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> sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] datasets utils stats graphics grDevices methods base

other attached packages:

[1] MASS_7.3-29

loaded via a namespace (and not attached):

[1] tools_3.0.2
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Chapter 1

What this course is about

This is a graduate level course in linguistics that introduces statistical data analysis to people who
have presumably never done any data analysis before. Only high school pre-calculus mathematics is
presupposed, and even there not much is needed beyond basic math skills like addition, subtraction,
multiplication, and division.

The goal of this course is to prepare students to understand and use the most commonly
deployed statistical models in psycholinguistics. The course is designed to bring people to terms
with the linear mixed model framework. We ignore ANOVA in this course because there is not
enough time to cover it. We also limit the discussion to two commonly used distributions: the
binomial and normal distributions.

The most frequent question people tend to have in this class is: why do I need to study all
this stuff? The short answer is that linguistics is now a heavily experimental science, and one
cannot function in linguistics any more without at least a basic knowledge of statistics. Because
time is short in this course, I decided to drastically limit the scope of the course, so that we cover
only a small number of topics; these will be the most frequently used tools in linguistics.

By the end of the course you should know the following:

• Basic usage of the R language for data analysis.

• Basic understanding of the logic of significance testing and hypothesis testing.

• The meaning of confidence intervals, p-values, z- and t-values, Type I and II error probability,
Power.

• Linear models (including simple multiple regression), basic contrast coding.

• Basics of fitting linear mixed models and presenting results.

1.1 Quiz: Do you need this course?

You should take this quiz on your own to decide whether you need this course. If you can answer
(almost) all the questions correctly, you are in pretty good shape. If you made more than one
mistake or don’t know the answer to more than one question, you should probably do this course.
The solutions are at the end of the book.

Instructions: choose only one answer by circling the relevant letter. If you don’t know the
answer, just leave the answer blank.

1
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1. Standard error is

a the standard deviation of the sample scores

b the standard deviation of the distribution of sample means

c the square root of the sample variance

d 2 times the standard deviation of sample scores

2. If we sum up the differences of each sample score from the sample’s mean (average) we will
always get

a a large number

b the number zero

c a different number each time, sometimes large, sometimes small

d the number one

3. As sample size increases, the standard error of the sample should

a increase

b decrease

c remain unchanged

4. The 95% confidence interval tells you

a that the probability is 95% that the population mean is equal to the sample mean

b that the sample mean lies within this interval with probability 95%

c that the population mean lies within this interval with probability 95%

d none of the above

5. The 95% confidence interval is roughly equal to

a 0.5 times the standard error

b 1 times the standard error

c 1.5 times the standard error

d 2 times the standard error

6. The 95% confidence interval is — the 90% confidence interval

a wider than

b narrower than

c same as

7. A p-value is
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a the probability of the null hypothesis being true

b the probability of the null hypothesis being false

c the probability of the alternative hypothesis being true

d the probability of getting the sample mean that you got (or a value more extreme)
assuming the null hypothesis is true

e the probability of getting the sample mean that you got (or a value less extreme) as-
suming the null hypothesis is true

8. If Type I error probability, alpha, is 0.05 in a t-test, then

a we have a 5% probability of rejecting the null hypothesis when it is actually true

b we have a 95% probability of rejecting the null hypothesis when it is actually true

c we necessarily have low power

d we necessarily have high power

9. Type II error probability is

a the probability of accepting the null when it’s true

b the probability of accepting the null when it’s false

c the probability of rejecting the null when it’s true

d the probability of rejecting the null when it’s false

10. When power increases

a Type II error probability decreases

b Type II error probability increases

c Type II error probability remains unchanged

11. If we compare two means from two samples, and the p>0.05 (p is greater than 0.05), we can
conclude

a that the two samples comes from two populations with different means

b that the two samples comes from two populations with identical means

c that we don’t know whether two samples comes from two populations with identical
means or not

1.2 Some basic knowledge before we start

In this course we are always going to be interested in estimating mean values and in quantifying
our uncertainty about the accuracy of the estimate; an example is reading time: we are often
interested in knowing if one kind of sentence is read faster than another kind of sentence. When
we do an experiment, we obtain behavioral measures for each participant, and then we estimate
means (e.g., mean reading time), and our certainty about these means. This leads us to the part
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that affects the science: inference. From these estimates, we want to infer what is true or false
about the world.

Given a sample of some dependent variable values x1, . . . ,xn, the mean, written x̄ can be calcu-
lated using the formula:

x̄ =
x1 + x2 + · · ·+ xn

n
=

n

∑
i=1

xi

n
(1.1)

Example:

> x<-1:10
> mean(x)

[1] 5.5

We can also quantify how much each individual value xi deviates on average from the mean
value x̄. This is called the variance, and its square root is called standard deviation or SD. All this
should be familiar from school.

s
2
=

(x1 − x̄)
2
+(x2 − x̄)

2
+ · · ·+(xn − x̄)

2

n−1
=

1
n−1

n

∑
i=1

(xi − x̄)
2 (1.2)

Example:

> ## variance:
> var(x)

[1] 9.1667

> ## its square root:
> sd(x)

[1] 3.0277

Sometimes you will see the above formula with division by n rather than n−1. For our purposes,
the distinction is uninteresting (but I can explain in class if there is interest). Note that for large
n, it is not going to matter much whether you divide by n or n− 1. The book by Kerns [4] is a
good reference for the curious, and those of you who want to get deeper into this subject.

So what we will generally start with is a measure of central tendency and a measure of variability.
These two numbers, mean and variance (or standard deviation), are useful for a particular case
where the distribution of values that we have sampled has a particular shape. This is the bell-
shaped curve, known as the Gaussian distribution or the normal distribution. Many measurements
in the world have a roughly normal distribution, i.e., they can be accurately characterized if we
know the mean and variance. I make this more precise in the next chapter.

In essence, we are in the business of figuring out what the world looks like; specifically, in this
course we are going to be constantly trying to figure out what is the true mean and variance of
some unknown distribution of values. The word unknown is key here. We are trying to estimate
the parameters of some underlying distribution that is assumed to have generated the data, and
we are trying to draw conclusions about the world from this estimate. Basically, this is all this
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course is about. It might seem boring and irrelevant to your life, but basically this estimation
and inference procedure runs pretty much every aspect of your existence, both in academia and
outside. So, if you feel resistance against learning about these tools, think about the fact that
without these tools you cannot do science (I am assuming that the desire to do research is what
brings you to Potsdam).

Once we know the mean and variance from a sample, we are ready to so some inference. The
theory of statistics is a vast and exciting area, and there is much, much more out there than I am
willing to discuss in this course. But the little I will discuss will prepare you for the most common
situations we encounter in linguistics.

1.3 How to survive and perhaps even enjoy this course

I have been teaching this course for several years now, and one reaction that I get quite often is
fear, panic, and even anger. A common reaction is: Why do I have to learn all this? How can I
do all this programming? And so on.

If you have such questions popping up in your mind, you have to stop and consider a few things
before continuing with this course. Linguistics at Potsdam is a very empirically driven program. It
is impossible to get through a master’s degree in linguistics without coming into contact with data,
even in formerly armchair disciplines like syntax. If you are at Potsdam, you are automatically
committed to an empirically driven education.

More broadly, there is a widespread misunderstanding that statistics is something that can
be outsourced to a statistician. It’s true that if you have a non-standard statistical problem you
probably need to talk to a professional. But for the kinds of methods used in linguistics, you are
personally responsible for the analyses you do, and so you are going to have to learn something
about the methods. The fundamental thing to understand is that the statistics is the science, it
is not an add-on.

Now, regarding the panic issue. In order to pass this course, you have to understand that you
have to read the lecture notes, and that it is not enough to just passively read these lecture
notes. You have to play with the ideas by asking yourself questions like “what would happen
if. . . ”, and then check the answer right there using R. That’s the whole point of this approach
to teaching statistics, that you can verify what happens under repeated sampling. There is no
point in memorizing formulas; focus on developing understanding. The concepts presented here
require nothing more than middle school mathematics. The ideas are not easy to understand, but
simulation is a great way to develop a deeper understanding of the logic of statistical theory.

Many students come in expecting to get an A in this course. It’s possible to get an A, if you read
the lecture notes and understand them. However, in general, such students need to understand
that they need to learn to make mistakes, and to use these mistakes as a learning tool. If you lose
marks, it is not a personal insult; it is rather a very useful message telling you that you need to
think about the material again.

1.4 Installing R and learning basic usage

You should google the word CRAN and RStudio and install R and RStudio on your machine. We
will explain basic R uage in class; also see the introductory notes on using R released on Moodle.
You should spend some time on the CRAN website looking at the information available on R there.
Look especially at the section called Contributed (navigation panel on the left on the main page).
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Chapter 2

Sampling distribution of sample mean

2.1 The normal distribution

A typical situation in linguistic research involves collecting reading times or reaction times in a
particular experiment to answer a specific research question. For example, I might want to know
whether subject relatives (SRs) are read faster than object relatives (ORs) in a population of
speakers (say German speakers). To find this out, I would get randomly selected participants to
read SRs and ORs; the details of experiment design will be discussed later. Right now, all that
matters is that if I do such an experiment, I will get a difference in reading times between SRs and
ORs for each participant. Suppose I have 100 participants, and I know the difference in OR vs SR
reading times, in seconds. We can simulate this situation in R. We could have 100 data points,
each representing a difference in means between subject and object relatives seen by each subject
(synonymous here with participant).

> x<-rnorm(100)
> head(x)

[1] 0.75818 -0.17112 0.40004 1.19581 -0.80621 -0.13832

This is a (simulated) sample; we could have taken a different sample from the population of
German speakers. You can simulate that by running the above code again.

The sample we did take comes from a population of speakers. Note that, for theoretical
reasons we won’t go into, it is important to take a random sample. In practice, this is not really
the case—we just take the university students who are willing to come do the experiment. This is
likely to introduce a bias in our results, in that the result is probably going to not be representative
of the population. As far as I know, nobody worries about this problem (but maybe we should).

As mentioned above, each value in the above simulated sample represents one participant’s
response. A positive value means that the OR was read more slowly than the SR. If we plot the
distribution of this sample’s values, then we will see that it has roughly a“bell-shaped distribution”:

Notice that most of the values are centered around 0, some are as big as 2, and some are as
small as -3.

It turns out that a lot of very convenient theory can be built around this distribution. Since
normal distribution theory is so fundamental to what we do in linguistics, I am going to focus on
better understanding this one distribution.

7
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> ## plot density histogram:
> hist(x,freq=F)

Histogram of x
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Figure 2.1: A histogram of the sample data.
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The following function is defined as the normal density function:

f (x,µ,σ) =
1

σ
√

2π
e
−((x−µ)2/2σ2

) (2.1)

Given a range of values for x, and specific values for µ , and σ , we can plot the result of
applying this function. Since the function is defined by two values or parameters, we can write
it in shorthand as follows: N(µ,σ), i.e., a normal distribution with some mean and some standard
deviation. Statisticians usually write N(µ,σ2

), i.e., they use the variance rather than the standard
deviation; but we will ignore that convention in this course, because in R we define the density
function in terms of standard deviation. (But you should keep in mind that statisticians tend to
define the normal distribution in terms of variance.)

We can define the density function in R as follows, setting mu and sigma to 0 and 1 respectively,
for convenience (you could have set it to anything):

> ## mean and sigma set at 0 and 1 by default:
> normal.density.function <- function(x,mu=0,sigma=1){

1/(sqrt(2*pi)*sigma)*exp(-((x - mu)^2/(2*sigma^2)))}

You can plot the shape of this distribution using the following command:

plot(function(x) normal.density.function(x), -3, 3,

main = "Normal density function",ylim=c(0,.4),

ylab="density",xlab="X")

R has a built-in function, dnorm that does the job of the function we defined above; we could
just have used that built-in function:

> plot(function(x) dnorm(x), -3, 3,
main = "Normal density",ylim=c(0,.4),

ylab="density",xlab="X")
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Figure 2.2: Plotting the normal distribution.
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One important property of this function is that it stretches from -Infinity to +Infinity. We
don’t display this on the plot, hopefully it is obvious why not. Another important property is that
it represents the probability of each of the x-axis values, and so the total probability of all possible
values, stretching from all the way from -Infinity to +Infinity will be 1. You can calculate the total
probability by summing up all the probabilities of all possible values. The function integrate

does that summation for you:

> integrate(function(x) dnorm(x, mean = 0, sd = 1), -Inf, +Inf)

1 with absolute error < 9.4e-05

This will be our only brush with calculus in this course. The key point here is that it allows
us to calculate the area under the curve given any lower and upper bound. For example, I could
calculate the area under the curve between -2 and +2:
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> integrate(function(x) dnorm(x, mean = 0, sd = 1), -2, +2)

0.9545 with absolute error < 1.8e-11

Why am I talking about calculating the area under the curve? It turns out we need this
capability a lot in statistical data analysis, as you are about to discover in this lecture.

2.2 The area under the curve in a normal distribution

We begin by establishing a fundamental fact about any normal distribution: 95% of the probability
lies within approximately 2 standard deviations (SDs) from the mean. If we sum the area under
these curves, between 2 SD below the mean and 2 SD above the mean, we find the following areas,
which correspond to the amount of probability within these bounds.

We can display this fact graphically (see Figure 2.3):

> ## plot multiple figures:
> ## replace ugly par... specification with
> ## something easier to remember:
> multiplot <- function(row,col){

par(mfrow=c(row,col),pty="s")
}

> main.title<-"Area within 2 SD of the mean"
> multiplot(1, 2)
> plot(function(x) dnorm(x, mean = 0, sd = 1),

xlim=c(-3, 3),main="SD 1",xlab="x",ylab="",cex=2)
> segments(-2, 0, -2, 0.4)
> segments(2, 0, 2, 0.4)
> plot(function(x) dnorm(x, mean = 0, sd = 4),

xlim=c(-12, 12),main="SD 4",xlab="x",ylab="",cex=2)
> segments(-8, 0, -8, 0.1)
> segments(8, 0, 8, 0.1)

There is a built-in R function, pnorm, for computing probabilities within a range; (so we
don’t really need the integrate function, I just used it initially to show that we are really doing
a summation over continuous values). Here are some examples of pnorm in action. Here, we use
the default values of pnorm for mean and standard deviation, but you could have had any mean
or standard deviation:

> ## Prob. of getting 2 or less:
> pnorm(2)

[1] 0.97725

> ## Prob. of getting more than 2:
> 1-pnorm(2)

[1] 0.02275
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Figure 2.3: Two normal distributions with SD = 1 (left), SD = 4 (right). The lines delimit the
region 2 SD from the mean in each case.

> ## Prob. of getting -2 or less:
> pnorm(-2)

[1] 0.02275

> ## Prob. of being between -2 and 2:
> pnorm(2)-pnorm(-2)

[1] 0.9545

You will sometimes need to know the following: given a normal distribution with a particular
mean and standard deviation, what is the boundary marking x% of the area under the curve
(usually centered around the mean value). For example, the command pnorm(2)-pnorm(-2) gives
us the area between -2 and 2 in a normal distribution with mean 0 and sd=1, and the area is 0.9545
(I will freely switch between percentages and proportions for probability; don’t get confused!).
Suppose we only knew the area (probability) that we want to have under the curve, and want to
know the bounds that mark that area. We actually know that the bounds are -2 and 2 here, but
we will pretend we don’t know and need to find this out. How to do this? Grade 3 arithmetic
comes to the rescue: The total area under the curve is 1. We want the lower and upper bounds
for the area 0.9545. This means that

1−0.9545 = 0.0455 (2.2)

is the area outside the (as yet unknown) bounds. Since the normal density curve is symmetrical,
that means that each of the two sides outside the boundaries we want to discover has area

0.0455
2

= 0.02275 (2.3)
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So: there is some lower bound with area 0.02275 to the left of it (i.e., in the lower tail), and
some upper bound with area 0.02275 to the right of it (i.e., in the upper tail). We are pretending
right now that we don’t know that lower=-2 and upper=2; we are engaging in this pretence because
we will be in situations soon where we don’t know these values and have to discover them given
some probability range. R allows you to ask: “what is the bound, for a given distribution, such
that the probability to the left of it is some value p1, or what is the bound such that the probability
to the right of it is some value p2?” The function that gives this answer is called qnorm, and here
is how we can use to answer our current question:

> ## figure out area between the unknown bounds:
> prob<-round(pnorm(2)-pnorm(-2),digits=4)
> ## figure out lower bound:
> (lower<-qnorm((1-prob)/2,mean=0,sd=1,lower.tail=T))

[1] -2

> ## figure out upper bound:
> (upper<-qnorm((1-prob)/2,mean=0,sd=1,lower.tail=F))

[1] 2

And so we discover what we expected: the lower bound is -2 and the upper bound is 2.

It always helps to visualize what we are doing:

> plot(function(x) dnorm(x, mean = 0, sd = 1),
xlim=c(-4, 4),main="mean 1, SD 1",xlab="x",ylab="",cex=2)

> segments(-2, 0, -2, 0.1)
> segments(2, 0, 2, 0.1)
> text(0,.05,"probability=0.9545")
> text(-3,.05,"lower tail")
> text(-3,.005,"probability=0.02275")
> text(3,.05,"upper tail")
> text(3,.005,"probability=0.02275")
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The skills we just learnt give us tremendous capability, as you will see in the rest of this chapter.

2.3 Repeated sampling

Suppose now that we have a population of people and that we know the age of each individual; let
us assume also that distribution of the ages is approximately normal. Finally, let us also suppose
that we know that mean age of the population is 60 years and the population SD is 4 years.

Now suppose that we repeatedly sample from this population: we take samples of 40, a
total of 1000 times; and we calculate the mean x̄ each time we take a sample. After taking 1000
samples, we have 1000 means; if we plot the distribution of these means, we have the sampling
distribution of the sample mean.
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> #1000 samples of 40 taken repeatedly:
> sample.means <- rep(NA,1000)
> for(i in 1:1000){

sample.40 <- rnorm(40,mean=60,sd=4)
sample.means[i] <- mean(sample.40)

}

We can calculate the mean and standard deviation of this sampling distribution:

> means40<-mean(sample.means)

[1] 60.018

> sd40<-sd(sample.means)

[1] 0.62813

If we plot this distribution of means, we find that it is roughly normal.

> hist(sample.means)

We can characterize the distribution of means visually, as done in Figure 2.4 below, or in terms
of the mean and standard deviation of the distribution. The mean value in the above simulation is
60.02 and the standard deviation of the distribution of means is 0.6281. Note that if you repeatedly
run the above simulation code, these numbers will differ slightly in each run.

Consider now the situation where our sample size is 100. Note that the mean and standard
deviation of the population ages is the same as above.

> sample.means <- rep(NA,1000)
> for(i in 1:1000){

sample.100 <- rnorm(100,mean=60,sd=4)
sample.means[i] <- mean(sample.100)

}
>

> means100 <- mean(sample.means)

[1] 60.009

> sd100 <- sd(sample.means)

[1] 0.41301

In this particular simulation run, the mean of the means is 60 and the standard deviation of
the distribution of means is 0.413. Let’s plot the distribution of the means (Figure 2.5).

> hist(sample.means)
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Figure 2.4: The sampling distribution of the sample mean with 1000 samples of size 40.
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Figure 2.5: The sampling distribution of the sample mean with samples of size 100.
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The above simulations show us several things. First, the standard deviation of the distribution
of means gets smaller as we increase sample size. When the sample size is 40, the standard deviation
is 0.6281; when it is 100, the standard deviation is 0.413. Second, as the sample size is increased,
the mean of the sample means becomes a better and better estimate of the population mean µx̄. A
third point (which is not obvious at the moment) is that there is a lawful relationship between the
standard deviation σ of the population and the standard deviation of the distribution of means,
which we will call σx̄. This relationship is:

σx̄ =
σ√

n
(2.4)

Here, n is the sample size. It is possible to derive equation 2.4 from first principles, but for that
we need a bit more theory, which won’t cover in this course (see Kerns). Here, we simply note the
important point that n is in the denominator in this equation, so there is an inverse relationship
between the sample size and the standard deviation of the sample means. Let’s take this equation
on trust for the moment and use it to compute σx̄ by using the population standard deviation
(which we assume we know). Let’s do this for a sample of size 40 and another of size 100:

> 4/sqrt(40)

[1] 0.63246

> 4/sqrt(100)

[1] 0.4

The above calculation is consistent with what we just saw: σx̄ gets smaller and smaller as we
increase sample size.

We have also introduced a notational convention that we will use throughout the notes: sample
statistics are symbolized by Latin letters (x̄,s); population parameters are symbolized by Greek
letters (µ,σ).

2.4 The Central Limit Theorem

We will see now that the sampling distribution of the sample mean is also normally distributed. In
the above example the means were drawn from a population with normally distributed scores. It
turns out that the sampling distribution of the sample mean will be normal even if the population
is not normally distributed, as long as the sample size is large enough and the distribution we are
sampling from has a mean. This is known as the Central Limit Theorem:

When sampling from a population that has a mean, provided the sample size is large
enough, the sampling distribution of the sample mean will be close to normal regardless
of the shape of the population distribution.

[Note: Note the caveat “When sampling from a population that has a mean”. There are some
distributions which do not have a mean; but in this course we will ignore these. More advanced
textbooks on probability discuss these distributions.]

Let’s check whether this theorem holds by testing it in a case where our population is not
normally distributed. Let’s take our samples from a population (Figure 2.6) whose values are
distributed exponentially with the same mean of 60 (the mean of an exponential distribution
is the reciprocal of the so-called ‘rate’ parameter).
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> sample.100 <- rexp(100, 1/60)
> hist(sample.100)
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Figure 2.6: A sample from exponentially distributed population scores.

Now let us plot the sampling distribution of the sample mean. We take 1000 samples of size
100 each from this exponentially distributed population. As shown in Figure 2.7, the distribution
of the means is again (more or less) normal.

> sample.means <- rep(NA,1000)
> for(i in 1:1000){
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sample.100 <- rexp(100, 1/60)
sample.means[i] <- mean(sample.100)

}
> hist(sample.means)

Recall that the mean of each sample is a point estimate of the true mean of the population. Some of
these samples will have a mean slightly above the true mean, some slightly below, and the sampling
distribution of these values is roughly normal. Try altering the sample size in this example to get
a feel for what happens if the sample size is not ‘large enough.’

To summarize:

1. The sampling distribution of the sample mean is normal for large sample sizes.

2. The mean of the sampling distribution of the sample mean is (in the limit) the same as the
population mean.

3. It follows from the above two facts that the mean of a sample is a good estimate of the
population mean.

2.5 σ and σx̄

We saw earlier that the standard deviation of the sampling distribution of the sample mean σx̄

gets smaller as we increase sample size. When the sample has size 40, this standard deviation is
0.6281; when it is 100, this standard deviation is 0.413.

Let’s study the relationship between σx̄ and σ . Recall that our population mean µ = 60, σ =
4. The equation below summarizes the relationship; it shouldn’t surprise you, since we just saw it
above:

σx̄ =
σ√

n
(2.5)

But note also that the “tighter” the distribution, the lower the variance about the true popu-
lation mean. So the σx̄ is an indicator of how good our estimate of the population mean is. As
we increase the size of a single sample, the smaller the standard deviation of its corresponding
sampling distribution becomes. This brings us to the 95% confidence interval.

2.6 The 95% Confidence Interval for the Sample Mean

Let’s take a sample of 11 ages from a normally distributed population with known mean age µ = 60
years and SD σ = 4 years.

> sample.11 <- rnorm(11,mean=60,sd=4)

[1] 62.931 72.455 59.282 67.740 60.397 58.549 59.109 60.032 64.563 57.480

[11] 51.247
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Figure 2.7: The sampling distribution of sample mean from an exponentially distributed popula-
tion.
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We know the mean here, but let’s pretend we don’t. Let’s estimate a population mean from
this sample using the sample mean x̄, and compute the SD σx̄ of the corresponding sampling
distribution. Since we know the true population standard deviation we can get a precise value for
σx̄. We don’t need to estimate the SD or the σx̄. So, we have an estimate of the true mean, but
we know the exact σx̄.

> estimated.mean <- mean(sample.11)

[1] 61.253

> SD.population <- 4

[1] 4

> n <- length(sample.11)

[1] 11

> SD.distribution <- SD.population/sqrt(n)

[1] 1.206

We know from the Central Limit Theorem that the sampling distribution of the sample mean
is roughly normal, and we know that in this case σx̄ = 1.2. Note that if we repeatedly sample from
this population, our sample mean will change slightly each time, but the σx̄ is not going to change.
Why is that?

It turns out that the probability that the population mean is within 2×σx̄ of the sample mean
is a bit over 0.95. Let’s calculate this range, 2×σx̄:

x̄± (2×σx̄) = 61± (2×1.206) (2.6)

The 0.95 probability region is between 58.8 and 63.7. The probability region we compute is
centered around the estimated mean. If we repeatedly sample from this population, we will get
different sample means each time, but the width of the interval would remain identical if we use
the exact σx̄ value we computed above. That means that under repeated sampling, the location of
the mean and therefore the location of the probability region will vary.

The key thing to understand here is that probability region is centered around the sample
mean, which will vary with each sample even if we sample from a population with a given distribu-
tion with a specific mean and standard deviation.

Suppose now that sample size was four times bigger (44). Let’s again calculate the sample mean,
the standard deviation of the corresponding sampling distribution, and from this information,
compute the 95% confidence interval. First, we need to compute σx̄:

> sample.44 <- rnorm(44,mean=60,sd=4)
> estimated.mean <- mean(sample.44)
> n <- length(sample.44)
> (SD.distribution <- SD.population/sqrt(n))
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[1] 0.60302

Now we get a much tighter 95% confidence interval:

x̄±2×σx̄ = 60±2×0.603 (2.7)

The interval now is between 58.3 and 60.7, smaller than the one we got for the smaller sample
size. In fact, it is exactly half as wide. Take a moment to make sure you understand why.

2.7 Realistic Statistical Inference

Until now we have been sampling from a population whose mean and standard deviation we know.
However, we normally don’t know the population parameters. In other words, although we know
that:

σx̄ =
σ√

n
(2.8)

when we take samples in real life, we usually don’t know σ . After all, it is based on an average of
squared distances from the population mean µ , and that is usually the very thing we are trying to
estimate!

What we do have, however, is the standard deviation of the sample itself (denoted s). This in
turn means that we can only get an estimate of σx̄. This is called the standard error (SE) or
estimated standard error of the sample mean:

SEx̄ =
s√
n

(2.9)

Pay careful attention to the distinction between s (an estimate of the standard deviation of the
population σ) and SEx̄ (an estimate of the standard deviation of the sampling distribution, which
is in turn based on s).

We saw previously that the size of σx̄—a measure of the spread of the sampling distribution—is
crucial in determining the size of a 95% confidence interval for a particular sample. Now we only
have an estimate of that spread. Moreover, the estimate will change from sample to sample, as the
value of s changes. This introduces a new level of uncertainty into our task: the quantity σx̄ has
become an estimate based on an estimate! Intuitively, we would expect the confidence interval to
increase in size, reflecting this increase in uncertainty. We will see how to quantify this intuition
presently.

First, however, we should explore the pattern of variability in this new statistic we have intro-
duced, s, which (like the sample mean) will vary randomly from sample to sample. Can we safely
assume that s is a reliable estimate of σ?

2.8 s
2 provides a good estimate of σ 2

Earlier in this chapter we repeatedly sampled from a population of people with mean age 60 years
and standard deviation 4 years; then we plotted the distribution of sample means that resulted
from the repeated samples. One thing we noticed was that the sample means tended to be clustered
around the value corresponding to the population mean (60). Let’s repeat this experiment, but
this time we plot the distribution of the samples’ variances (Figure 2.8).
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> sample.var <- rep(NA,1000)
> for(i in c(1:1000)){

sample.40 <- rnorm(40,mean=60,sd=4)
sample.var[i] <- var(sample.40)

}
> hist(sample.var)
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Figure 2.8: The distribution of the sample variance, sample size 40.

Figure 2.8 shows that the sample variances s
2 tend to cluster around the population variance

(16). This is true even if we have an exponentially distributed population whose variance is 1
(Figure 2.9).
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> sample.var <- rep(NA,1000)
> for(i in c(1:1000)){

sample.var[i] <- var(rexp(40))
}

> hist(sample.var)
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Figure 2.9: The sampling distribution of sample variances from an exponentially distributed pop-
ulation.

We use the square root of the sample variance s as an estimate of the unknown population
standard deviation σ . This in turn allows us to estimate the standard deviation of the sampling
distribution σx̄ using the Standard Error SEx̄.
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Notice that the Standard Error will vary from sample to sample, since the estimate s of the
population parameter σ will vary from sample to sample. And of course, as the sample size
increases the estimate s becomes more accurate, as does the SE, suggesting that the uncertainty
introduced by this extra layer of estimation will be more of an issue for smaller sample sizes.

Our problem now is that the sampling distribution of the sample mean will take the estimate s

from the sample, not σ , as a parameter. If we were to derive some value v for the SE, and simply
plug this in to the normal distribution for the sample statistic, this would be equivalent to claiming
that v really was the population parameter σ .

What we require is a distribution whose shape has greater uncertainty built into it than the
normal distribution. This is the motivation for using the so-called t-distribution, which we turn
to next.

2.9 The t-distribution

As discussed above, the distribution we use with an estimated s needs to reflect greater uncertainty
at small sample sizes. There is in fact a family of t-distribution curves whose shapes vary with
sample size. In the limit, if the sample were the size of the entire population, the t-distribution
would be the normal distribution (since then s would be σ), so the t-curve becomes more like the
normal distribution in shape as sample size increases. This t-distribution is formally defined by
the degrees of freedom (which is simply sample size minus 1 in this case; we won’t worry too
much about what degrees of freedom means at this stage) and has more of the total probability
located in the tails of the distribution. It follows that the probability of a sample mean being
close to the true mean is slightly lower when measured by this distribution, reflecting our greater
uncertainty. You can see this effect in Figure 2.10 at small sample sizes:

> range <- seq(-4,4,.01)
> multiplot(2,2)
> for(i in c(2,5,15,20)){

plot(range,dnorm(range),type="l",lty=1,
xlab="",ylab="",
cex.axis=1)

lines(range,dt(range,df=i),lty=2,lwd=1)
mtext(paste("df=",i),cex=1.2)

}

But notice that with about 15 degrees of freedom, the t-distribution is already very close to normal.
The formal definition of the t-distribution is as follows: Suppose we have a random sample of

size n, say of reading times (RTs), and these RTs come from a N(mean= µ, sd= σ) distribution.
Then the quantity

T =
X −µ
S/

√
n

(2.10)

has a t(df= n−1) sampling distribution. The distribution is defined as (r is degrees of freedom;
see below):

fX(x,r) =
Γ[(r+1)/2]√

rπ Γ(r/2)

�
1+

x
2

r

�−(r+1)/2

, −∞ < x < ∞. (2.11)
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Figure 2.10: A comparison between the normal (solid line) and t-distribution (broken line) for
different degrees of freedom.
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[Γ refers to the gamma function; in this course we can ignore what this is, but read Kerns if
you are interested.]

The t distribution is defined by its r = n− 1 degrees of freedom, and we will write that the
sample scores are coming from t(df= r). The shape of the function for the t distribution is similar
to the normal, but the tails are considerably heavier for small sample sizes. As with the normal
distribution, there are four functions in R associated with the t distribution, namely dt, pt, qt,
and rt, which behave like dnorm, pnorm, qnorm, and rnorm, except for the t-distribution instead
of the normal.

What do we have available to us to work with now? We have an estimate s of the population
SD, and so an estimate SEx̄ of the SD of the sampling distribution:

SEx̄ =
s√
n

(2.12)

We also have a more spread-out distribution than the normal (at least for smaller sample sizes),
the t-distribution, defined by the degrees of freedom (sample size minus 1). We are now ready to
do realistic statistical inference.

2.10 The One-sample t-test

We start by taking a random sample of 11 peoples’ ages from a population with mean age 60 years
and standard deviation 4 years.

> sample <- rnorm(11,mean=60,sd=4)

We can ask for the 95% confidence interval, which (we saw this earlier) is roughly two times
the Standard Error:

> t.test(sample)$conf.int

[1] 57.189 61.795

attr(,"conf.level")

[1] 0.95

Note that all of the information required to calculate this t-value is contained in the sample
itself: the sample mean; the sample size and sample standard deviation s (from which we compute
the SE), the degrees of freedom (the sample size minus 1, from which we reference the appropriate
t-distribution). Sure enough, if our sample size had been larger, our CI would be narrower:

> sample <- rnorm(100,mean=60,sd=4)

> t.test(sample)$conf.int

[1] 59.215 60.873

attr(,"conf.level")

[1] 0.95

Given the specific sample values you get by running the above command that results in the
object sample, try to reproduce this confidence interval by hand. Do this after the lecture for this
chapter has been presented.
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2.11 Some Observations on Confidence Intervals

There are some subtleties associated with confidence intervals that are often not brought up in
elementary discussions, simply because the issues are just too daunting to tackle. However, we will
use simulations to unpack some of these subtleties. The issues are in reality quite simple.

The first critical point to understand is the meaning of the confidence interval. Is the 95%
confidence interval telling you the range within which we are 95% sure that the population mean
lies? No!

Notice is that the range defined by the confidence interval will vary with each sample even if
the sample size is kept constant. The reason is that the sample mean will vary each time, and the
standard deviation will vary too. We can check this fact quite easily.

First we define a function for computing 95% CIs:1

> se <- function(x)
{
y <- x[!is.na(x)] # remove the missing values, if any
sqrt(var(as.vector(y))/length(y))

}
> ci <- function (scores){

m <- mean(scores,na.rm=TRUE)
stderr <- se(scores)
len <- length(scores)
upper <- m + qt(.975, df=len-1) * stderr
lower <- m + qt(.025, df=len-1) * stderr
return(data.frame(lower=lower,upper=upper))
}

Next, we take 100 samples repeatedly from a population with mean 60 and SD 4, computing
the 95% CI each time.

> lower <- rep(NA,100)
> upper <- rep(NA,100)
> for(i in 1:100){

sample <- rnorm(100,mean=60,sd=4)
lower[i] <- ci(sample)$lower
upper[i] <- ci(sample)$upper

}
> cis <- cbind(lower,upper)
> head(cis)

lower upper

[1,] 59.434 61.100

[2,] 58.515 60.294

[3,] 59.332 60.938

[4,] 58.865 60.380

[5,] 59.108 60.862

[6,] 59.912 61.405

1
Here, we use the built-in R function called qt(p,DF) which, for a given confidence-interval range (say, 0.975),

and a given degrees of freedom, DF, tells you the corresponding critical t-value.



2.11. SOME OBSERVATIONS ON CONFIDENCE INTERVALS 31

Thus, the center and the size of any one confidence interval, based on a single sample, will
depend on the particular sample mean and standard deviation you happen to observe for that
sample. The sample mean and standard deviation are good estimates the population mean and
standard deviation, but they are ultimately just estimates of these true parameters.

Importantly, because of the shapes of the distribution of sample means and the variances, if
we repeatedly sample from a population and compute the confidence intervals each time, approx-
imately 95% of the confidence intervals will contain the population mean. In the other 5% or
so of the cases, the confidence intervals will not contain the population mean.

This is what ‘the’ 95% confidence interval means: it’s a statement about confidence intervals
computed with hypothetical repeated samples. More specifically, it’s a statement about the prob-
ability that the hypothetical confidence intervals (that would be computed from the hypothetical
repeated samples) will contain the population mean. I know that the meaning of the CI a very
weird thing. But that’s what it means, and our job right now is to understand this concept
correctly.

So let’s check the above statement. We can repeatedly build 95% CIs and determine whether
the population mean lies within them. The claim is that the population mean will be in 95% of
the CIs.

> store <- rep(NA,100)
> pop.mean<-60
> pop.sd<-4
> for(i in 1:100){

sample <- rnorm(100,mean=pop.mean,sd=pop.sd)
lower[i] <- ci(sample)$lower
upper[i] <- ci(sample)$upper
if(lower[i]<pop.mean & upper[i]>pop.mean){
store[i] <- TRUE} else {
store[i] <- FALSE}

}
> ## need this for the plot below:
> cis <- cbind(lower,upper)
> ## convert store to factor:
> store<-factor(store)
> summary(store)

FALSE TRUE

2 98

So that’s more or less true. To drive home the point, we can also plot the confidence intervals
to visualize the proportion of cases where each CI contains the population mean (Figure 2.11).

> main.title<-"95% CIs in 100 repeated samples"
> line.width<-ifelse(store==FALSE,2,1)
> cis<-cbind(cis,line.width)
> x<-0:100
> y<-seq(55,65,by=1/10)
> plot(x,y,type="n",xlab="i-th repeated sample",ylab="Scores",main=main.title)
> abline(60,0,lwd=2)
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> x0<-x
> x1<-x
> arrows(x0,y0=cis[,1],

x1,y1=cis[,2],length=0,lwd=cis[,3])

In this figure, we control the width of the lines marking the CI using the information we
extracted above (in the object store) to determine whether the population mean is contained in
the CI or not: when a CI does not contain the population mean, the line is thicker than when it
does contain the mean. You should try repeatedly sampling from the population as we did above,
computing the lower and upper ranges of the 95% confidence interval, and then plotting the results
as shown in Figure 2.11.

Note that when we compute a 95% confidence interval for a particular sample, we have only
one interval. That particular interval does not have the interpretation that the probability that
the population mean lies within that interval is 0.95. For that statement to be true, it would have
to be the case that the population mean is a random variable, but it’s not, it’s a point value
that we have to estimate.

Aside: Random variables
A random variable X is a function X : S →R that associates to each outcome ω ∈ S exactly one

number X(ω) = x.
SX is all the x’s (all the possible values of X, the support of X). I.e., x ∈ SX .
Good example: number of coin tosses till H

• X : ω → x

• ω : H, TH, TTH,. . . (infinite)

• x = 0,1,2, . . . ;x ∈ SX

Every discrete random variable X has associated with it a probability mass/distribution
function (PDF), also called distribution function.

pX : SX → [0,1] (2.13)

defined by

pX(x) = P(X(ω) = x),x ∈ SX (2.14)

[Note: Books sometimes abuse notation by overloading the meaning of X . They usually have:
pX(x) = P(X = x),x ∈ SX ]

The population mean is a single point value that cannot have a multitude of possible values
and is therefore not one of many members in the set S of a random variable.

It’s worth repeating the above point about confidence intervals. The meaning of the confidence
interval depends crucially on hypothetical repeated samples: 95% of the confidence intervals in
these repeated samples will contain the population mean. In essence, the confidence interval from
a single sample is in the set S of a random variable, just like heads and tails in a coin toss are in
the set S of a random variable. Just as a fair coin has a 0.5 chance of yielding a heads, a confidence
interval has a 0.95 chance of containing the population mean.

The meaning of confidence intervals is confusing enough, but often (e.g., [5]), statisticians
confuse the issue even further by writing, for a single sample: “We are 95% confident that the
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Figure 2.11: A visualization of the proportion of cases where the population mean is contained in
the 95% CI, computed from repeated samples. The CIs that do not contain the population mean
are marked with thicker lines.
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population mean lies within this [a particular sample’s] 95% CI.” Here, they are using the word
‘confidence’ with a very specific meaning. Normally, when I say that I am 100% confident that it
will rain today, I mean that the probability of it raining today is 100%. The above statement, “We
are 95% confident that the population mean lies within this [a particular sample’s] 95% CI.”, uses
‘confidence’ differently; it even uses the word “this” in a very misleading way. Statistics textbooks
do not mean that the probability of the population mean being in that one specific confidence
interval is 95%, but rather that “95% of the confidence intervals will contain the population mean”.
Why this misleading wording? Either they were not paying attention to what they were writing,
or they found it cumbersome to say the whole thing each time, so they (statisticians) came up
with a short-cut formulation.

2.12 Sample SD and Degrees of Freedom

Let’s revisit the question: Why do we use n− 1 in the equation for standard deviation? Recall
that the sample standard deviation s is just the square root of the variance: the average distance
of the numbers in the list from the mean of the numbers:

s
2
=

1
n−1

n

∑
i=1

(xi − x̄)
2 (2.15)

We can explore the reason why we use n−1 in the context of estimation by considering what
would happen if we simply used n instead. As we will see, if we use n, then s

2 (which is an estimate
of the population variance σ2) would be smaller than the true population variance. This smaller s

2

turns out to provide a poorer estimate than when we use n−1. Let’s verify this using simulations.
We define new variance functions that use n, and simulate the sampling distribution of this

new statistic from a population with known variance σ2
= 1).

> # re-define variance to see whether it underestimates:
> new.var <- function(x){

sum((x-mean(x))^2) / length(x)
}

> correct <- rep(NA,1000)
> incorrect <- rep(NA,1000)
> for(i in 1:1000){

sample.10 <- rnorm(10, mean=0, sd=1)
correct[i] <- var(sample.10)
incorrect[i] <- new.var(sample.10)

}

As shown below (Figure 2.12), using n gives, on average, an underestimated value of the true
variance:

> multiplot(1,2)
> hist(correct,main=paste("Mean ",round(mean(correct),digits=2),sep=" "))
> hist(incorrect,main=paste("Mean ",round(mean(incorrect),digits=2),sep=" "))

As we mentioned earlier, for large n it will not matter much whether we take n or n−1. Try it
out yourself for large n to see if this is true. For more formal details on the n vs n−1 issue, read
the book by Kerns.
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Figure 2.12: The consequence of taking n−1 versus n in the denominator for calculating variance,
sample size 10.
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2.13 Summary of the Sampling Process

It is useful at this point to summarize the terminology we have been using, and the logic of
sampling. First, take a look at the concepts we have covered so far.

We provide a list of the different concepts in Table 2.1 below for easy reference. Here, σx̄ =
σ√

n

and SEx̄ =
s√
n
.

Table 2.1: A summary of the notation used.
The sample statistic is an estimate of

sample mean x̄ population mean µ
sample SD s population SD σ

standard error SEx̄ sampling distribution σx̄

1. Statistical inference usually involves a single sample; due to the central limit theorem, we
know that for large sample sizes, the sampling distribution is normal.

2. The statistic (e.g., sample mean) in a random sample is a good estimate of the population
parameter (the population mean) than not. This follows from the normal distribution of the
sample means.

3. The standard deviation of the sampling distribution σx̄ is determined by two things: the
inherent variability σ in the population, and the sample size. It tells us how “tight” the
distribution is. If σx̄ is small, then the distribution has a narrow shape: random samples are
more likely to have means very close to the true population mean, and inference about the
true mean is more certain. If σx̄ is large, then the fall-off in probability from the center is
gradual: means of random samples far from the true mean are more likely to occur, samples
are not such good indicators of the population parameters, and inference is less certain.

4. We usually do not know σx̄, but we can estimate it using SEx̄ and we can perform inference
using the t-distribution.

2.14 Significance Tests

Recall the discussion of 95% confidence intervals: The sample gives us a mean x̄. We compute SEx̄

(an estimate of σx̄) using s (an estimate of σ) and sample size n. Then we calculate the (approxi-
mate) range x̄±2×SEx̄. That’s the 95% CI. Make sure you understand why I am multiplying the
standard error by 2; it’s an approximation that I will presently make more precise.

We don’t know the population mean—if we did, why bother sampling? But suppose we have
a hypothesis that the population mean has a certain value. If we have a hypothesis about the
population mean, then we also know what the corresponding sampling distribution would look
like: we know the probability of any possible sample given that hypothesis. We then take an
actual sample, measure the distance of our sample mean from the hypothesized population mean,
and use the facts of the sampling distribution to determine the probability of obtaining such a
sample assuming the hypothesis is true. This amounts to a test of the hypothesis. Intuitively, if the
probability of our sample (given the hypothesis) is high, this provides evidence that the hypothesis
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could be true. In a sense, this is what our hypothesis predicts. Conversely, if the probability of
the sample is low (given the hypothesis), this is evidence against the hypothesis. The hypothesis
being tested in this way is termed the null hypothesis. Let’s do some simulations to better
understand this concept.

Suppose our hypothesis, based perhaps on previous research, is that the population mean is
70, and let’s assume for the moment the population σ = 4. This in turn means that the sampling
distribution of the mean, given some sample size, say 11, would have a mean of 70, and a standard
deviation σx̄ = 1.2:

> SD.distribution = 4/sqrt(11)

[1] 1.206

Figure 2.13 shows what we expect our sampling distribution to look like if our hypothesis were
in fact true. This hypothesized distribution is going to be our reference distribution on which we
base our test.

> range <- seq(55,85,0.01)
> plot(range,dnorm(range,mean=70,

sd=SD.distribution),type="l",ylab="",main="The null hypothesis")

Suppose now that we take an actual sample of 11 from a population whose mean µ is in fact
(contra the hypothesis) 60:

> sample <- rnorm(11,mean=60,sd=4)

> sample.mean <- mean(sample)

[1] 61.791

Inspection of (Figure 2.13) shows that, in a world in which the population mean was really 70,
the probability of obtaining a sample whose mean is 62 is extremely low. Intuitively, this sample
is “evidence against the null hypothesis”.

A significance test provides a formal way of quantifying this reasoning. The result of such a
test yields a probability that indicates exactly how well or poorly the data and the null hypothesis
agree.

2.15 The Null Hypothesis

While this perfectly symmetrical, intuitive way of viewing things (‘evidence for’, ‘evidence against’)
is on the right track, there is a further fact about the null hypothesis which gives rise to an
asymmetry in the way we perform significance tests.

The statement being tested in a significance test— the null hypothesis, H0— is usually
formulated in such a way that the statement represents ‘no effect,’ ‘pure chance’ or ‘no signifi-
cant difference’. Scientists are usually not so interested in proving ‘no effect.’ This is where the
asymmetry comes in: we are usually not interested in finding evidence for the null hypothesis,
conceived in this way. Rather, we are interested in evidence against the null hypothesis, since this
is evidence for some real statistically significant result. This is what a formal significance test does:
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Figure 2.13: A sampling distribution with mean 70 and σx̄ = 1.206.
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it determines whether the result provides sufficient evidence against the null hypothesis for us to
reject it. Note that if it doesn’t provide sufficient evidence against the null, we have not proved
the contrary—we have not ‘proved the null hypothesis.’ We simply don’t have enough evidence,
based on this single result, to reject it. We come back to this in a later lecture.

In order to achieve a high degree of skepticism about the interpretation of the data, we require
the evidence against the null hypothesis to be very great. In our current example, you might think
the result we obtained, 62, was fairly compelling evidence against it. But how do we quantify
this? Intuitively, the further away from the mean of the sampling distribution our data lies,
the greater the evidence against it. Statistically significant results reside out in the tails of the
distribution. How far out? The actual values and ranges of values we get will vary from experiment
to experiment, and statistic to statistic. How can we determine a general rule?

2.16 z-scores

We have already seen that, in a normal distribution, about 95% of the total probability falls within
2 SD of the mean, and thus 5% of the probability falls far out in the tails. One way of setting a
general rule then, is to say that if an observed value falls far out in the tail of the distribution,
we will consider the result extreme enough to reject the null hypothesis (we can set this threshold
anywhere we choose: 95% is a conventional setting).

Recall our model: we know the sampling distribution we would see in a world in which the null
hypothesis is true, in which the population mean is really 70 (and whose population σ is known to
be 4). We also know this distribution is normal. How many SDs from the mean is our observation?
Is it more than 2 SDs?

We need to express the difference between our observation x̄ and hypothesized mean of the
distribution µ0 in units of the standard deviation of the distribution: i.e., some number z times σx̄.
We want to know this number z.

x̄−µ0 = zσx̄ (2.16)

Solving for z:

z =
x̄−µ0

σx̄

(2.17)

=
x̄−µ0

σ/
√

n
(2.18)

z is called the standardized value or the z-score. In addition, one could imagine computing
this standardized version of the sample mean every time we take a sample, in which case we have
effectively defined a new statistic. Viewed in this way, the score is also referred to as a test-
statistic.

Let’s make this concrete. Suppose in our current simulation we draw a sample whose mean is
precisely 60: then x̄ = 60,µ0 = 70,σ = 4,n = 11. So we get:

z =
60−70
4/
√

11
(2.19)

=−8.291562 (2.20)
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We see that this observation is well beyond 2 SDs from the mean, and thus represents statisti-
cally significant evidence against the null hypothesis.

z-scores are a quick and accepted way of expressing ‘how far away’ from the hypothetical value
an observation falls, and for determining if that observation is beyond some accepted threshold.
Ultimately, however, they take their meaning from the probability corresponding to the value,
which is traditionally expressed by rules-of-thumb (2 SD corresponds to 95%), or tables which
translate particular scores to particular probabilities. It is this probability we turn to next.

2.17 P-values

We would like to reason as follows: ‘If the probability of the obtaining the sample mean that we
got is less than 0.05, given the null hypothesis, then we reject the null hypothesis.’ However, in
continuous distributions, the probability of getting exactly a particular value is (perhaps counter-
intuitively) zero.

Although we cannot use the actual probability of the observed value, we can usefully ask how
much of the total probability lies beyond the observed value, out into the tail of the distribution. In
the discrete case this is a sum of probabilities, in the continuous case (normal distribution) an area
under the curve. Call o1 the observed value, o2 the next value out, o3 the next, and so on until we
exhaust all the possibilities. The sum of these is the probability of a complex event, the probability
of ‘observing the value o1 or a value more extreme.’ (Once again, we couch our probability measure
in terms of a range of values). This then is a measure, based directly on probability, of ‘how far
away’ from the mean an observed value lies. The smaller this probability, the more extreme the
value. We can now say, if this probability is less than 0.05, we reject the hypothesis. The technical
name for this measure is the p-value.

In short, the p-value of a statistical test is the probability, computed assuming that H0 is true,
that the test statistic would take a value as extreme or more extreme than that actually observed.

Note that this is a conditional probability: it is the probability of observing a particular
sample mean (or something more extreme) conditional on the assumption that the null hypothesis
is true. We can write this conditional probability as P(Observed mean |H0), or even more succinctly
as P(Data |H0). The p-value does not measure the probability of the null hypothesis given the data,
P(H0 | Data). There is a widespread misunderstanding that the p-value tells you the probability
that the null hypothesis is true (in light of some observation); it doesn’t. You can confirm easily
that we cannot “switch” conditional probabilities. The probability of the streets being wet given
that rain has fallen P(Wet Streets | Rain) (presumably close to 1) is not at all the same as the
probability of rain having fallen given that the streets are wet P(Rain | Wet Streets). There are
many reasons why the streets may be wet (street cleaning, burst water pipes, etc.), rain is just one
of the possibilities.

How do we determine this p-value? We simply sum up (integrate) the area under the normal
curve, going out from our observed value. (Recall that, for the present, we are assuming we know
the population parameter σ). We actually have two completely equivalent ways to do this, since
we now have two values (the actual observed value and its z-score), and two corresponding curves
(the sampling distribution where the statistic is the sample mean, and the sampling distribution
where the statistic is the standardized mean, the ‘z-statistic’). We have seen what the sampling
distribution of the sample mean looks like, assuming the null hypothesis is true (i.e. µ0 = 70,
Figure 2.13). What is the sampling distribution of the z-statistic under this hypothesis? Let’s do
a simulation to find out.
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In Figure 2.14, we repeat the simulation of sample means that we carried out at the beginning
of the chapter, but now using the parameters of our current null hypothesis µ0 = 70, σ = 4,
sample size = 11. But in addition, for each sample we also compute the z-statistic, according
to the formula provided above. We also include the corresponding normal curves for reference
(recall these represent the limiting case of the simulations). As you can see, the distribution of
the z-statistic is normal, with mean = 0, and SD = 1. A normal distribution with precisely these
parameters is known as the standardized normal distribution.

> sample.means <- rep(NA, 1000)
> zs <- rep(NA, 1000)
> for(i in 1:1000){

sample.11 <- rnorm(11,mean=70,sd=4)
sample.means[i] <- mean(sample.11)
zs[i] <- ( mean(sample.11) - 70 ) / (4/sqrt(11))

}
> multiplot(2, 2)
> sd.dist <- 4/sqrt(11)
> plot(density(sample.means,kernel="gaussian"),xlim=range(70-(4*sd.dist),

70+(4*sd.dist)),xlab="",ylab="",main="")
> plot(density(zs,kernel="gaussian"),xlim=range(-4, 4),xlab="",ylab="",main="")
> plot(function(x) dnorm(x, 70, 4/sqrt(11)),

70-(4*sd.dist), 70+(4*sd.dist),xlab="",ylab="",main="")
> plot(function(x) dnorm(x, 0, 1), -4, 4,xlab="",ylab="",main="")

The crucial thing to note is that the area from either value out to the edge, which is the
probability of interest, is precisely the same in the two cases, so we can use either. It is traditional
to work with the standardized values, for reasons that will become clear.

Recall the z-score for our actual observation was −8.291562. This is an extreme value, well
beyond 2 standard errors from the mean, so we would expect there to be very little probability
between it and the left tail of the distribution. We can calculate it directly by integration:

> integrate(function(x) dnorm(x, mean = 0, sd = 1), -Inf, -8.291562)

5.5885e-17 with absolute error < 4.5e-24

> ## alternative, more standard way:
> pnorm(mean=0,sd=1,-8.291562)

[1] 5.5885e-17

This yields a vanishingly small probability. We also get precisely the same result using the
actual observed sample mean with the original sampling distribution:

> integrate(function(x) dnorm(x, mean = 70, sd = 4/sqrt(11)), -Inf, 60)

5.5885e-17 with absolute error < 6.2e-20

> pnorm(60,mean=70,sd=4/sqrt(11))
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Figure 2.14: The sampling distribution of the sample mean (left) and its z-statistic (right).
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[1] 5.5885e-17

Suppose now we had observed a sample mean of 67.58. This is much closer to the hypothetical
mean of 70. The standardized value here is almost exactly −2.0:

> (67.58-70)/(4/sqrt(11))

[1] -2.0066

Integrating under the standardized normal curve we find the following probability:

> integrate(function(x) dnorm(x, 0, 1), -Inf, -2.0)

0.02275 with absolute error < 1.5e-05

> pnorm(-2,mean=0,sd=1)

[1] 0.02275

This accords well with our rule-of-thumb. About 95% of the probability is within 2 standard
errors of the mean. The remainder is split into two, one at each end of the distribution, each
representing a probability of about 0.025.

In the code above, we have used the integrate function, but the standard way to do this in
R (and this is what we will do from now on) is to use pnorm. For example: we can compute the
probability of getting a z-score like −8.291562 or smaller using:

> pnorm(-8.291562)

[1] 5.5885e-17

Note that I did not specify the mean and sd; this is because the default assumption in this
function is that mean is 0 and sd=1.

2.18 Hypothesis Testing: A More Realistic Scenario

In the above example we were able to use the standard deviation of the sampling distribution σx̄,
because we were given the standard deviation of the population σ . As we remarked earlier, in the
real world we usually do not know σ , it’s just another unknown parameter of the population. Just
as in the case of computing real world confidence intervals, instead of σ we use the estimate s;
instead of σx̄ we use the estimate SEx̄; instead of the normal distribution we use the t-distribution.

Recall the z-score:

z =
x̄−µ0

σx̄

(2.21)

=
x̄−µ0

σ/
√

n
(2.22)

And recall our formal definition of a statistic: a number that describes some aspect of the
sample. Using this definition, the z-score seems to fail as a statistic, since it makes reference to a
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population parameter σ . But if we now replace that parameter with an estimate s derived from
the sample itself, we get the so-called t-statistic:

t =
x̄−µ0

SEx̄

(2.23)

=
x̄−µ0

s/
√

n
(2.24)

This then can also be interpreted as yet another sampling statistic, with its own distribution.

Note that our null hypothesis H0 was that the hypothesized mean has some specific value
µ = µ0. Thus, rejecting the null hypothesis amounts to accepting the alternative hypothesis, i.e.,
that the true value is less than the hypothesized mean or the true value is greater than the mean:

Ha : µ �= µ0 ⇔ µ < µ0 or µ > µ0 (2.25)

This means that as evidence for rejection of H0 we will count extreme values on both sides of
µ . For this reason, the above test is called a two-sided significance test (also known as the
two-tailed significance test). Note that if we simply reported the probability corresponding
to the t-value t, we would not be reporting the probability of ‘a value being more than t away’ from
the mean, but the probability in one direction only. For that reason, in a two-sided test, since the
distributions are symmetrical, the p-value will be twice the value of the probability corresponding
to the particular t-value we obtain. If the p-value is ≤ α , we say that the data are significant at
level α . Purely by convention, α = 0.05.

By contrast, if our null hypothesis were that µ ≥ µ0, then the alternative hypothesis would be:

Ha : µ < µ0 (2.26)

In this situation, we would use a one-sided significance test, reporting the probability in the
relevant direction only.

R does everything required for a t-test of significance as follows, and you can specify (inter
alia) what your µ0 is (note that it need not be zero), whether it is two-sided or not (see the
documentation for the t.test for details on how to specify this), and the confidence level (the α
level) you desire, as follows:

> sample.11 <- rnorm(11,mean=60,sd=4)
> t.test(sample.11,

alternative = "two.sided",
mu = 70,
conf.level = 0.95)

One Sample t-test

data: sample.11

t = -6.5608, df = 10, p-value = 6.385e-05

alternative hypothesis: true mean is not equal to 70

95 percent confidence interval:

58.536 64.349
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Table 2.2: Hypothetical data showing reading times for adults and children.
group sample size n Mean (secs) SD
children n1 = 10 x̄1 = 30 s1 = 43
adults n2 = 20 x̄2 = 7 s2 = 25

sample estimates:

mean of x

61.443

Experiment with the above code: change the hypothetical mean, change the mean of the
sampled population and its SD, change the sample size, etc. In each case, see how the sample
mean, the t-score, the p-value and the confidence interval differ. Make sure you understand what
the output says—you have the relevant background at this point to do so.

It is also instructive to keep the parameters the same and simply repeat the experiment, taking
different random samples each time (effectively, replicating the experiment). Watch how the
p-values change, watch how they change from replicate to replicate under different parameter
settings. Do you ever find you would accept the null hypothesis when it is in fact false? How likely
is it that you would make a mistake like that? This is an issue we will return to in more depth
later.

The t-value we see above is indeed the t in equation 2.23; we can verify this by doing the
calculation by hand:

> (mean(sample.11)-70)/se(sample.11)

[1] -6.5608

2.19 Comparing Two Samples

In one-sample situations our null hypothesis is that the population mean has some specific value
µ0:

H0 : µ = µ0 (2.27)

When we compare samples from two (possibly) different populations, we ask the question: are
the population means identical or not? Our goal now is to figure out some way to define our null
hypothesis in this situation.

Consider this example of a common scenario in experimental research. Let us assume that the
mean reading times and standard deviations are available for children and adults reading English
sentences, and let us say that we want to know whether children are faster or slower than adults
in terms of reading time. You probably don’t need to do an experiment to answer this question,
but it will do as an illustration of this type of experiment.

We know that, due to the nature of repeated sampling, there is bound to be some difference in
sample means even if the population means are identical. We can reframe the research question as
follows: is the difference observed between the two sample means consistent or inconsistent with
our null hypothesis. The data are shown in Table 2.2.
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Notice a few facts about the data. We have different sample sizes in each case. How will that
affect our analysis? Notice too that we have different standard deviations in each case: this makes
sense, since children exhibit a wider range of abilities than literate adults. But we now know how
great an effect the variability of the data has on statistical inference. How will we cope with these
different SD’s? Finally, the mean reading times certainly ‘look’ different. We will quantify this
difference with reference to the null hypothesis.

Such research problems have the properties that (i) the goal is to compare the responses in
two groups; (ii) each group is considered a sample from a distinct population (a ‘between-subjects’
design); (iii) the responses in each group are independent of those in the other group; and (iv) the
sample sizes of each group may or may not be different.

The question now is, given that we have a research question involving two means, how can we
formulate the null hypothesis?

2.19.1 H0 in Two-sample Problems

Let us start by saying that the unknown population mean of children is µ1, and that of adults is
µ2. We can state our null hypothesis as follows:

H0 : µ1 = µ2 (2.28)

Equivalently, we can say that our null hypothesis is that the difference between the two means
is zero:

H0 : µ1 −µ2 = 0 = δ (2.29)

We have effectively created a new population parameter δ :

H0 : δ = 0 (2.30)

We can now define a new statistic d = x̄1 − x̄2 and use that as an estimate of δ , which we’ve
hypothesized to be equal to zero. But to do this we need a sampling distribution of the difference
of the two sample means x̄1 and x̄2.

Let’s do a simulation to get an understanding of this approach. For simplicity we will use the
sample means and standard deviations from the example above as our population parameters in
the simulation, and we will also use the sample sizes above for the repeated sampling. Assume a
population with µ1 = 30, σ1 = 43, and another with mean µ2 = 7, σ2 = 25. So we already know in
this case that the null hypothesis is false, since µ1 �= µ2. But let’s take 1000 sets of samples of each
population, compute the differences in mean in each set of samples, and plot that distribution of
the differences of the sample mean:

> d <- rep(NA,1000)
> for(i in 1:1000){

sample1 <- rnorm(10,mean=30,sd=43)
sample2 <- rnorm(20,mean=7,sd=25)
d[i] <- mean(sample1) - mean(sample2)

}

Note that the mean of the differences-vector d is close to the true difference:
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> 30-7

[1] 23

> mean(d)

[1] 22.979

Then we plot the distribution of d; we see a normal distribution (Figure 2.15).

> hist(d)

So, the distribution of the differences between the two sample means is normally distributed, and
centered around the true difference between the two populations. It is because of these properties
that we can safely take d to be an estimate of δ . How accurate an estimate is it? In other words,
what is the standard deviation of this new sampling distribution? It is clearly dependent on (a
function of) the standard deviation of the two populations in some way:

σx̄1−x̄2 = f (σ1,σ2) (2.31)

(Try increasing one or other or both of the σ in the above simulation to see what happens).
The precise relationship is fundamentally additive: instead of taking the root of the variance, we
take the root of the sum of variances:

σx̄1−x̄2 =

�
σ2

1
n1

+
σ2

2
n2

=

�
432

10
+

252

20
= 14.702. (2.32)

> newsigma<-round(sqrt((43^2/10)+(25^2/20)),digits=4)

In our single sample, x̄1− x̄2 = 17. The null hypothesis is µ1−µ2 = 0. How should we proceed?
Is this sample difference sufficiently far away from the hypothetical difference (0) to allow us to
reject the null hypothesis? Let’s first translate the observed difference 17 into a z-score. Recall
how the z-score is calculated:

z =
x̄−µ0

σ/
√

n
=

sample mean−pop. mean

sd of sampling distribution
(2.33)

If we replace x̄ with d, and the new standard deviation from the two populations’ standard
deviations, we are ready to work out the answer:

z =
(x̄1 − x̄2)− (µ1 −µ2)�

σ2
1

n1
+

σ2
2

n2

(2.34)

=
17−0
14.702

(2.35)

= 1.1563 (2.36)

Using exactly the same logic as previously, because we don’t know the population parameters
in realistic settings, we replace the σ ’s with the sample standard deviations to get the t-statistic:
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Figure 2.15: The distribution of the difference of sample means of two samples.
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t =
(x̄1 − x̄2)− (µ1 −µ2)�

s
2
1

n1
+

s
2
2

n2

(2.37)

This is the two-sample t-statistic.
So far so good, but we want to now translate this into a p-value, for which we need the

appropriate t-distribution. The problem we face here is that the degrees of freedom needed for the
correct t-distribution are not obvious. The t-distribution assumes that only one s replaces a single
σ ; but we have two of these. If σ1 = σ2, we could just take a weighted average of the two sample
SDs s1 and s2.

In our case the correct t-distribution has n1 − 1+ n2 − 1 degrees of freedom (the sum of the
degrees of freedom of the two sample variances; see [6, 422] for a formal proof).

In real life we don’t know whether σ1 = σ2. One response would be to err on the side of caution,
and simply use degrees of freedom corresponding to the smaller sample size. Recall that smaller
degrees of freedom reflect greater uncertainty, so the estimate we get from this simple approach
will be a conservative one.

However, in a more sophisticated approach, something called Welch’s correction corrects for
possibly unequal variances in the t-curve. R does this correction for you if you specify that the
variances are to be assumed to be unequal (var.equal=FALSE).

> t.test.result<-t.test(sample1,sample2,
mu=0,
alternative = "two.sided",
conf.level = 0.95,var.equal=FALSE)

If you print out the contents of t.test.result, you will see detailed output. For our current
discussion it is sufficient to note that the t-value is 2.67, the degrees of freedom are 10.45 (a value
somewhere between the two sample sizes), and the p-value is 0.02. Recall that every time you run
the t-test with newly sampled data (you should try this), your results will be slightly different; so
do not be surprised if you occasionally fail to find a significant difference between the two groups
even though you already know that in reality there is such a difference. We turn to this issue in
the next lecture.
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Chapter 3

Power

Let’s assume we do an experiment, compute the t-value and p-value for our sample, and based on
these values, reject the null hypothesis. As we mentioned in the previous chapter, and as you can
prove to yourself through simulated replication of experiments, due to the very nature of random
sampling it is always possible to stumble on a ‘rogue sample’, one whose statistic happens to be far
from the population parameter. In this case it would, in fact, be an error to reject the hypothesis,
though we wouldn’t know it. The technical name for this is a Type I error: the null hypothesis
is true, but our sample leads us to reject it.

The converse may also happen. Suppose the null hypothesis is indeed false—there is a real
difference between two population means, for example—but the sample values we have happen to
be so close to each other that this difference is not detectable. Here, the null hypothesis is false,
but we fail to reject it based on our sample. Again, we have been misled by the sampling process:
this is known as a Type II error.

In the first case, we would think our experiment had succeeded, publish our result, and move on,
unaware of our mistake. Can we minimize this risk? In the second case, we don’t get a significant
difference, it appears our experiment has failed. Is there some way to minimize the risk?

Addressing these questions is of fundamental importance in experimental design. It turns out
that a couple of the obvious things we might do to improve our experiments have unpleasant
implications. For example, we might think that making the probability threshold more stringent—
0.01 instead of 0.05, for example—will minimize the chance of error. We pay a price for that,
however. The reason is that there is an intimate relationship between the two types of error, and a
technique that simply aims to minimize one kind can unwittingly increase the chance of the other.
This chapter uses simulation to explore this interaction.

3.1 Type I and Type II Errors

We fix some conventions first for the text below. Let: R = ‘Reject the null hypothesis H0’; ¬R =
‘Fail to reject the null hypothesis H0.’ These are decisions we make based on an experiment.

The decision R or ¬R is based on the sample. Keep in mind that when we do an experiment
we don’t know whether the null hypothesis is true or not.

The first step in attempting to minimize error is to have some way to measure it. It turns out
we can use probability for this as well: we will use conditional probabilities of the following kind:
Let P(R | H0) = ‘Probability of rejecting the null hypothesis conditional on the assumption that
the null hypothesis is in fact true.’

51
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Table 3.1: The logical possibilities given the two possible situations: null hypothesis true (H0) or
false (¬H0).

Reality: H0 TRUE H0 FALSE
Decision from sample is ‘re-
ject’:

α 1 − β

Type I error Power

Decision from sample is ‘ac-
cept’:

1−α β

Type II error

Let’s work through the logical possibilities that could hold: the null hypothesis could be in fact
true or in fact false (but we don’t know which), and in addition our decision could be to accept or
reject the null hypothesis (see Table 3.1). In only two of these four possible cases do we make the
right decision. In the table, think of α as the threshold probability we have been using all along,
0.05.

As shown in Table 3.1, the probability of a Type I error P(R |H0) is α , conventionally set at 0.05.
We will see why this is so shortly. But it immediately follows that the probability of the logical
complement P(¬R | H0) is 1−α . We define the probability of a Type II error P(¬R | ¬H0) to be
β (more on this below), but it immediately follows that the probability of the logical complement
P(¬R | ¬H0) = 1−β . We call this probability power. Thus, if we want to decrease the chance of
a Type II error, we need to increase the power of the statistical test.

Let’s do some simulations to get a better understanding of these various definitions. We focus
on the case where the null hypothesis is in fact false: there is a real difference between population
means.

Assume a population with mean µ1 = 60, σ1 = 1, and another with mean µ2 = 62, σ2 = 1. In
this case we already know that the null hypothesis is false. The distribution corresponding to the
null hypothesis is shown in Figure 3.1. It is centered around 0, consistent with the null hypothesis
that the difference between the means is 0.

We define a function for easily shading the regions of the plot we are interested in. The function
below, shadenormal2, is a modified version of the function shadenormal.fnc available from the
package languageR (you do not need to load the library languageR to use the function below).

First, we define a function that will plot Type I error intervals. This function requires that
several parameters be set (our use of this function will clarify how to use these parameters):

> ## function for plotting type 1 error.
> plot.type1.error<-function(x,

x.min,
x.max,
qnts,
mean,
sd,
gray.level,main,show.legend=TRUE){

plot(x,dnorm(x,mean,sd),
type = "l",xlab="",ylab="",main=main)
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abline(h = 0)

## left side
x1 = seq(x.min, qnorm(qnts[1]), qnts[1]/5)
y1 = dnorm(x1, mean, sd)

polygon(c(x1, rev(x1)),
c(rep(0, length(x1)), rev(y1)),
col = gray.level)

## right side
x1 = seq(qnorm(qnts[2]), x.max, qnts[1]/5)
y1 = dnorm(x1, mean, sd)
polygon(c(x1, rev(x1)),

c(rep(0, length(x1)), rev(y1)),
col = gray.level)

if(show.legend==TRUE){legend(2,0.3, legend="Type I error",fill=gray.level,cex=1)}
}

Next, we define a function for plotting Type I and Type II errors; this function additionally
allows us to specify the mean of the null hypothesis and the population mean that the sample is
drawn from (mean.true):

> plot.type1type2.error<-function(x,
x.min,
x.max,
qnts,
mean.null,
mean.true,
sd,
gray1,
gray2,main,show.legend=TRUE){

## the reality:
plot(x, dnorm(x,mean.true,sd), type = "l",ylab="",xlab="",main=main)
## null hypothesis distribution:

lines(x,dnorm(x,mean.null,sd),col="black")
abline(h = 0)

## plot Type II error region:

x1 = seq(qnorm(qnts[1]), x.max, qnts[1]/5)
y1 = dnorm(x1, mean.true, sd)

polygon(c(x1, rev(x1)),
c(rep(0, length(x1)),
rev(y1)), col = gray2)
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## plot Type I error region assuming alpha 0.05:

x1 = seq(x.min, qnorm(qnts[1]), qnts[1]/5)
y1 = dnorm(x1, mean.null, sd)
polygon(c(x1, rev(x1)), c(rep(0, length(x1)), rev(y1)), col = gray1)

x1 = seq(qnorm(qnts[2]), x.max, qnts[1]/5)
y1 = dnorm(x1, mean.null, sd) ## changed
polygon(c(x1, rev(x1)), c(rep(0, length(x1)), rev(y1)), col = gray1)

if(show.legend==TRUE){
legend(2,0.3, legend=c("Type I error","Type II error"),
fill=c(gray1,gray2),cex=1)}

}

The above two functions are then used within another function, shadenormal2 (below), that
plots either the Type I error probability region alone, or both Type I and Type II error probability
regions. Playing with the parameter settings in this function allows us to examine the relationship
between Type I and II errors.

> shadenormal2<-
function (plot.only.type1=TRUE,

alpha=0.05,
gray1=gray(0.3), ## type I shading
gray2=gray(0.7), ## type II shading
x.min=-6,
x.max=abs(x.min),
x = seq(x.min, x.max, 0.01),
mean.null=0,
mean.true=-2,
sd=1,main="",show.legend=TRUE)

{

qnt.lower<-alpha/2
qnt.upper<-1-qnt.lower
qnts<-c(qnt.lower,qnt.upper)

if(plot.only.type1==TRUE){

plot.type1.error(x,x.min,x.max,qnts,mean.null,sd,
gray1,main,show.legend)

} else { ## plot type I and type II error regions

plot.type1type2.error(x,
x.min,
x.max,
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qnts,
mean.null,
mean.true,
sd,
gray1,
gray2,main,show.legend)

}
}

> shadenormal2(plot.only.type1=TRUE)

The vertical lines in Figure 3.1 represent the 95% CI, and the shaded areas are the Type I
error regions for a two-sided t-test (with probability in the two regions summing to α = 0.05). A
sample mean from one sample taken from a population with mean zero could possibly lie in this
region (although it’s unlikely, given the shape of the distribution), and based on that one sample,
we would incorrectly decide that the null hypothesis is false when it is actually true.

In the present example we know there is a difference of −2 between the population means.
Let’s plot the actual (as opposed to hypothetical) sampling distribution of mean differences corre-
sponding to this state of the world.

> shadenormal2(plot.only.type1=TRUE)
> xvals <- seq(-6,6,.1)
> lines(xvals,dnorm(xvals,mean=-2,sd=1),lwd=2)

Figure 3.2 shows the distribution corresponding to the null hypothesis overlaid with the actual
distribution, which we know is centered around −2. The vertical lines are again the 95% CI,
assuming the null hypothesis is true.

Now let’s shade in the region that corresponds to Type II error; see Figure 3.3. Notice that the
values in this region lie within the 95% CI of the null hypothesis. To take a specific example, given
that the population means really differ by −2, if in our particular sample the difference happened
to be −1, we would fail to reject H0 even though it is false. This is true for any value in this Type
II error range.

> shadenormal2(plot.only.type1=FALSE)

Some important insights emerge from Figure 3.3. First, if the true difference between the
means had been not −2 but −4 (i.e., the effect size had been greater), then the Type II error
probability (β ) will go down, and therefore power (1−β ) will go up. Let’s confirm this visually
(Figure 3.4).

> shadenormal2(plot.only.type1=FALSE,mean.true=-4)

The second insight is that if we reduce α , we also increase Type II error probability, which
reduces power. Suppose α were 0.01; then the Type II error region would be as in Figure 3.5.

> shadenormal2(plot.only.type1=FALSE,alpha=0.01,main="alpha=.01")

The third insight is that as we increase sample size, the 95% confidence intervals become tighter.
This decreases Type II error probability, and therefore increases power, as shown in Figure 3.6.
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Figure 3.1: The distribution corresponding to the null hypothesis, along with rejection regions (the
Type I error probability region α).
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Figure 3.2: The distribution corresponding to the null hypothesis and the distribution correspond-
ing to the true population scores.
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Figure 3.3: The distribution corresponding to the true population scores along with the confidence
intervals from the distribution corresponding to the null hypothesis.
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Figure 3.4: When the true difference, i.e., the effect size, increases from -2 to -4, Type II error
probability decreases, and therefore power increases. Compare with Figure 3.3.
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Figure 3.5: When we decrease α from 0.05 to 0.01, Type II error probability increases, and therefore
power decreases (compare Figure 3.3).
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Figure 3.6: Increasing sample size will tighten 95% confidence intervals, decreasing Type II error
probability, which increases power (compare with Figure 3.3).
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> ## simulating larger sample size by decreasing SD to 0.75 from 1:
> shadenormal2(plot.only.type1=FALSE,sd=0.75,main="Larger sample size")

To summarize, the best situation is when we have relatively high power (low Type II error
probability) and low Type I error probability (α). By convention, we keep α at 0.05. We usually
do not want to change that: lowering α is costly in the sense that it reduces power as well, as we
just saw. What we do want to ensure is that power is reasonably high; after all, why would you
want to do an experiment where you have only 50% power or less? That would mean that you
have an a priori chance of finding a true effect (i.e., an effect that is actually present in nature)
only 50% of the time or less. As we just saw, we can increase power by increasing sample size,
and/or by increasing the sensitivity of our experimental design so that we have larger effect sizes.

Researchers in psycholinguistics and other areas often do experiments with low power (for
logistical or other reasons); it is not unheard of to publish reading studies (eyetracking or self-
paced reading, etc.) or event-related potentials studies with 12 or 20 participants. This is not a
serious problem if we succeed in getting the significant result that was predicted when the study
was run. However, when we get a null (nonsignificant) result, it would be a mistake to conclude
that no true effect exists (i.e., it would be a mistake to argue for the null hypothesis). If power is
low, the chance of missing an effect that is actually present is high, so we should avoid concluding
anything from a null result in this situation.

We would like to make four observations here:

1. At least in areas such as psycholinguistics, the null hypothesis is, strictly speaking, usually
always false: When you compare reading times or any other dependent variable in two
conditions, the a priori chance that the two means to be compared are exactly identical is
low. The interesting question therefore is not whether the null hypothesis is false, but by
how much (the effect size), and the sign (positive or negative) of the difference between the
means being compared.

2. One can in principle nearly always get a statistically significant effect given a large enough
sample size; the question is whether the effect is large enough to be theoretically important
and whether the difference between means has the expected sign.

3. Especially in areas like psycholinguistics, replication is not given the importance it deserves.
Note that we run a 5% risk of declaring a significant difference when in fact there is none
(or effectively none, see point 1 above). Replication is an important method to convince
oneself that an effect is truly present. High power, reasonably large effect sizes, and actually
replicated results should be your goal in experimental science. A p-value of less than 0.05
does not tell you that you got a “true effect”. Fisher himself pointed this out:

It is usual and convenient for experimenters to take-5 per cent. as a standard level
of significance, in the sense that they are prepared to ignore all results which fail
to reach this standard, and, by this means, to eliminate from further discussion
the greater part of the fluctuations which chance causes have introduced into their
experimental results. No such selection can eliminate the whole of the possible
effects of chance. coincidence, and if we accept this convenient convention, and
agree that an event which would occur by chance only once in 70 trials is de-
cidedly “significant,” in the statistical sense, we thereby admit that no isolated
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experiment, however significant in itself, can suffice for the experimen-
tal demonstration of any natural phenomenon; for the “one chance in
a million” will undoubtedly occur, with no less and no more than its
appropriate frequency, however surprised we may be that it should occur to us.
In order to assert that a natural phenomenon is experimentally demonstrable we
need, not an isolated record, but a reliable method of procedure. In relation to the
test of significance, we may say that a phenomenon is experimentally demonstrable
when we know how to conduct an experiment which will rarely fail to give us a
statistically significant result.

4. Many researchers also believe that the lower the p-value, the lower the probability that the
null hypothesis is true. However, as discussed earlier, this is a misunderstanding that stems
from a failure to attend to the conditional probabilities involved.

It follows from the above discussion that if you have a relatively narrow CI, and a nonsignificant
result (p> .05), you have relatively high power and a relatively low probability of making a Type II
error (accepting the null hypothesis as true when it is in fact false). This is particularly important
for interpreting null results (results where the p-value is greater than 0.05). [3] suggest a heuristic:
if you have a narrow CI, and a nonsignificant result, you have some justification for concluding
that the null hypothesis may in fact be effectively true. Conversely, if you have a wide CI and a
nonsignificant result the result really is inconclusive.

3.2 Computing sample size for a t-test using R

Suppose you want to compute the sample size you need to have power 0.8 and alpha 0.05. I look
at the paired sample case.

You need to decide on a few things:

• The magnitude of the effect you expect (based on previous work, or theory): delta (the
difference between the means you’re comparing)

• The standard deviation of the difference that between means that you expect (also based on
previous data or theory)

• Your significance level (alpha)

• The power you want (APA recommends at least 0.80)

• Type of t-test (usually a paired t-test in psycholinguistics)

• The type of alternative hypothesis you have (we will always do the two-sided case)

> power.t.test(n = NULL, delta = 100, sd = 100, sig.level = 0.05,
power = 0.80,
type = c("paired"),
alternative = c("two.sided"),
strict = FALSE)
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Paired t test power calculation

n = 9.9379

delta = 100

sd = 100

sig.level = 0.05

power = 0.8

alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

The calculation suggests a sample size of 10 (rounding up). For other tests there are comparable
functions in R, just look in the R help.

3.3 The form of the power function

Assume that the null hypothesis has mean 93, true sd is 5, and sample size is 20. If the null were
true, the rejection region would be bounded by

> qnorm(0.025,mean=93,sd=5/sqrt(20))

[1] 90.809

> qnorm(0.975,mean=93,sd=5/sqrt(20))

[1] 95.191

Intuitively, power will go up if the true value of the mean is far from the hypothesized mean,
in either direction (greater than, or less than the hypothesized mean). We can look at how power
changes as a function of how far away the true mean is from the hypothesized mean:

> sd<-5
> n<-20
> power.fn<-function(mu){

## lower and upper bounds of rejection regions
## defined by null hypothesis mean:
lower<-qnorm(0.025,mean=93,sd=5/sqrt(20))
upper<-qnorm(0.975,mean=93,sd=5/sqrt(20))

## lower rejection region:
z.l<-(lower-mu)/(sd/sqrt(n))
## upper rejection region for given true mu:
z.u<-(upper-mu)/(sd/sqrt(n))
## return rejection probability:

return(pnorm(z.u,lower.tail=F)+
pnorm(z.l,lower.tail=T))}

> ## a range of true values:
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> alt<-seq(86,100,by=0.1)
> pow<-power.fn(alt)
> plot(alt,pow,type="l",

xlab="Specific parameters
for alternative hypothesis",
ylab="Power",main="Power function
for H0: mu=93")
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What do you think would be the shape of this function if you increased sample size? What
would be the shape if you increased standard deviation? First try to sketch the shapes on paper,
and then use the above function to display the shape.
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3.4 ADVANCED OPTIONAL SECTION: Computing the
power function

[You don’t need to know this material, but I added it in case anyone is interested in finding out
how exactly the power calculation is done.]

As an example, let H0 : µ = 93, and let H1 : µ �= 93. Assume that population sd σ and sample
size n are given. Note that in realistic situations we don’t know σ but we can estimate it using s.

We can get a sample mean that is greater than µ or one that is smaller than µ . Call these x̄g

and x̄s respectively.
In the case where we know σ , the test under the null hypothesis is:

x̄g −93
σ/

√
n

> 1.96 or
x̄s −93
σ/

√
n
>−1.96 (3.1)

Solving for the two x̄’s, we get:

x̄g > 1.96
σ√

n
+93 or x̄s >−1.96

σ√
n
+93 (3.2)

Now, power is the probability of rejecting the null hypothesis when the mean is whatever the
alternative hypothesis mean is (say some specific value µ).

That, the test under the alternative hypothesis is:

x̄g −µ
σ/

√
n
> 1.96 or

x̄s −µ
σ/

√
n
<−1.96 (3.3)

We can replace the x̄g with its full form, and do the same with x̄s.

1.96 σ√
n
+93−µ

σ/
√

n
> 1.96 or

−1.96 σ√
n
+93−µ

σ/
√

n
<−1.96 (3.4)

I can rewrite the above as:

1.96 σ√
n
− (µ −93)

σ/
√

n
> 1.96 or

−1.96 σ√
n
− (µ −93)

σ/
√

n
<−1.96 (3.5)

Simplifying:

1.96− (µ −93)
σ/

√
n

> 1.96 or −1.96− (µ −93)
σ/

√
n

<−1.96 (3.6)

This is now easy to solve! I will use R’s pnorm function in the equation below, simply because
we haven’t introduced a symbol for pnorm in this course. We can rewrite the above expression as:

[1− pnorm(1.96− (µ −93)
σ/

√
n

)]+ pnorm(−1.96− (µ −93)
σ/

√
n

) (3.7)

The above equation allows us to

• compute sample size for any given null (here 93) and alternative hypotheses, provided I have
the population standard deviation.

• compute power given a null and alternative hypothesis, population standard deviation, and
sample size.
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Example: suppose I need power of 0.99 for H0 : µ = 93 and H1 : µ = 98, σ = 5.
For this example, what sample size do I need? I take the above equation and fill in the values:

[1− pnorm(1.96− (98−93)
5/
√

n
)]+ pnorm(−1.96− (98−93)

5/
√

n
) (3.8)

Simplifying, this gives us:

[1− pnorm(1.96−
√

n)]+ pnorm(−1.96−
√

n) (3.9)

Note that the second term will be effectively zero for some reasonable n like 10:

> pnorm(-1.96-sqrt(10))

[1] 1.5093e-07

So we can concentrate on the first term:

[1− pnorm(1.96−
√

n)] (3.10)

If the above has to be equal to 0.99, then

pnorm(1.96−
√

n) = 0.01 (3.11)

So, we just need to find the value of the z-score that will give us a probability of approximately
0.01. You can do this analytically (exercise), but you could also play with some values of n to see
what you get. The answer is n = 18.

> pnorm(1.96-sqrt(18))

[1] 0.011226

3.5 Stopping rules

Psycholinguists and psychologists often adopt the following type of data-gathering procedure. The
experimenter gathers n data points, then checks for significance (p < 0.05 or not). If it’s not
significant, he gets more data (n more data points). Since time and money are limited, he might
decide to stop anyway at sample size, say, some multiple of n. One can play with different scenarios
here. A typical n might be 15.

This approach would give us a range of p-values under repeated sampling. Theoretically, under
the standard assumptions of frequentist methods, we expect a Type I error to be 0.05. This is the
case in standard analyses (I also track the t-statistic, in order to compare it with my stopping rule
code below).

> ##Standard:
> pvals<-NULL
> tstat_standard<-NULL
> n<-10
> nsim<-1000
> ## assume a standard dev of 1:
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> stddev<-1
> mn<-0
> for(i in 1:nsim){

samp<-rnorm(n,mean=mn,sd=stddev)
pvals[i]<-t.test(samp)$p.value
tstat_standard[i]<-t.test(samp)$statistic

}
> ## Type I error rate: about 5% as theory says:
> table(pvals<0.05)[2]/nsim

TRUE

0.048

But the situation quickly deteriorates as soon as adopt the strategy I outlined above. I will
also track the distribution of the t-statistic below.

> pvals<-NULL
> tstat<-NULL
> ## how many subjects can I run?
> upper_bound<-n*6
> for(i in 1:nsim){

## at the outset we have no significant result:
significant<-FALSE

## null hyp is going to be true,
## so any rejection is a mistake.
## take sample:
x<-rnorm(n,mean=mn,sd=stddev)

while(!significant & length(x)<upper_bound){
## if not significant:

if(t.test(x)$p.value>0.05){
## get more data:
x<-append(x,rnorm(n,mean=mn,sd=stddev))
## otherwise stop:

} else {significant<-TRUE}
}
## will be either significant or not:
pvals[i]<-t.test(x)$p.value
tstat[i]<-t.test(x)$statistic
}

> ## Type I error rate:
> ## much higher than 5%:
> table(pvals<0.05)[2]/nsim

TRUE

0.176

Now let’s compare the distribution of the t-statistic in the standard case vs with the above
stopping rule:
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> hist(tstat_standard,main="The t-distributions for the standard case (white) \n
vs the stopping rule (gray)",freq=F)

> hist(tstat,add=T,col="#0000ff22",freq=F)

The t−distributions for the standard case (white) 

     vs the stopping rule (gray)
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We get fatter tails with the above stopping rule.
The point is that one should fix one’s sample size in advance based on a power analysis, not

deploy a stopping rule like the one above; if we used such a stopping rule, we are much more likely
to incorrectly declare a result as statistically significant.
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Chapter 4

Linear models

4.1 Introduction

Here’s a data set from Maxwell and Delaney’s book (this example was presented in the Baron and
Li tutorial, available from the CRAN home page). This is within-subjects fake experimental data;
it has a 2× 3 design. Imagine that subjects are shown a stimulus (a picture) on the screen, and
it’s either shown with no noise (distortion, say) in the background, or with noise; in addition, the
stimulus was either horizontal, tilted by 4 degrees, or tilted by 8 degrees. That it, the experiment
has two levels of noise, and three levels of tilt.

Set up data first:

> MD497.dat <- matrix(c(
420, 420, 480, 480, 600, 780,
420, 480, 480, 360, 480, 600,
480, 480, 540, 660, 780, 780,
420, 540, 540, 480, 780, 900,
540, 660, 540, 480, 660, 720,
360, 420, 360, 360, 480, 540,
480, 480, 600, 540, 720, 840,
480, 600, 660, 540, 720, 900,
540, 600, 540, 480, 720, 780,
480, 420, 540, 540, 660, 780),
ncol = 6, byrow = T) # byrow=T so the matrix's layout is exactly like this

> MD497.df <- data.frame(
rt = as.vector(MD497.dat),
subj = factor(rep(paste("s", 1:10, sep=""), 6)),
deg = factor(rep(rep(c(0,4,8), c(10, 10, 10)), 2)),
noise = factor(rep(c("no.noise", "noise"), c(30, 30))))

Let’s compute the means by factor levels:

> means<-with(MD497.df,tapply(rt,IND=list(noise,deg),mean))

0 4 8

no.noise 462 510 528

noise 492 660 762

71
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This is how one would do a t-test with such data, to compare means across (sets of) conditions:

> no.noise<-subset(MD497.df,noise=="no.noise")
> no.noise.means<-with(no.noise,tapply(rt,subj,mean))
> noise<-subset(MD497.df,noise=="noise")
> noise.means<-with(noise,tapply(rt,subj,mean))
> t.test(noise.means,no.noise.means,paired=TRUE)

Paired t-test

data: noise.means and no.noise.means

t = 5.8108, df = 9, p-value = 0.000256

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

84.277 191.723

sample estimates:

mean of the differences

138

These are the means we are comparing in the noise case:

> ## means of noise levels:
> with(MD497.df,tapply(rt,noise,mean))

no.noise noise

500 638

> ## mean of no.noise=500
> ## mean of noise=500+138=638

And here are the means we would compare in the degree case if we were to do pairwise t-tests
on the different levels (0 vs 4 deg, 0 vs 8 deg, for example):

> with(MD497.df,tapply(rt,deg,mean))

0 4 8

477 585 645

> ## mean of 0 deg=477
> ## mean of 4 deg=477+108=585
> ## mean of 8 deg=477+168=645

Now, as for noise, we could fit t-tests repeatedly for degree as well. (As an exercise, you may
want to stop reading and try doing this right now: compare 0 with 4 degrees, and 0 with 8 degrees
using t-tests).

Now consider this linear model, which evaluates rt as a function of noise (Note: this model
is incorrect for the present dataset, but it’s useful to understand how it work in order
to explain how linear mixed models work):
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> m0<-lm(rt~noise,MD497.df)

> results.m0<-extractfit(m0,
coln=c("","coef.",

"SE","t-value"),
indices=1:2,
fac=c("Intercept","noise"))

> library(xtable)
> myxtable<-function(res,cap,lab){

print(xtable(res,caption=cap,label=lab),
include.rownames=F)}

coef. SE t-value
Intercept 500.00 22.08 22.65
noise 138.00 31.23 4.42

Table 4.1: The effect of noise on reaction time.

It’s important to understand what lies behind this output. We won’t go through everything in
the output, but only focus on some aspects that are immediately of relevance to us. First, we have
the coefficients, which define the intercept and slope of the fitted line respectively:

> ## coefficients:
> coef(m0)

(Intercept) noisenoise

500 138

One instructive exercise is to compare these coefficients with the means we have for noise. The
mean of no.noise is 500, and the mean of noise is 500+138=638:

> ## means of noise levels:
> with(MD497.df,tapply(rt,noise,mean))

no.noise noise

500 638

> ## mean of no.noise=500
> ## mean of noise=500+138=638

What do you think the above coefficients mean? Think about this before reading further.
Next, we have the residuals, whose distribution can be compared to a normal distribution (it’s

an assumption of the linear model that the residuals be normal; [7] has more details on linear
models):

We can extract the residuals:

> ## residuals:
> res.m0<-residuals(m0)
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> library(car)
> qqPlot(res.m0)
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Figure 4.1: Residuals of the model m0.
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and plot them by comparing them to a normal distribution:

And underlyingly, we have a design matrix or model matrix, which is being used by R to
estimate the coefficients:

> ##
> head(model.matrix(m0),n=7)

(Intercept) noisenoise

1 1 0

2 1 0

3 1 0

4 1 0

5 1 0

6 1 0

7 1 0

It’s worth understanding a little bit about what these parts of the linear model are. Our linear
model equation for the noise model m0 above is a system of equations. The single equation:

Yi = β0 +β1Xi + εi (4.1)

can be expanded to:

Y1 = β0 + X1β1 + ε1
Y2 = β0 + X2β1 + ε2
Y3 = β0 + X3β1 + ε3
Y4 = β0 + X4β1 + ε4
...

...
...

...
Yn = β0 + Xnβ1 + εn

(4.2)

And this system of linear equations can be restated in compact matrix form:

Y = Xβ + ε (4.3)

where

Vector of responses:

Y =





Y1
Y2
Y3
Y4
...

Yn





(4.4)
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The design matrix (in R this is called the model matrix):

X =





1 X1
1 X2
1 X3
1 X4
...

...
1 Xn





(4.5)

Vector of parameters to be estimated:

β =

�
β0
β1

�
(4.6)

and
Vector of error terms (residuals):

ε =





ε1
ε2
ε3
ε4
...

εn





(4.7)

We could write the whole equation as:





Y1
Y2
Y3
Y4
...

Yn





=





1 X1
1 X2
1 X3
1 X4
...

...
1 Xn





×
�

β1
β2

�
+





ε1
ε2
ε3
ε4
...

εn





(4.8)

Our top goal when we fit a linear model is to find estimates of the parameters β0 and β1, the
intercept and slope respectively; we will call the estimates β̂0 and β̂1. This can be done by“solving”
for the beta’s. X is the model matrix, and X� is the transpose of the model matrix. Y is the vector
of dependent variables.

β = (X
�
X)

−1
X
�
Y (4.9)

You do not need to know how the above equation comes about; all you need to know is that
given X, and Y, we can estimate the parameters. In case you are interested in more details, the
Sen and Srivastava textbook will give you a fuller introduction.

Returning to our noise and deg(ree) example above, we can also fit a linear model where we
examine the effect of deg on rt.

Here, a critical thing to attend to is the contrast coding for the factor degree:

> contrasts(MD497.df$deg)
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4 8

0 0 0

4 1 0

8 0 1

The above contrast coding says the following: compare 0 with deg 4, and deg 0 with deg 8 (i.e.,
deg 0 is the baseline). This kind of contrast is called treatment contrast coding: there’s always a
baseline that you compare another condition with.

Let’s fit the model:

> ## evaluating effect of degree:
>
> summary(m1<-lm(rt~deg,MD497.df))

Call:

lm(formula = rt ~ deg, data = MD497.df)

Residuals:

Min 1Q Median 3Q Max

-285 -105 3 75 255

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 477.0 27.2 17.53 < 2e-16

deg4 108.0 38.5 2.81 0.0068

deg8 168.0 38.5 4.37 5.4e-05

Residual standard error: 122 on 57 degrees of freedom

Multiple R-squared: 0.256, Adjusted R-squared: 0.23

F-statistic: 9.79 on 2 and 57 DF, p-value: 0.000221

> ## compare the coefficients with means computed earlier:

Compare the coefficients with these means for deg:

> with(MD497.df,tapply(rt,deg,mean))

0 4 8

477 585 645

> ## mean of 0 deg=477
> ## mean of 4 deg=477+108=585
> ## mean of 8 deg=477+168=645

What do you think the coefficients mean? Stop and work this out before reading further.
We can also examine the effects of noise and degree together:
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> ## evaluating effect of noise AND degree together:
> m2<-lm(rt~noise+deg,MD497.df)
> results.m2<-extractfit(m2,

coln=c("","coef.",
"SE","t-value"),

indices=1:4,
fac=c("Intercept","noise","deg 4 vs 0","deg 8 vs 0"))

> myxtable(results.m2,
cap="The effect of noise and degree on reaction time.",
lab="tab:m2")

coef. SE t-value
Intercept 408.00 25.78 15.82
noise 138.00 25.78 5.35
deg 4 vs 0 108.00 31.58 3.42
deg 8 vs 0 168.00 31.58 5.32

Table 4.2: The effect of noise and degree on reaction time.

What do the coefficients mean?
In our current noise and deg example, the ‘predictors’ are categorial ones. What about when

we have continuous predictors, such as instructors’ beauty levels measured on a continuous scale as
predictors of their teaching evaluations? Beauty levels are centered; this means that a beauty level
of 0 means average beauty level. This is a data set from a paper by Hamermesh and Parker (Beauty
in the Classroom: Instructors’ Pulchritude and Putative Pedagogical Productivity,” Economics of
Education Review, August 2005). I got the data from [2].

> ## Example with a continuous predictor:
>
> ## teacher's evaluations as a function of their beauty score:
> bdata <- read.table("beauty.txt",header=T)
> head(bdata)

beauty evaluation

1 0.20157 4.3

2 -0.82608 4.5

3 -0.66033 3.7

4 -0.76631 4.3

5 1.42145 4.4

6 0.50022 4.2

> m3<-lm(evaluation~beauty,bdata)

> results.m3<-extractfit(m3,
coln=c("","coef.",

"SE","t-value"),
indices=1:2,
fac=c("Intercept","beauty"))
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coef. SE t-value
Intercept 4.01 0.03 157.21
beauty 0.13 0.03 4.13

Table 4.3: The effect of beauty level on teaching evaluation score.

Think about what the coefficients mean. The point of this slight digression in looking at this
beauty data is to realize that the linear model provides a general approach for evaluating the effect
of variable X on dependent variable Y.

Returning to our noise and deg data, one important point we’ve neglected is that different
subjects have different effects of noise and deg. In the linear models above we are ignoring this.

> ## returning to our noise data (MD497.df):
> ## here's an important fact about our data:
> # different subjects have different means for no.noise and noise
> # and different means for the three levels of deg
>
> means.noise<-with(MD497.df,tapply(rt,list(subj,noise),mean))

no.noise noise

s1 440 620

s10 480 660

s2 460 480

s3 500 740

s4 500 720

s5 580 620

s6 380 460

s7 520 700

s8 580 720

s9 560 660

> means.deg<-with(MD497.df,tapply(rt,list(subj,deg),mean))

0 4 8

s1 450 510 630

s10 510 540 660

s2 390 480 540

s3 570 630 660

s4 450 660 720

s5 510 660 630

s6 360 450 450

s7 510 600 720

s8 510 660 780

s9 510 660 660

We can view the differential behavior of subjects in a graph (Figures 4.2 and 4.3).



80 CHAPTER 4. LINEAR MODELS

> ## We can visualize these differences graphically:
>
> library(lattice)
> ## noise by subject (data points):
> print(xyplot(rt~noise|subj,

panel=function(x,y,...){panel.xyplot(x,y,type="r")},MD497.df))
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no.noise noise
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Figure 4.2: Noise effects by subject.
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> ## same as above, but for deg:
> print(xyplot(rt~deg|subj,

panel=function(x,y,...){panel.xyplot(x,y,type="r")},MD497.df))
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Figure 4.3: Noise effects by subject.
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Given these differences between subjects, you could fit a separate linear model for each subject,
collect together the intercepts and slopes for each subject, and then check if the intercepts and
slopes are significantly different from zero.

Try this for one subject (s1):

> ## fit a separate linear model for subject s1:
> s1data<-subset(MD497.df,subj=="s1")
> lm(rt~noise,s1data)

Call:

lm(formula = rt ~ noise, data = s1data)

Coefficients:

(Intercept) noisenoise

440 180

Go back and look at the means for s1 for noise and compare them to the coefficients above.
Now we can do this for every one of our 10 subjects. I don’t print this result out because it’s

consume a lot of pages.

> ## do the same for each subject using a for-loop
> subjects<-paste("s",rep(1:10),sep="")
> for(i in subjects){

sdata<-subset(MD497.df,subj==i)
lm(rt~noise,sdata)

}

There is a function in the package lme4 that does the above for you: lmList.

> ## do the same as the above for-loop for each subject in a single shot:
> library(lme4)
> lmlist.fm1<-lmList(rt~noise|subj,MD497.df)
> print(lmlist.fm1$s1)

Call:

lm(formula = formula, data = data)

Coefficients:

(Intercept) noisenoise

440 180

One can plot the individual lines for each subject, as well as the linear model m0’s line (this
shows how each subject deviates in intercept and slope from the model m0’s intercept and slopes).

> plot(as.numeric(MD497.df$noise)-1,
MD497.df$rt,axes=F,
xlab="noise",ylab="rt")

> axis(1,at=c(0,1),
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labels=c("no.noise","noise"))
> axis(2)
> subjects<-paste("s",1:10,sep="")
> for(i in subjects){

abline(lmlist.fm1[[i]])
}

> abline(lm(rt~noise,MD497.df),lwd=3,col="red")
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To find out if there is an effect of noise, you can simply check whether the slopes of the individual
subjects’ fitted lines taken together are significantly different from zero:

> ## now you can test with a t.test whether each coefficient is significantly different from 0:
> t.test(coef(lmlist.fm1)[2])
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One Sample t-test

data: coef(lmlist.fm1)[2]

t = 5.8108, df = 9, p-value = 0.000256

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

84.277 191.723

sample estimates:

mean of x

138

The above is called repeated measures regression (see ?? for details). We now transition to the
next stage of multiple regression: the linear mixed model.

4.2 Linear mixed model

The linear mixed model does something related to the above by-subject fits, but with some cru-
cial twists, as we see below. In the model below, the the statement (1|subj) means that the variance
associated with subject intercepts should be estimated, and from that variance the intercepts for
each subject should be predicted.

> ## the following command fits a linear model, but in addition estimates between-subject variance:
>
> summary(m0.lmer<-lmer(rt~noise+(1|subj),MD497.df))

Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ noise + (1 | subj)

Data: MD497.df

REML criterion at convergence: 722.4

Random effects:

Groups Name Variance Std.Dev.

subj (Intercept) 3518 59.3

Residual 11350 106.5

Number of obs: 60, groups: subj, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 500.0 27.0 18.50

noisenoise 138.0 27.5 5.02

Correlation of Fixed Effects:

(Intr)

noisenoise -0.509

One thing to notice is that the coefficients of the fixed effects of the above model are identical
to those in the linear model m0 above. The predicted varying intercepts for each subject can be
viewed by typing:
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> ranef(m0.lmer)

$subj

(Intercept)

s1 -25.36335

s10 0.65034

s2 -64.38390

s3 33.16746

s4 26.66404

s5 20.16061

s6 -96.90102

s7 26.66404

s8 52.67774

s9 26.66404

attr(,"class")

[1] "ranef.mer"

Or you can display them graphically.

> print(dotplot(ranef(m0.lmer,postVar=TRUE)))

$subj
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The model m0.lmer above prints out the following type of linear model:

Yi = β̂0 + β̂1Xi +bi + εi (4.10)

It’s just like our linear model except that there are different predicted (cf. the lmlist function
above, where they are estimated for each subject) intercepts bi for each subject. These are assumed
by lmer to come from a normal distribution centered around 0; see [2] for more. The ordinary
linear model m0 has one intercept β0 for all subjects, whereas the linear mixed model with varying
intercepts m0.lmer has a different intercept (β0 +bi) for each subject.

We can visualize these different intercepts for each subject as shown below.

> (a<-fixef(m0.lmer)[1])
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(Intercept)

500

> (newa<-a+ranef(m0.lmer)$subj)

(Intercept)

s1 474.64

s10 500.65

s2 435.62

s3 533.17

s4 526.66

s5 520.16

s6 403.10

s7 526.66

s8 552.68

s9 526.66

> ab<-data.frame(newa=newa,b=fixef(m0.lmer)[2])
> plot(as.numeric(MD497.df$noise)-1,MD497.df$rt,xlab="noise",ylab="rt",axes=F)
> axis(1,at=c(0,1),labels=c("no.noise","noise"))
> axis(2)
> for(i in 1:10){

abline(a=ab[i,1],b=ab[i,2])
}

> abline(lm(rt~noise,MD497.df),lwd=3,col="red")
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Note that, unlike the figure associated with the lmlist.fm1 model above, which also involves
fitting separate models for each subject, the model m0.lmer assumes different intercepts for each
subject but the same slope. We can have lmer fit different intercepts AND slopes for each
subject:

> summary(m1.lmer<-lmer(rt~noise+(1+noise|subj),MD497.df))

Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ noise + (1 + noise | subj)

Data: MD497.df

REML criterion at convergence: 721.03
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Random effects:

Groups Name Variance Std.Dev. Corr

subj (Intercept) 1752 41.9

noisenoise 1399 37.4 1.00

Residual 10885 104.3

Number of obs: 60, groups: subj, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 500.0 23.2 21.56

noisenoise 138.0 29.4 4.69

Correlation of Fixed Effects:

(Intr)

noisenoise -0.302

These fits for each subject are visualized below (the red line shows the model with a single
intercept and slope, i.e., our old model m0):

> (a<-fixef(m1.lmer)[1])

(Intercept)

500

> (b<-fixef(m1.lmer)[2])

noisenoise

138

> (newa<-a+ranef(m1.lmer)$subj[1])

(Intercept)

s1 485.87

s10 503.25

s2 449.04

s3 529.02

s4 523.33

s5 506.90

s6 431.34

s7 520.64

s8 535.34

s9 515.27

> (newb<-b+ranef(m1.lmer)$subj[2])

noisenoise

s1 125.369

s10 140.908
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s2 92.464

s3 163.930

s4 158.846

s5 144.164

s6 76.640

s7 156.446

s8 169.585

s9 151.647

> ab<-data.frame(newa=newa,b=newb)
> plot(as.numeric(MD497.df$noise)-1,MD497.df$rt,xlab="noise",ylab="rt",axes=F,

main="varying intercepts and slopes for each subject")
> axis(1,at=c(0,1),labels=c("no.noise","noise"))
> axis(2)
> for(i in 1:10){

abline(a=ab[i,1],b=ab[i,2])
}

> abline(lm(rt~noise,MD497.df),lwd=3,col="red")
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varying intercepts and slopes for each subject
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Compare this model with the lmlist.fm1 model we fitted earlier:

(Intercept)

500

noisenoise

138

(Intercept)

s1 485.87

s10 503.25

s2 449.04

s3 529.02
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s4 523.33

s5 506.90

s6 431.34

s7 520.64

s8 535.34

s9 515.27

noisenoise

s1 125.369

s10 140.908

s2 92.464

s3 163.930

s4 158.846

s5 144.164

s6 76.640

s7 156.446

s8 169.585

s9 151.647
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ordinary linear model
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varying intercepts and slopes
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The above graphic shows some crucial difference between the lmlist (repeated measures) model
and the lmer model. Note that the fitted line for each subject in the lmer model is much closer to
the m0 model’s fitted (red) line. This is because lmlist uses each subject’s data separately (resulting
in possibly wildly different models, depending on the variability between subjects), whereas lmer
“borrows strength from the mean” and pushes (or “shrinks”) the estimated intercepts and slopes
of each subject closer to the mean intercepts and slopes (the model m0’s intercepts and slopes).
Because it shrinks the coefficients towards the means, this is called shrinkage. This is particularly
useful when several data points are missing in a particular condition for a particular subject: in
an ordinary linear model, estimating coefficients using lmList would lead to very poor estimates
for that subject; by contrast, lmer assumes that the estimates for such a subject are not reliable
and therefore shrinks that subject’s estimate to the mean values.
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To see an example of shrinkage, consider the case where we remove three of the data points
from subject s8, resulting in exaggeratedly high means for that subject.

First, we read in a data frame which is just the same as MD497.df, except that subject 8 (s8)
has only three data points, not six (I took out three of s8’s low measures). This skews the subject’s
estimates for intercept and slope in the lmlist model fit.

> MD497.df2<-read.table("MD497df.txt",header=T)

Next, let’s confirm that the new data frame has extreme means for s8:

> with(MD497.df,tapply(rt,list(subj,noise),mean,na.rm=TRUE))

no.noise noise

s1 440 620

s10 480 660

s2 460 480

s3 500 740

s4 500 720

s5 580 620

s6 380 460

s7 520 700

s8 580 720

s9 560 660

> with(MD497.df2,tapply(rt,list(subj,noise),mean,na.rm=TRUE))

no.noise noise

s1 440 620

s10 480 660

s2 460 480

s3 500 740

s4 500 720

s5 580 620

s6 380 460

s7 520 700

s8 660 810

s9 560 660

We now fit the lmlist model and the linear mixed model.

> lmlist.fm2<-lmList(rt~noise|subj,MD497.df2)
> summary(m2.lmer<-lmer(rt~noise+(1+noise|subj),MD497.df2))

Linear mixed model fit by REML ['lmerMod']
Formula: rt ~ noise + (1 + noise | subj)

Data: MD497.df2

REML criterion at convergence: 683.17
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Random effects:

Groups Name Variance Std.Dev. Corr

subj (Intercept) 2292 47.9

noisenoise 1956 44.2 1.00

Residual 10247 101.2

Number of obs: 57, groups: subj, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 501.5 24.5 20.50

noisenoise 143.9 30.2 4.76

Correlation of Fixed Effects:

(Intr)

noisenoise -0.209

Now if we plot the model for s8, we find that the lmlist model indeed estimates pretty extreme
intercepts for s8. But the linear mixed model predicts an intercept that’s much closer to the mean
(the red line). Let’s just plot s8’s fitted line in both models relative to the linear model fitted line.

> multiplot <- function(row,col){
par(mfrow=c(row,col),pty="s")

}
> multiplot(2,2)
> ## reduced data:
> plot(as.numeric(MD497.df2$noise)-1,MD497.df2$rt,axes=F,xlab="noise",ylab="rt",main="ordinary linear model",sub="s8, missing data")
> axis(1,at=c(0,1),labels=c("no.noise","noise"))
> axis(2)
> abline(lmlist.fm2$s8)
> abline(lm(rt~noise,MD497.df2),lwd=3,col="red")
> (a<-fixef(m2.lmer)[1])

(Intercept)

501.53

> (b<-fixef(m2.lmer)[2])

noisenoise

143.92

> (newa<-a+ranef(m2.lmer)$subj[1])

(Intercept)

s1 483.69

s10 502.57

s2 443.42

s3 530.66
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s4 524.45

s5 506.30

s6 424.28

s7 521.46

s8 563.02

s9 515.50

> (newb<-b+ranef(m2.lmer)$subj[2])

noisenoise

s1 127.435

s10 144.884

s2 90.236

s3 170.830

s4 165.090

s5 148.323

s6 72.559

s7 162.333

s8 200.723

s9 156.820

> ab<-data.frame(newa=newa,b=newb)
> plot(as.numeric(MD497.df2$noise)-1,MD497.df2$rt,axes=F,

main="varying intercepts and slopes",
sub="s8, missing data",
xlab="noise",ylab="rt")

> axis(1,at=c(0,1),labels=c("no.noise","noise"))
> axis(2)
> abline(a=ab[9,1],b=ab[9,2])
> abline(lm(rt~noise,MD497.df2),lwd=3,col="red")
> ## unreduced
>
> plot(as.numeric(MD497.df$noise)-1,MD497.df$rt,axes=F,xlab="noise",ylab="rt",main="ordinary linear model",

,sub="s8, no missing data")
> axis(1,at=c(0,1),labels=c("no.noise","noise"))
> axis(2)
> abline(lmlist.fm1$s8)
> abline(lm(rt~noise,MD497.df),lwd=3,col="red")
> (a<-fixef(m2.lmer)[1])

(Intercept)

501.53

> (b<-fixef(m2.lmer)[2])

noisenoise

143.92

> (newa<-a+ranef(m1.lmer)$subj[1])
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(Intercept)

s1 487.40

s10 504.79

s2 450.58

s3 530.55

s4 524.86

s5 508.43

s6 432.87

s7 522.18

s8 536.88

s9 516.81

> (newb<-b+ranef(m1.lmer)$subj[2])

noisenoise

s1 131.293

s10 146.831

s2 98.388

s3 169.853

s4 164.769

s5 150.087

s6 82.564

s7 162.370

s8 175.509

s9 157.571

> ab<-data.frame(newa=newa,b=newb)
> plot(as.numeric(MD497.df$noise)-1,MD497.df$rt,axes=F,

main="varying intercepts and slopes",sub="s8, no missing data",xlab="noise",ylab="rt")
> axis(1,at=c(0,1),labels=c("no.noise","noise"))
> axis(2)
> abline(a=ab[9,1],b=ab[9,2])
> abline(lm(rt~noise,MD497.df),lwd=3,col="red")
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One crucial difference between the lmlist model and the lmer model is that the former estimates
the parameters for each subject separately, whereas the latter estimates the variance associated
with subjects’ intercepts (and slopes, if you specify in the model that one should do that) and then
predicts each subjects intercepts and slopes based on that variance.

4.3 Contrast coding

Instead of working with the degree and noise data, we will work with the lexical decision data from
the languageR package by Harald Baayen. His book [1] is an excellent one for psycholinguists.



4.3. CONTRAST CODING 99

4.3.1 Treatment contrasts

Consider the simplest case where we need to compare reaction times in an experiment involving
two conditions. As mentioned above, we take the lexical decision dataset lexdec from the library
languageR as an example.

> library(languageR)
> ## isolate relevant columns
> head(lexdec[,c(1,2,5)])

Subject RT NativeLanguage

1 A1 6.3404 English

2 A1 6.3081 English

3 A1 6.3491 English

4 A1 6.1862 English

5 A1 6.0259 English

6 A1 6.1800 English

This dataset shows log lexical decision times of participants to different words.
Suppose we want to know whether being a native speaker of English affects reaction time.

Before even doing the experiment, it is clear that we would expect that native speakers to have
shorter reaction times. We can verify that the means do have the expected difference; the question
is whether this difference is statistically significant:

> means.lexdec<-with(lexdec,tapply(RT,NativeLanguage,mean))

English Other

6.3183 6.4741

The mean for English is 6.318, and the means for the other language is 6.474; the difference
between the two is 0.156. These values become relevant in a moment (recall the discussion of the
noise and deg data above, though; it should be clear to you why the means are relevant).

It is straightforward to carry out the comparison between these means using a linear model.

> summary(lm(RT~NativeLanguage,lexdec))

Call:

lm(formula = RT ~ NativeLanguage, data = lexdec)

Residuals:

Min 1Q Median 3Q Max

-0.5688 -0.1529 -0.0323 0.1148 1.1132

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.31831 0.00744 849.8 <2e-16

NativeLanguageOther 0.15582 0.01136 13.7 <2e-16

Residual standard error: 0.229 on 1657 degrees of freedom

Multiple R-squared: 0.102, Adjusted R-squared: 0.101

F-statistic: 188 on 1 and 1657 DF, p-value: <2e-16
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What is the interpretation of the coefficients? Comparing the means for each condition with
the coefficients reveals that (i) the intercept’s value is the mean for English; and (ii) the slope’s
value is the difference between the two conditions’ mean.

But how does R deliver these particular values for the intercept and slope? This comes from the
contrast coding specified for the predictor variable. By default, R assigns the so-called treatment
contrast coding to the predictors: the alphabetically earlier predictor level (here, English) is
coded as 0 (the baseline), and the other level (here, Other) is coded as 1.

The interpretation for the intercept and slope derives from this numerical coding: when the
predictor is 0 (i.e., when the participant is a native speaker of English), the predicted reaction time
is the estimated intercept. When the predictor is coded as 1 (i.e., the participant is a non-native
English speaker), then the predicted reaction time is the sum of the intercept and the slope. It is
possible to examine the contrast coding using the contrasts command:

> contrasts(lexdec$NativeLanguage)

Other

English 0

Other 1

As mentioned above, R alphabetically orders the factors and takes the first condition as the
baseline. It is of course possible to take the other level as the baseline:

> lexdec$NativeLanguage<-factor(lexdec$NativeLanguage,levels=c("Other","English"))
> contrasts(lexdec$NativeLanguage)

English

Other 0

English 1

Now, the intercept and slope will have a different interpretation:

> summary(lm(RT~NativeLanguage,lexdec))

Call:

lm(formula = RT ~ NativeLanguage, data = lexdec)

Residuals:

Min 1Q Median 3Q Max

-0.5688 -0.1529 -0.0323 0.1148 1.1132

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.47413 0.00859 754.1 <2e-16

NativeLanguageEnglish -0.15582 0.01136 -13.7 <2e-16

Residual standard error: 0.229 on 1657 degrees of freedom

Multiple R-squared: 0.102, Adjusted R-squared: 0.101

F-statistic: 188 on 1 and 1657 DF, p-value: <2e-16

The intercept now represents the mean score of the level Other, and the slope the difference
between the English and Other scores. The sign of the slope is negative because now the difference
is computed by subtracting the mean English score from the mean Other score.
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4.3.2 Sum contrasts

Treatment contrasts are only one option, however. It is possible to utilize the so-called sum
contrast, which codes one of the two conditions as -1 and the other as 1, effectively ‘centering’
the predictor.

> c.sum<-contr.sum(2)

[,1]

1 1

2 -1

In our example, we can assign the sum contrast so that Other is 1 and English is -1 (note that
reordering the factors would give the opposite coding):

> contrasts(lexdec$NativeLanguage) <- c.sum

[,1]

1 1

2 -1

The linear model’s estimated coefficients now look different again:

> summary(lm(RT~NativeLanguage,lexdec))

Call:

lm(formula = RT ~ NativeLanguage, data = lexdec)

Residuals:

Min 1Q Median 3Q Max

-0.5688 -0.1529 -0.0323 0.1148 1.1132

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.39622 0.00568 1126.3 <2e-16

NativeLanguage1 0.07791 0.00568 13.7 <2e-16

Residual standard error: 0.229 on 1657 degrees of freedom

Multiple R-squared: 0.102, Adjusted R-squared: 0.101

F-statistic: 188 on 1 and 1657 DF, p-value: <2e-16

The intercept is now the grand mean of the two conditions:

> mean(means.lexdec)

[1] 6.3962
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When the predictor is coded as 1 (i.e., when the participant belongs to the group Other), the
predicted RT is 6.39622+0.07791, and when the predictor is coded as -1 (i.e., when the participang
belongs to the English group), the predicted RT is 6.39622-0.07791.

To summarize, treatment contrasts and sum contrasts are two possible ways to compare the
two conditions, and they answer different research questions. Treatment contrasts compare one or
more condition’s mean against a baseline condition (we show an example below where more than
two conditions are involved), whereas sum contrasts allow us to determine whether a condition’s
mean is significantly different from the grand mean.

Let us now look at some other contrast coding schemes.

4.3.3 Sliding contrasts

As an illustration, we take the same lexdec dataset and investigate the question: does word
frequency affect reaction time? Here, we would expect that lower frequency would result in longer
reaction time. In the lexdec dataset, frequency is provided as a continuous variable (each word
has a frequency value associated with it). We could fit a linear model where we use continuous
frequency values as a predictor of reaction times. Since our immediate focus is on qualitative
predictors, we first convert this continuous predictor to a qualitative one: low, medium and high
frequency:

> library(gtools)
> Freq <-cut(lexdec$Frequency,breaks=3,labels=c("low","med","high"))
> lexdec$Freq <- factor(Freq)

Let us first calculate the mean scores for each level of Freq:

> means.freq <- with(lexdec,tapply(RT,Freq,mean))

low med high

6.4564 6.3867 6.3099

The default coding for such a three-condition case is the treatment contrast:

> contrasts(lexdec$Freq)

med high

low 0 0

med 1 0

high 0 1

Suppose we want to know whether frequency level low leads to significantly longer reaction
times than frequency level medium, and whether frequency level medium leads to significantly longer
reaction times than frequency level high. R has a contrast coding for answering this question:
sliding contrasts or repeated contrasts:

> library(MASS)
> c.sliding <- contr.sdif(3)

The two pairs of means being compared are:
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> means.freq[2]-means.freq[1]

med

-0.069744

> means.freq[3]-means.freq[2]

high

-0.076788

The linear (mixed) model with sliding contrasts yields these means as coefficients:

> contrasts(lexdec$Freq) <- c.sliding
> summary(lm(RT~Freq,lexdec))

Call:

lm(formula = RT ~ Freq, data = lexdec)

Residuals:

Min 1Q Median 3Q Max

-0.5456 -0.1607 -0.0341 0.1146 1.1309

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.38435 0.00631 1012.34 < 2e-16

Freq2-1 -0.06974 0.01449 -4.81 1.6e-06

Freq3-2 -0.07679 0.01449 -5.30 1.3e-07

Residual standard error: 0.237 on 1656 degrees of freedom

Multiple R-squared: 0.042, Adjusted R-squared: 0.0409

F-statistic: 36.3 on 2 and 1656 DF, p-value: 3.67e-16

This contrast coding answers the research question directly: each of the two differences is
significantly different from 0.

Suppose now that our research question had been: is the mean of the last condition (high),
significantly different from the average of the other two; and are the other two significantly different
from each other? This question can be answered using Helmert contrasts:

> c.helmert <- contr.helmert(3)
> contrasts(lexdec$Freq) <- c.helmert
> contrasts(lexdec$Freq)

[,1] [,2]

low -1 -1

med 1 -1

high 0 2

Now we expect to see the following means being compared:



104 CHAPTER 4. LINEAR MODELS

> c(means.freq[2]-means.freq[1], means.freq[3]-(means.freq[2]+means.freq[1])/2)

med high

-0.069744 -0.111660

> means.freq[3]-(means.freq[1]+means.freq[2])/2

high

-0.11166

> means.freq[2]-means.freq[1]

med

-0.069744

The linear model directly compares these means:

> summary(lm(RT~Freq,lexdec))

Call:

lm(formula = RT ~ Freq, data = lexdec)

Residuals:

Min 1Q Median 3Q Max

-0.5456 -0.1607 -0.0341 0.1146 1.1309

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.38435 0.00631 1012.34 < 2e-16

Freq1 -0.03487 0.00724 -4.81 1.6e-06

Freq2 -0.03722 0.00472 -7.89 5.6e-15

Residual standard error: 0.237 on 1656 degrees of freedom

Multiple R-squared: 0.042, Adjusted R-squared: 0.0409

F-statistic: 36.3 on 2 and 1656 DF, p-value: 3.67e-16

However, note that the coefficients do not match the differences between means that we just
explored. In order to get the comparisons of interest, we must take the generalized inverse of a
normalized contrast specification:

> c.helmert2 <- matrix(c( -1, 1, 0,
-1/2, -1/2, 1

), 3, 2,
dimnames=list(c("low", "med", "high"),

c(".low-med", ".med-high")))
> contrasts(lexdec$Freq) <- t(ginv(c.helmert2))
> summary(lm(RT~Freq,lexdec))
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Call:

lm(formula = RT ~ Freq, data = lexdec)

Residuals:

Min 1Q Median 3Q Max

-0.5456 -0.1607 -0.0341 0.1146 1.1309

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.38435 0.00631 1012.34 < 2e-16

Freq1 -0.06974 0.01449 -4.81 1.6e-06

Freq2 -0.11166 0.01416 -7.89 5.6e-15

Residual standard error: 0.237 on 1656 degrees of freedom

Multiple R-squared: 0.042, Adjusted R-squared: 0.0409

F-statistic: 36.3 on 2 and 1656 DF, p-value: 3.67e-16

Now the coefficients match the mean differences:

> means.freq[3]-(means.freq[1]+means.freq[2])/2

high

-0.11166

> means.freq[2]-means.freq[1]

med

-0.069744

The details regarding why we must take the inverse are not important right now, but [8] has
more detail.

4.3.4 ANOVA contrast coding

One can also do a classical anova contrast coding (main effects and interaction). Consider a 2×2
design like this data (this is real EEG data from my lab):

> data <- read.table("mean_600_750.tab",header=T)
> head(xtabs(~subj+cond,data))

cond

subj 101 102 103 104

co01 23 23 23 23

co02 23 23 23 23

co03 23 23 23 23

co04 23 23 23 23

co05 23 23 23 23

co06 23 23 23 23



106 CHAPTER 4. LINEAR MODELS

> ## conditions:
> ## 101: P S gram
> ## 102: S P ungram with intruder
> ## 103: S S ungram w/o intruder
> ## 104: P P gram with intruder
>
> # 1 2 3 4
> #gram 1 -1 -1 1
> #intr.g -1 0 0 1
> #intr.u 0 -1 1 0
>
> head(data)

subj cond chan win value gmin tgmin gmax tgmax

1 co01 101 F7 +600..+748 -2.8615 -6.3324 0.652 -0.10371 0.620

2 co01 101 F3 +600..+748 -4.8754 -7.5494 0.652 -3.16040 0.676

3 co01 101 FZ +600..+748 -4.2410 -6.4748 0.652 -2.41380 0.608

4 co01 101 F4 +600..+748 -1.9462 -5.0652 0.652 0.66873 0.700

5 co01 101 F8 +600..+748 -2.2612 -6.5130 0.620 1.44220 0.740

6 co01 101 FC5 +600..+748 -4.9317 -8.3295 0.652 -1.24640 0.624

> data$cond<-factor(data$cond,levels=c(101,102,104,103))
> ## critical channels
> critc <- c("F3","FZ","F4","C3","CZ","C4","P3","PZ","P4")
> ## frontals:
> frontc <- c("F3","FZ","F4")
> ## central:
> centralc <- c("C3","CZ","C4")
> # posterior:
> postc <- c("P3","PZ","P4")
> d <- subset(data,chan%in%critc)
> library(lme4)
> contrasts(d$cond)

102 104 103

101 0 0 0

102 1 0 0

104 0 1 0

103 0 0 1

> anova.contrast <- matrix(c( -1/2, -1/2, +1/2, +1/2, # Main effect A
-1/2, +1/2, -1/2, +1/2, # Main effect B
+1/2, -1/2, -1/2, +1/2), 4, 3, # Interaction A x B
dimnames=list(c("101", "102", "104", "103"),

c(".A", ".B", ".AxB")))
> contrasts(d$cond)<-anova.contrast
> contrasts(d$cond)
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.A .B .AxB

101 -0.5 -0.5 0.5

102 -0.5 0.5 -0.5

104 0.5 -0.5 -0.5

103 0.5 0.5 0.5

> (fm1 <- lmer(value~cond+(1|subj), d ) )

Linear mixed model fit by REML ['lmerMod']
Formula: value ~ cond + (1 | subj)

Data: d

REML criterion at convergence: 2792.2

Random effects:

Groups Name Std.Dev.

subj (Intercept) 2.54

Residual 2.60

Number of obs: 576, groups: subj, 16

Fixed Effects:

(Intercept) cond.A cond.B cond.AxB

-1.530 0.808 0.494 0.214

4.3.5 Steps in fitting a linear (mixed) model

Here is a checklist for fitting linear models:

1. First, check that your data have been correctly extracted. This step is often skipped, and it
often leads to mistakes. Did all subjects deliver the expected number of data points? Do you
have as many rows in your data frame as you’d expect? Are all items present in each subject’s
data? Are there any strange values for dependent measures? In other words, carefully check
your assumptions about the data before you do anything else.

2. Next, define your contrast coding based on your predictions.

3. Having fit your model, check your assumptions, such as whether the residuals are approx-
imately normally distributed. Although books like [2] say that the normality of residuals
assumption in linear models is the “least important” of the assumptions in a linear model,
it does not follow (and Gelman would agree) that you can simply ignore the normality of
residuals assumption. This is especially important when, as is common in psycholinguistics,
we want to do a hypothesis test. I explain this point next. The text below is taken almost
verbatim from a comment I made on Andrew Gelman’s blog.

Suppose we are interested in null hypothesis tests in linear models, e.g., H0 : β1 = 0,
where β0 is one of the parameters in the model. Suppose also that we have a “lot”
of data. To make things concrete, assume that we have a 2ÃŮ2 within subjects
design, with 100 subjects; each subject sees one of the four conditions in the 2ÃŮ2
design 24 times (the standard counterbalancing done in psychology). So, each
subject will see each condition 24 times. Assume that the dependent measure is
something like reading times. Linear mixed models are a standard way to analyze
such data.
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Here is the argument (it’s a bit technical but I will elaborate on it in class) that
suggests that checking the normality assumption of residuals is necessary. Note

that β̂ ∼ Np(β ,σ2
(X

T
X)

−1
), and that σ̂2

σ2 ∼
χ2

n−p

n−p
.

From distributional theory we know that T =
X√
Y/v

, when X ∼ N(0,1) and Y ∼ χ2
v
.

Let xi be a column vector containing the values of the explanatory/regressor vari-
ables for a new observation i. Then if we define:

X =
x

T

i
β̂x

T

i
β�

σ2x
T

i
(XT X)−1xi

∼ N(0,1) (4.11)

and

Y =
σ̂2

σ2 ∼
χ2

n−p

n− p
(4.12)

it follows that T =
X√
Y/v

:
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x

T

i
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T

i
β�

σ̂2x
T

i
(XT X)−1xi

=
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I.e., a 95% CI:

x
T

i
β̂ ± tn−p,1−α/2

�
σ̂2x

T

i
(XT X)−1xi (4.14)

So, although we can estimate β̂ without any distributional assumptions, we cannot
calculate confidence intervals for parameters, and we can’t do hypothesis testing
relating to these parameters using F tests because we don’t know that β̂ is mul-
tivariate normal because the distribution of y might not be multivariate normal
(because the distribution of ε might not be normal).

We can investigate the consequences of non-normality of residuals with a simulation.

> nsim<-100
> n<-100
> pred<-rep(c(0,1),each=n/2)
> store<-matrix(0,nsim,5)
> ## should the distribution of errors be non-normal?
> non.normal<-TRUE
> ## true effect:
> beta.1<-0.5
> for(i in 1:nsim){

## assume non-normality of residuals?
## yes:
if(non.normal==TRUE){
errors<-rchisq(n,df=1)
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errors<-errors-mean(errors)} else {
## no:
errors<-rnorm(n)
}
## generate data:
y<-100 + beta.1*pred + errors
fm<-lm(y~pred)
## store coef., SE, t-value, p-value:
store[i,1:4]<-summary(fm)$coefficients[2,c(1,2,3,4)]
}

We can calculate the probability of finding a significant effect given that the null hypothesis
is false:

> ## ��observed'' power for raw scores:
> table(store[,4]<0.05)[2]

TRUE

45

We see that there is a huge loss of power compared to the case where the residuals are normal
(exercise).

Note that the coverage of the 95% CIs is unaffected, but this is not interesting for us when
we are doing hypothesis testing!

> ## CIs:
> upper<-store[,1]+2*store[,2]
> lower<-store[,1]-2*store[,2]
> ## CIs' coverage is unaffected by skewness:
> table(lower<beta.1 & upper>beta.1)

FALSE TRUE

5 95

Here is the type of residual distribution we have in the above simulation; it is pretty typical
for reading and reaction time studies.



110 CHAPTER 4. LINEAR MODELS

−2 −1 0 1 2

−1
0

1
2

3
4

norm quantiles

re
si

du
al

s(
fm

)

Note also that if the residuals are non-normally distributed, your fitted model itself is no
longer realistic for the data. You can establish this by doing what Gelman and Hill suggest
we do for evaluating model quality: simulate new data and look at whether these simulated
values fall in the right ball-park. (exercise)

4. Related to the above point, you should use the boxcox function in the MASS package in R to
find out which transform you need to stabilize variance. Examples are provided in the case
studies chapter.

5. After having fit the model, check whether there are influential values. Use the influence.ME
package for this purpose.

6. Finally, displaying the results of a linear mixed model: usually we are not interested in the
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random effects parameter estimates, only the fixed effects estimates. One can use something
like the extractfit function and the myxtable function (below) that prints out the linear mixed
model fit as a formatted LATEX table (this is useful if you are working in LATEX, which is often
the case in linguistics).

> extractfit<-function(mod,indices=2:4,
coln=c("coef.","SE","t-value"),
fac,dig=2,model.type="LM"){

if(model.type=="LM"){
##LM:
fixefs<-coef(mod)[indices]} else {
##LMER:
fixefs<-fixef(mod)[indices]
}

SEs<-sqrt(diag(vcov(mod)))[indices]
torz<-fixefs/SEs
results<-round(cbind(fixefs,SEs,torz),digits=dig)
results<-data.frame(fac=fac,results)
colnames(results)<-coln
rownames(results)<-NULL
results

}
> myxtable<-function(res,cap,lab){

print(xtable(res,caption=cap,label=lab),
include.rownames=F)}

Here is an example:

> m0<-lm(rt~noise,MD497.df)
> results.m0<-extractfit(m0,

coln=c("","coef.",
"SE","t-value"),

indices=1:2,
fac=c("Intercept","noise"))

>
> #library(xtable)

> myxtable(results.m0,
cap="The effect of noise on reaction time.",
lab="tab:m0")

coef. SE t-value
Intercept 500.00 22.08 22.65
noise 138.00 31.23 4.42

Table 4.4: The effect of noise on reaction time.

7. The final step is producing a good quality summary plot or plots of the results.
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4.3.6 Where to look for more examples

See the case studies in the next chapter, and the website: http://openscience.uni-leipzig.de (the
Mind Research Repository) for more examples.
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Review exercises 1

5.1 Computing a 95% confidence interval

Take a random sample of size 150 from a population with mean 100, and standard deviation 50.
Compute the mean and standard deviation of the sample. Next, compute the estimated stan-

dard error using the standard deviation you just estimated from the sample. Now you have an
estimate of the mean and an estimate of the standard deviation of the sampling distribution of the
sample means.

Using the approximation that 2 times the estimated standard deviation of a normal distribution
covers 95% of the area under the curve, compute the lower and upper bounds around the sample
mean such that 95% of the area under the curve of the estimated SDSM (the so-called 95%
confidence interval) is .95.

5.2 The t-distribution

Just as we have pnorm and qnorm in the normal distribution, we also have the functions pt and
qt. For example, I can ask for the probability to the left of -2 in a t-distribution with degrees of
freedom 149:

> pt(-2,df=149)

[1] 0.023659

Compare this with the normal distribution with mean 0 and sd 1:

> pnorm(-2)

[1] 0.02275

Tasks:

1. In a t-distribution with degrees of freedom (df) 149, calculate the value t1 such that the
probability to the right of it is .025.

2. Then, for a t-distribution with df=149, calculate the value t2 such that the probability to
the left of it is 0.025.

3. What is the area between t1 and t2?

4. We will call the absolute value of t1 (or t2) the critical t value.
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5.3 Confidence intervals revisited

For the data you generated in question 1, and using the calculations you did in question 2, recom-
pute the 95% confidence interval using:

x̄± critical.t × estimated.SE

Now compare your lower and upper bounds with the output of the t.test. Assuming that the
data was saved in a sample called x, you can do:

t.test(x)$conf.int

5.4 Your first data analysis

Read in the data simdata1.txt provided with these notes.
Then work out the 95% confidence intervals for condition a, and condition b (each one separately

of course). Use the critical t-value for this calculation.
Without doing any more statistical analysis, can you say whether the values for condition a

and b come from the same distribution?
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Review exercises 2

6.1 Your first linear model

Read in the data simdata1.txt from review exercises 1.
Fit a linear model to simdata1.txt to investigate whether condition a and b come from pop-

ulations with different means.
Do the same with simdata2.txt.

6.2 Beauty data

Look at the beauty data; these list perceived “beauty” levels of professors along with their teaching
evaluations. A beauty level of 0 means “average looking”; positive values signify above average
beauty levels. In teaching evaluations a higher number signifies a better teaching score.

Load the data and plot it:

> beauty<-read.table("beauty.txt",header=T)

Fit a linear model of beauty as a predictor of teaching evaluation. Output a summary of the
model fit. Discuss the interpretation of the estimated coefficients.

6.3 Mother and child IQ

Read in the data called kidiq.txt:

> kidiq<-read.table("kidiq.txt",header=T)

Here are the meanings of the terms used in this data set:

• kid score: the IQ of the child.

• mom hs: did mother go to high school? 1 if yes, else 0.

• mom iq: mother’s IQ.

• mom age: mother’s age
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Answer the following questions:

1. Does the mother’s IQ predict child’s IQ?

2. Does the mother’s high-school status (1=went to high school, 0=did not go to high school)
predict child’s IQ score?

3. Does mother’s age predict child’s IQ level?

6.4 2×2 factorial design

Read in the dataset noisdeg. Figure out what is in the dataset (you may need to look at the
chapter on linear models).

Fit a model to look at the effect of degree of reaction time, and (in a separate model) the effect
of noise on reaction time. Explain what the coefficients mean.
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Review exercises 3

For the simdata3.txt dataset (simulated data), fit a linear model of the form rt ∼ cond, where cond
represents two levels of a categorical predictor variable (i.e., cond is not a numerical predictor,
such as beauty level).

Questions:

1. Explain what the coefficient estimates (the column marked Estimate in the output of the
model) mean.

2. Are the residuals normally distributed?

3. What are the two null (and the respective alternative hypotheses) that the linear model is
testing? Are the two null hypotheses rejected at α = 0.05? Briefly explain your answer,
referring to the standard error estimates, t-values, and p-values for explaining your decision.

4. For the second hypothesis test in the model (the one involving the cond factor), suppose the
true distribution of δ , the difference in means, has mean 20. Sketch the distribution that
represents the null hypothesis, and the true distribution, and then show the (a) Type I error
region, (b) Type II error region, (c) the region representing power.

5. (This one requires some thought!) Still focusing on the second hypothesis test, given that
the true distribution is centered around 20, and given (from the above model fit) that the
estimated standard error is 4.2, what is the probability of correctly rejecting the null hypoth-
esis (the power)? You can assume that the rejection region in the null hypothesis is bounded
by -2 and 2.
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Course review questions 1

These questions cover the entire course. You should be able to solve all these questions (correctly!)
within 2 hours.

8.1 Confidence intervals

The 95% confidence interval

a gives us a range that tells us that the population mean lies within this range with probability
95%.

b contains the sample mean with probability .95.

c tells us that we can be 95% sure that the sample mean is the true population mean.

d none of the above.

Briefly explain your answer (no more than one sentence!).

8.2 Type I error and p-value

Let us assume that you do an experiment and get a p-value from a t-test or whatever statistical
test you do. What happens to the alpha value (Type I error probability) when the p-value is
smaller than 0.05?

a alpha remains unchanged.

b alpha increases.

c alpha decreases.

d the answer depends on how much smaller the p-value is than 0.05.

Briefly explain your answer (no more than one sentence!).
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8.3 Contrast coding

A factor with three levels (a, b, c) is used as a predictor for reading times (rt) in a linear model.
Sample size is 20. You are given the following information:

> contrasts(dat1$cond)

c a

b 0 0

c 1 0

a 0 1

> summary(mod)

Call:

lm(formula = rt ~ cond, data = dat1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 490.46 17.24 28.44 <2e-16

condc 11.25 24.39 A 0.65

conda -2.16 B -0.089 0.93

1. Write down the sample means for each of the conditions a, b, c (to the nearest whole number
is acceptable).

2. State what value should be in A; briefly explain how you got your answer. (it is enough to
show a fraction).

3. State what value should be in B; briefly explain how you got your answer. (it is enough to
show a fraction).

4. Write the three null hypotheses that are being tested in the rows labeled (Intercept), condc,
and conda in the linear model.

5. For each of the three null hypotheses, state whether you would reject or fail to reject it.

6. For the hypothesis test associated with the row marked “conda” in the linear model output,
repeated below:

Estimate Std. Error t value Pr(>|t|)

conda -2.16 B -0.089 0.93

what would the standard error have to be to reject the null hypothesis at α = 0.05? Assume
that the absolute critical t-value is 2.
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8.4 Confidence intervals, power, Type I and II error prob-
ability

1. Given a sample with sample size 25, sample mean 50, and known standard deviation 5,
specify a 90% confidence interval for this sample (i.e., give the lower and upper bounds of
the intervals). You may need this information:

> qnorm(0.05)

[1] -1.6449

2. Briefly explain what the qnorm function output above is telling you (do not hesitate to draw
a sketch).

3. For the above problem, would you reject the null hypothesis that the true population mean
is 45? Assume that you are willing to incorrectly reject the null hypothesis with probability
0.10. Carefully (but briefly!) explain your answer. Note: no p-value needs to be calculated.

4. For the above problem, sketch the distribution corresponding to the null hypothesis that
the true mean is 45, and the distribution corresponding to the alternative that the true
population mean is 60. Show the Type I error region, the Type II error region, and the
region representing power.

8.5 More contrast coding

Consider the noise and degree data (we have seen this data set before in the lecture notes). We
have 10 subjects, each of whom is shown a picture on the screen that is (a) masked by noise or no
noise (i.e., there is one factor with level noise, an another with level no.noise), and is (b) angled
at 0, 4, or 8 degrees. The dependent measure is recognition time in milliseconds. Here is subject
1’s data to give you an idea of what the dataset looks like:

> MD497.df

rt subj deg noise

420 s1 0 no.noise

420 s1 4 no.noise

480 s1 8 no.noise

480 s1 0 noise

600 s1 4 noise

780 s1 8 noise

...

We fit a linear mixed model given the following specifications:

> contrasts(MD497.df$deg)

4 0

8 0 0

4 1 0

0 0 1
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> summary(m0.lmer<-lmer(rt~deg+(1|subj),MD497.df))

Formula: rt ~ deg + (1 | subj)

Random effects:

Groups Name Variance Std.Dev.

subj (Intercept) 3494 59.1

Residual 11498 107.2

Number of obs: 60, groups: subj, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 645.0 30.4 21.22

deg4 -60.0 33.9 -1.77

deg0 -168.0 33.9 -4.95

1. Briefly explain what the plot based on the following command would show us:

qqPlot(residuals(m0.lmer))

2. Sketch a barplot (or any other kind of appropriate plot) summarizing the approximate mean
reaction times for the three degree levels. It may help you to first work out the sample means
for each level of the degree factor; this will help you in the subsequent parts as well.

3. If the contrast coding had instead been as below, what would the estimated coefficients in
the linear model be? Give numbers for the letters C, D, and E below.

> contrasts(MD497.df$deg)

4 8

0 0 0

4 1 0

8 0 1

Fixed effects:

Estimate Std. Error t value

(Intercept) C 30.4 15.69

deg4 D 33.9 3.19

deg8 E 33.9 4.95

4. Briefly comment on whether the degree factor affects reaction time given the output in the
immediately preceding part of this question.
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Course review questions 2

These questions cover the entire course. You should be able to solve all these questions (correctly!)
within 2 hours.

9.1 Standard error

Standard error is

a the standard deviation of the sample scores.

b the standard deviation of the distribution of sample means.

c the square root of the sample variance.

d the 95% confidence interval.

9.2 Confidence interval

Given a particular sample, the 95% confidence interval is ———– the 90% confidence interval.
(Fill in the blank above by circling one choice, and briefly explain your choice.)

a wider than

b narrower than

c the same width as

Explain your choice.

9.3 Power

When statistical power increases,

a Type II error probability decreases

b Type II error probability increases

c Type II error probability remains unchanged
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9.4 Power, Type I and II error

Assume that the null hypothesis for a t-test is H0 : µ = 0, where µ is the population mean. Assume
also that in reality µ = 4.

1. Draw the distribution of the sample means under the null hypothesis (i.e., assuming that the
null hypothesis is true). Directly below it, draw the distribution of the sample means that
reflects the true state of affairs (i.e., that µ = 4). Mark the Type I error region, the Type II
error region, and the region representing statistical power (the plots are of course going to
be approximate). No explanations are needed in words, just label the relevant regions asked
for.

2. What would happen to Type II error probability if you reduce your Type I error probability?
(No explanation needed).

3. What would happen to power if you reduce your Type I error probability? (No explanation
needed).

9.5 Standard error

You are given a sample with mean x̄, standard deviation s, and sample size n.

1. Write down the formula (just write the formula, no words needed!) for standard error, i.e.,
SEx̄.

2. What is the standard error an estimate of? (Now you need to use words and possibly also
symbols to explain this.)

3. Let the null hypothesis H0 be: H0 : µ = 0, where µ is the hypothesized population mean. Let
the alternative hypothesis be H1 : µ �= 0. We fix Type I error probability to 0.05. Let sample
size be n = 61. R tells us what the critical t-value is for this sample size:

> qt(0.025,df=60)

[1] -2

[Recall that the function qt() tells you the critical t-value for a given Type I error probability
and a given n−1 degrees of freedom.]

Suppose the standard error is SEx̄ = 20, and the sample mean x̄ = 40. If one does a one-
sample t-test, given all the above information, what would be the approximate p-value (to
two decimal places) and t-value (to the nearest whole number) that the t.test function gives?
Don’t just write numbers, explain your answer.
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9.6 Contrast coding

The lexdec data set in the library languageR has, among other things, log-transformed reaction
times (i.e., in log milliseconds) of subjects for English words that they saw on a screen: they had to
decide whether the word they saw was a word or not, and the reaction time represents the amount
of time it took them to make the decision. Subjects were were either native speakers or not native
speakers of English.

Our research question is: do native speakers make the lexical decision faster than non-native
speakers?

Suppose we fit a linear model of log reaction time (RT) against native language status. Note
that:

> contrasts(lexdec$NativeLanguage)

Other

English 0

Other 1

I display the relevant output of the model below.

> summary(lm(RT~NativeLanguage,lexdec))

Coefficients:

Estimate Std. Error t value

(Intercept) 6.32 0.01 849.78

NativeLanguageOther 0.16 0.01 13.72

1. Write down the null and alternative hypotheses for testing the research question above.

2. Explain what the coefficients (the intercept and slope) mean.

3. Given the above R output, and Type I error probability α = 0.05, what would you conclude
about the null hypothesis? Would you reject it? Explain your answer briefly.

4. Approximately how large would the standard error have to be to fail to reject the null
hypothesis you specified above, at Type I error probability α = 0.05? Briefly explain your
answer.
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Solutions

10.1 Quiz 1 solutions

1. b

2. b

3. b

4. d

5. d

6. a

7. d

8. a

9. b

10. a

11. c
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