated in other experiments that supports such a conclusion (see

Vasishth, Chen, Li, & Guo, 2013 for a more detailed discussion). Meta-analysis of existing

studies can help in obtaining a better estimate of the posterior distribution of a parame-

ter; for psycholinguistic examples, see Engelmann, Jäger, and Vasishth (2016); Mahowald,

James, Futrell, and Gibson (2016); Vasishth (2015).

What about the correlations between varying intercepts and varying slopes for subject

and for item? What can we infer from the analysis about these relationships? The 95%

credible interval for ρu is (−1, 0.1). Our belief that ρu is less than zero is rather uncertain,

although we can conclude that ρu is less than zero with probability 90%. There is only

weak evidence that subjects who read faster than average exhibit greater slowdowns at the

head noun of object relative clauses than subjects who read slower than average. For the

by-item varying intercepts and slopes, it is pretty clear that we do not have enough data

(15 items) to draw any conclusions. For these data, it probably makes sense to fit a simpler

model (Bates, Kliegl, et al., 2015), with only varying intercepts and slopes for subject, and

only varying intercepts for items; although there is no harm done in this particular example

if we fit a model with a full variance-covariance matrix for both subjects and items.

In sum, regarding our main research question, our conclusion here is that we cannot

say that object relatives are harder to process than subject relatives, because the credible

interval for β1 includes zero. However, one could argue that there is some weak evidence

in favor of the hypothesis, since the posterior probability of the parameter being negative
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is approximately 90%.

Further reading

We hope that this tutorial has given the reader a flavor of what it would be like to fit

Bayesian linear mixed models. There is of course much more to say on the topic, and we hope

that the interested reader will take a look at some of the excellent books that have recently

come out. We suggest below a sequence of reading that we found helpful. A good first gen-

eral textbook is by Gelman and Hill (2007); it begins with the frequentist approach and only

later transitions to Bayesian models. The book by McElreath (2016) is also excellent. For

those looking for a psychology-specific introduction, the books by Kruschke (2014) and Lee

and Wagenmakers (2013) are to be recommended, although for the latter the going might be

easier if the reader has already looked at Gelman and Hill (2007). As a second book, Lunn et

al. (2012) is recommended; it provides many interesting and useful examples using the BUGS

language, which are discussed in exceptionally clear language. Many of these books use the

BUGS syntax (Lunn et al., 2000), which the probabilistic programming language JAGS

(Plummer, 2012) also adopts; however, Stan code for these books is slowly becoming avail-

able on the Stan home page (https://github.com/stan-dev/example-models/wiki). For

those with introductory calculus, a slightly more technical introduction to Bayesian meth-

ods by Lynch (2007) is an excellent choice. Finally, the textbook by Gelman et al. (2014)

is the definitive modern guide, and provides a more advanced treatment.
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Appendix A

Cholesky factorization

A correlation matrix can be factored into a square root of the matrix; one method is the

Cholesky factorization. Given a correlation matrix C, we can obtain its square root L. The

square root of a matrix is such that we can square L to get the correlation matrix C back.

We illustrate the matrix square root with a simple example. Suppose we have a correlation

matrix:

C =

 1 −0.5

−0.5 1

 (10)

We can use the Cholesky factorization function in R, chol, to derive the lower trian-

gular square root L of this matrix. This gives us:

L =

 1 0

−0.5 0.8660254

 (11)

We confirm that this is a square root by multiplying L with itself to get the correlation

matrix back (squaring a matrix is done by multiplying the matrix by its transpose):

LLᵀ =

 1 0

−0.5 0.8660254


1 −0.5

0 0.8660254

 =

 1 −0.5

−0.5 1

 (12)

The reason that the Cholesky factorization is useful for LMMs is that we use it to

generate the by-subject and by-item random intercepts and slopes.

Generating correlated random variables using the Cholesky factor. The

by-subject and by-item adjustments are generated using the following standard procedure

for generating correlated random variables x = (x1, x2):

1. Given a vector of standard deviations (e.g., σu0, σu1), create a diagonal matrix:

τ =

σu0 0

0 σu0

 (13)
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Figure A1 . Uncorrelated random variables z = (z1, z2)ᵀ (left) and correlated random vari-
ables x = (x1, x2)ᵀ (right).

2. Premultiply the diagonalized matrix τ with the Cholesky factor L of the correlation

matrix C to get a matrix Λ.

3. Generate values from a random variable z = (z1, z2)ᵀ, where z1 and z2 each have

independent N (0, 1) distributions (left panel of Figure A1).

4. Multiply Λ with z; this generates the correlated random variables x (right panel of

Figure A1).

It is helpful to walk through steps 1 to 4 of the procedure described above for gen-

erating correlated random intercepts and random slopes. These are carried out in lines 26

and 36 of Listing 8. The statement diag_pre_multiply(sigma_u, L_u) in line 26 com-

putes the transpose matrix product (steps 1 and 2). The statement to_vector(z_u) ~

normal(0,1); in line 36 generates z_u as samples from the unit normal distribution (step

3). In line 26, the right multiplication of diag_pre_multiply(sigma_u, L_u) by z_u, a

matrix of normally distributed random variables, yields the varying intercepts and slopes

(step 4).
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

u01 u11

u02 u12
...

...

u0J u1J


=
(
diag(σu0, σu1)Luzu

)ᵀ

=


σu0 0

0 σ01


`11 0

`21 `22


z11 z12 . . . z1J

z21 z22 . . . z2J




ᵀ

(14)

Appendix B

Matrix formulation of the linear mixed model

In the body of the text, we fit four models of increasing complexity to the data-set of Gibson

and Wu (2013). In all specifications, there was an explicit vector so for the predictor

variable in Stan. However, if we want to fit more complex models with many categorical

and continuous predictors and interactions, this approach requires increasingly complex

specifications in Stan code. Alternatively, we can use the matrix formulation of the linear

mixed model that allows for using the same code for models of different complexity. In the

following, we will apply this approach for an alternative version of the correlated varying

intercepts, varying slopes model, which includes random intercepts and slopes for subjects

and items.

We build up the model specification by first noting that, for each subject, the by-

subject varying intercept u0 and slope u1 have a multivariate normal prior distribution

with mean zero and covariance matrix Σu. Similarly, for each item, the by-item varying

intercept w0 and slope w1 have a multivariate normal prior distribution with mean zero and

covariance matrix Σw. The error ε is assumed to have a normal distribution with mean

zero and standard deviation σe.

We proceed to implement the model in Stan. Instead of passing the predic-

tor so to stan as vector, as we did earlier, we make so into a design matrix X us-
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ing the function model.matrix available in R (see Listing 9, line 2).8 The command

model.matrix(~ 1 + so, rDat) creates a model matrix with two fixed effects, the in-

tercept (1) and a factor (so), based on the data frame rDat. The first column of the design

matrix X consists of all ones; this column represents the intercept. The second column is

the predictor so and consists of values in {−1, 1}. The model matrix thus consists of a

two-level factorial design, with blocks of this design repeated for each subject. For the full

data-set, we could write it very compactly in matrix form as follows:

log rt = Xβ + Zuu + Zww + ε (15)

Here, X is the N × P model matrix (with N = 547, since we have 547 data points;

and P = 2 since we have the intercept plus another fixed effect), β is a vector of length

P including fixed effects parameters, Zu and Zw are the subject and item model matrices

(N × P ), and u and w are the by-subject and by-item adjustments to the fixed effects

estimates; these are identical to the design matrix X in the model with varying intercepts

and varying slopes included. For more examples of similar model specifications in Stan, see

the R package RePsychLing on github (https://github.com/dmbates/RePsychLing).

Note that we remove the column names and the attributes of the model matrix X

in order to use it for Stan; refer to Listing 9. Having defined the model, we proceed to

assemble the list stanDat of data, relying on the above matrix formulation. The number

N of observations, the number J of subjects and K of items, the reading times rt, and the

subject and item indicator variables subj and item are familiar from the previous models

presented. The integer P is the number of fixed effects (two including the intercept). Model

4 includes a varying intercept u0 and a varying slope u1 for each subject, and so the number

n_u of by-subject random effects equals P. Likewise, Model 4 includes a varying intercept

w0 and a varying slope w1 for each item, and so the number n_w of by-item random effects

8Here, we would like to acknowledge the contribution of Douglas Bates in specifying the model in this
general matrix form.
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1 # Make design matrix
2 X <- unname(model.matrix(~ 1 + so, rDat))
3 attr(X, "assign") <- NULL
4 # Make Stan data
5 stanDat <- list(N = nrow(X),
6 P = ncol(X),
7 n_u = ncol(X),
8 n_w = ncol(X),
9 X = X,

10 Z_u = X,
11 Z_w = X,
12 J = nlevels(rDat$subj),
13 K = nlevels(rDat$item),
14 rt = rDat$rt,
15 subj = as.integer(rDat$subj),
16 item = as.integer(rDat$item))
17 # Fit the model
18 matrixFit <- stan(file = "matrixModel.stan", data = stanDat,
19 iter = 2000, chains = 4)

Listing 9: Matrix formulation code for running the varying intercepts, varying slopes model.

also equals P.

We also have to adapt the Stan code to the model formulation (see Listing 10). The

data block contains the corresponding variables. Using the command row_vector[P] X[N],

we declare the fixed effects design matrix X as an array of N row vectors of length P whose

components are the predictors associated with the N reading times. Likewise for the subject

and item random effects design matrices Z_u and Z_w, which correspond to Zu and Zw

respectively in Equation 15. The vector beta contains the fixed effects β0 and β1. The

matrices L_u, L_w and the arrays z_u, z_w of vectors (not to be confused with the design

matrices Z_u and Z_w) will generate the varying intercepts and slopes u0, u1 and w0, w1,

using the procedure described for the varying intercepts, varying slopes model. For example,

the command vector[n_u] u[J] specifies u as an array of J vectors of length n_u; hence,

there is one vector per subject. The vector sigma_u contains the standard deviations

of the by-subject varying intercepts and slopes u0, u1, and the vector sigma_w contains

the standard deviations of the by-item varying intercepts and slopes w0, w1. The variable

sigma_e is the standard deviation σe of the error ε. The transformed parameters block

generates the by-subject intercepts and slopes u0, u1 and the by-item intercepts and slopes
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1 data {
2 int<lower=0> N; //n trials
3 int<lower=1> P; //n fixefs
4 int<lower=0> J; //n subjects
5 int<lower=1> n_u; //n subj ranefs
6 int<lower=0> K; //n items
7 int<lower=1> n_w; //n item ranefs
8 int<lower=1,upper=J> subj[N]; //subject indicator
9 int<lower=1,upper=K> item[N]; //item indicator

10 row_vector[P] X[N]; //fixed effects design matrix
11 row_vector[n_u] Z_u[N]; //subj ranef design matrix
12 row_vector[n_w] Z_w[N]; //item ranef design matrix
13 vector[N] rt; //reading time
14 }
15 parameters {
16 vector[P] beta; //fixed effects coefs
17 cholesky_factor_corr[n_u] L_u; //cholesky factor of subj ranef corr matrix
18 cholesky_factor_corr[n_w] L_w; //cholesky factor of item ranef corr matrix
19 vector<lower=0>[n_u] sigma_u; //subj ranef std
20 vector<lower=0>[n_w] sigma_w; //item ranef std
21 real<lower=0> sigma_e; //residual std
22 vector[n_u] z_u[J]; //subj ranef
23 vector[n_w] z_w[K]; //item ranef
24 }
25 transformed parameters {
26 vector[n_u] u[J]; //subj ranefs
27 vector[n_w] w[K]; //item ranefs
28 {
29 matrix[n_u,n_u] Sigma_u; //subj ranef cov matrix
30 matrix[n_w,n_w] Sigma_w; //item ranef cov matrix
31 Sigma_u = diag_pre_multiply(sigma_u, L_u);
32 Sigma_w = diag_pre_multiply(sigma_w, L_w);
33 for(j in 1:J)
34 u[j] = Sigma_u * z_u[j];
35 for(k in 1:K)
36 w[k] = Sigma_w * z_w[k];
37 }
38 }
39 model {
40 //priors
41 L_u ~ lkj_corr_cholesky(2.0);
42 L_w ~ lkj_corr_cholesky(2.0);
43 for (j in 1:J)
44 z_u[j] ~ normal(0,1);
45 for (k in 1:K)
46 z_w[k] ~ normal(0,1);
47 //likelihood
48 for (i in 1:N)
49 rt[i] ~ lognormal(X[i] * beta +
50 Z_u[i] * u[subj[i]] +
51 Z_w[i] * w[item[i]],
52 sigma_e);
53 }

Listing 10: Stan code for the matrix formulation of the varying intercepts, varying slopes
model.
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w0, w1.

We place lkj priors on the random effects correlation matrices through the

lkj_corr_cholesky(2.0) priors on their Cholesky factors L_u and L_w. We implicitly

place uniform priors on the fixed effects β0, β1, the random effects standard deviations

σu0, σu1, and σw0, σw1 and the error standard deviation σe by omitting any prior specifica-

tions for them in the model block. We specify the likelihood with the probability statement

that rt[i] is distributed log-normally with mean X[i] * beta + Z_u[i] * u[subj[i]]

+ Z_w[i] * w[item[i]] and standard deviation sigma_e. The next step towards model-

fitting is to pass the list stanDat to stan, which compiles a C++ program to sample from

the posterior distribution of the model parameters.

A major advantage of the above matrix formulation is that we do not need to write a

new Stan model for a future repeated measures design. All we have to do now is define the

design matrix X appropriately, and include it (along with appropriately defined Zu and Zw

for the subjects and items random effects) as part of the data specification that is passed

to Stan.


