
DR
AF
T

Fitting linear mixed models using JAGS and Stan:
A tutorial

Tanner Sorensen
Department of Linguistics, University of Potsdam, Germany

Shravan Vasishth
Department of Linguistics, University of Potsdam, Germany

School of Mathematics and Statistics, University of Sheffield, UK

Version dated May 1, 2014

Abstract

This tutorial is aimed at psycholinguists and psychologists interested
in fitting linear mixed models using JAGS and Stan.

Keywords: Bayesian linear mixed models, JAGS, Stan

Ever since the arrival of the nlme package (Pinheiro & Bates, 2000) and its
subsequent version, lme4 (Bates & Sarkar, 2007), the use of linear mixed models in
psychology and linguistics has increased dramatically. In the present tutorial, we
show how standard models in psychology, linguistics, and psycholinguistics can be
fitted easily using Bayesian tools such as JAGS (Plummer, 2012) and Stan (Stan
Development Team, 2013). Our presentation focuses on practical details, in order to
allow the reader to quickly start fitting their own models. For simplicity, we focus on
two simple designs: a two-condition repeated measures study, and a 2 × 2 repeated
measures factorial design.

There are no prerequisites apart from having some exposure to fitting lin-
ear mixed models using lme4, and having the relevant software installed: JAGS,
Stan, rjags, rstan in R, and any associated software; see the JAGS (http://mcmc-
jags.sourceforge.net) and Stan (mc-stan.org) websites for details.

Stan is the more general programming language for psycholinguistic research
because it allows the researcher to flexibly fit fairly complex models. However, we

We thank Martyn Plummer, Bob Carpenter, Andrew Gelman, and members of the Stan mailing

list for assistance. Titus von der Malsburg wrote an initial version of the data generation code;

Titus also identified a number of typographical errors in the draft. For any questions and comments

related to this tutorial, please email the authors: {tsorense,vasishth}@uni-potsdam.de.

FITTING LINEAR MIXED MODELS 2

chose to introduce JAGS first because it uses BUGS syntax, which is currently widely
used in textbooks; anyone learning to do Bayesian analysis would need to understand
BUGS syntax in order to read introductory books. We provide some references at the
end of the tutorial.

Fitting a linear mixed model with a full variance-covariance matrix by
subject and by items

Imagine that we are interested in the effect of ungrammaticality on reading time
in a reading task. A typical way to address this kind of question is to prepare sev-
eral experimental items, each with a grammatical and ungrammatical version. For
example, if we decide to use 6 items, each with two versions (grammatical and un-
grammatical), then each participant could see six items that are ungrammatical, and
six that are grammatical. Thus, we would have 12 data points from each participant.
Imagine that we have three participants. We can simulate such a data-set; see Table 1
(we show later how these data are generated). This is one kind of design that is used
in psycholinguistic data; we will discuss other designs in case studies using real data.

subj item condition rt
1 1 1 gram 596
2 1 1 ungram 638
3 1 2 gram 546
4 1 2 ungram 569
5 1 3 gram 615
6 1 3 ungram 584

Table 1
Example of (simulated) repeated measures data (the first six rows of a data frame).

In order to express the fact that the reading times have a common mean with
an adjustment for the grammaticality factor, we decompose each reading time into a
sum whose terms are the mean of the grammatical condition, β0, and an adjustment
β1 for the reading time being associated with the ungrammatical condition. So the
ith reading time RTi is given by the sum:

RTi = β0 + β1conditioni + �i (1)

The predictor, condition i, specifies whether RTi was in the ungrammatical or gram-
matical condition. In the data frame shown above, the grammatical condition is writ-
ten as “gram”, and the ungrammatical condition as “ungram”. In the model shown
in 1, we need a way to assign numerical values to the two conditions (multiplying β1
with a factor level called“grammatical” is an undefined mathematical operation). One
way to do this is to say that if RTi is recorded for the ungrammatical condition, then
conditioni is coded as 1. If not, then it is coded as 0. This is called treatment contrast
coding, and it has the effect of adjusting the mean for the grammatical condition β0

FITTING LINEAR MIXED MODELS 3

by β1 in the ungrammatical condition. β1 is now the additional cost of ungrammat-
icality (or, equivalently, the difference in reading time between the grammatical and
ungrammatical condition). Together β0 and β1 make up the fixed part of the model,
which characterizes the effect of the experimental manipulation on RT. The third
term �i is the residual error: from equation 1, it is clear that this is the amount by
which the predicted values from the model (β0 + β1conditioni) differ from RTi. We
assume here that �i is normally distributed with mean 0 and unknown variance σ2;
this is written as �i ∼ N(0, σ2). This variance is estimated from the data. For the
above data, the estimates of the fixed effects β0, and β1, and their standard errors
can be computed using the lm function in R; see Table 2.

Estimate Std. Error
beta0 572.11 8.98
beta1 31.83 12.70

Table 2
Estimated fixed effects and their standard errors.

It is clear that the RT will vary systematically depending on the participant
and on the item; some participants will be read fast, some slow, and similarly, some
items will be read fast, some slow. Participants and items therefore add variability
in the response. We could in principle ignore these sources of variability (or variance
components), by assuming only one source of variance, σ2. An alternative is to take
all these variance components into account. We can do this by adding adjustment
terms u0j and w0k, which adjust β0 for participant j and item k. This partially
decomposes �i into a sum of the terms u0j and w0k, which adjust β0 to incorporate
an adjustment to the intercept β0 for participant j and item k. If participant j is
slower than the average of all the participants, uj would be some positive number,
and if item k is read faster than the average reading time of all the items, then wk

would be some negative number. These adjustments u0j and w0k are called random
or varying intercepts, and by adjusting the β0 by these we account for idiosyncratic
patterns of speakers and items. We assume that these adjustments are normally
distributed around 0: u0j ∼ N(0, σ2

u) and w0k ∼ N(0, σ2
w). Note that now we have

three variance components in this model: σ2, σ2
u, and σ2

w. Note also that all three
variance components are assumed to be independent of each other. We can now
express the ith reading time — which is associated with subject j reading item k —
as the following sum.

RTijk = β0 + u0j + w0k + β1conditioni + �i (2)

This kind of model, which is called a varying intercepts model, can be fit in
R using the lmer function available in the package lme4, using the command shown
below. The estimated coefficients and their standard errors are shown in Table 3.

library(lme4)

FITTING LINEAR MIXED MODELS 4

m1<-lmer(rt~condition+(1|subj)+(1|item),data)

Estimate Std. Error
beta0 572.11 9.60
beta1 31.83 12.58

Table 3
Fixed effects estimates of the varying intercepts model.

For the simulated data-set discussed above, the standard deviation of the par-
ticipants’ varying intercepts component is 6.23; for the items varying intercept com-
ponent, it is 0, and the residual (error) standard deviation is 37.75.

Suppose now that although subject j is a fast reader, she may exhibit greater
slowdowns due to the ungrammaticality violation. It might also be that item k is read
somewhat more quickly in the ungrammatical condition than the other items are.
There may be other participants and items that are impacted to differing degrees
by the grammaticality violation. This can be expressed by adjusting β1 by some
quantities u1j and w1k. These are varying slopes, and by adding them we account for
the effects for ungrammaticality, which are idiosyncratic to participant j and item k.
We now express RTijk as the following sum.

RTijk = β0 + u0j + w0k + (β1 + u1j + w1k)conditioni + �i (3)

The varying intercepts u0j and w0k are adjustments to the fixed intercept β0, and
the varying slopes u1j and w1k are adjustments to the fixed slope β1. We assume that
these adjustments are normally distributed with mean 0 and some unknown variance.
Importantly, we also assume that the varying intercepts and slopes for participants
are correlated; and that the varying intercepts and slopes for items are also correlated.
We elaborate on this point below.

All these random quantities can be regarded as adjustments that reduce the
magnitude of the error term �i. Recall that the expected value of �i was 0 in equation 1.
This is still the case in equations 2 and 3. This constrains the expected value of the
random intercepts and random slopes to likewise be 0. As with �i, if the expected
value of the random effects were nonzero, we would add that quantity to β0 (Searle,
Casella, & McCulloch, 2009).

Model 3, which is called a varying intercepts, varying slopes model, is useful
in psycholinguistic research because it faithfully reflects all the sources of variance
in the experimental design. The experimental design suggests a natural partitioning
of RT into groups associated with a given subject or a given item. These groups
are specified by considering RTijk with either the subject index j or the item index
k held constant. Groups defined along these lines display systematically different
patterns of variance. For example, by-subject variance in language comprehension
tasks has been attributed to factors such as individual differences in working memory

FITTING LINEAR MIXED MODELS 5

capacity (Just & Carpenter, 1992) and in processing speed (Kliegl, Masson, & Richter,
2010). Cognitive models of performance in such tasks often make predictions about
the relationship between a subject’s random intercept and slope. For instance, a
fast reader might be expected to take less time resolving an ungrammaticality on
the rationale that processing speed in normal reading reflects the processing speed
for resolving ungrammaticalities. Such a prediction can be evaluated experimentally
by estimating the correlation between u0 and u1. A positive correlation between the
varying intercepts and varying slopes would support such a prediction.

So far we have assumed several variance components, but we have not explic-
itly specified how they will covary. If the correlation between the subjects’ random
intercepts u0j and random slopes u1j is to be estimated, the model must specify that
u0j and u1j covary. This simply means that the different variances are not mutually
independent. We assume that u0 and u1 are normally distributed with mean 0 and
with variance and covariance given by the matrix Σu, given below. The parameters
in Σu are unknown, and so we must estimate them. The parameter ρu indicates the
correlation between u0 and u1; it is our estimate of ρu by which we evaluate predic-
tions about individual differences in experimental conditions. A variance-covariance
matrix Σw can likewise be defined for by-item random effects.

Σu =
�

σ2
u0 ρu σu0σu1

ρu σu0σu1 σ2
u1

�

(4)

Σw =
�

σ2
w0 ρw σw0σw1

ρw σw0σw1 σ2
w1

�

(5)

To state all of this more formally, the linear mixed model for this particular
example can be specified by assuming that the varying intercepts and slopes by par-
ticipants and by items have the following bivariate distribution:

�
u0j

u1j

�

∼ N(
�

0
0

�

, Σu)
�

w0k

w1k

�

∼ N(
�

0
0

�

, Σw) (6)

The variance components associated with participants and items are generally
treated as nuisance parameters in psycholinguistic work. They are generally included
in the model only to discount the possibility that the fixed effects estimates depend
on the particular subjects and items used in the experiment. However, as mentioned
above, there are situations where these variance components can be of theoretical
interest; an example is where we have a theory about how reading speed of a par-
ticipant affects the magnitude of their ungrammaticality effect. Here, the correlation
parameter is of intrinsic theoretical interest.

We turn next to the practical details of model fitting in JAGS and Stan. First
we introduce the code for estimating ρu using the probabilistic programming language
JAGS (Plummer, 2012). Then we extend these techniques to more complicated ex-
perimental designs, using Stan (Stan Development Team, 2013). In both sections,

FITTING LINEAR MIXED MODELS 6

we assess the accuracy of our estimations using simulated data where the underlying
correlations are known.

Writing out a varying intercepts linear mixed model using JAGS

In the previous section we illustrated the linear mixed model and motivated
model 3, which has a fixed part to capture planned experimental effects and a random
part to capture by-subject and by-item variance. In this section, we implement this
model in the Bayesian setting using the probabilistic programming language JAGS.
We illustrate this for the simple case of an experimental design with one factor and
two levels. We begin by illustrating JAGS syntax before applying our model to a
simulated data-set, where we show how to estimate the random effects correlation.

JAGS syntax

In the Bayesian setting, estimates of model parameters such as β1 or ρ are
random variables with a probability distribution, not point values as they are in the
frequentist setting. These are called posterior probability distributions, and they are
derived using Bayes’ theorem, which states that the posterior probability distribution
of the model parameters θ is proportional to the probability of the observed data
given the parameter(s) θ (the likelihood), times the prior probability distribution of
θ. We can restate this as follows:

p(θ | y) ∝ p(y | θ)p(θ). (7)

The likelihood and the prior are specified directly in our JAGS model. The model
specification embodies our assumptions about the underlying processes which gener-
ated the observed data. These include both distributional assumptions about certain
parameters, e.g., that u0 is drawn from a normal distribution with mean 0 and un-
known variance, and assumptions about the form of the model which generates the
data itself. Below we give the relevant JAGS code chunks. Complete model specifi-
cations are provided in the appendix.

We first define the fixed effects of our model. Recall that these include an
intercept β0 and an adjustment β1 for the experimental condition. In JAGS, we write
β as a vector with two entries, each of which is drawn from a normal distribution.
The prior distribution on β is defined as below:

beta[1] ~ dnorm(500,1.0E-5)

beta[2] ~ dnorm(0,1.0E-5)

The tilde (∼) means that the parameter to its left is drawn from the probability
distribution to its right, which is the normal distribution. Its first argument is the
mean and the second is the precision. Precision is the inverse of the variance, and is
often used in Bayesian settings for reasons that do not concern us here. Low precision

FITTING LINEAR MIXED MODELS 7

means the same thing as high variance in that it places few a priori constraints on
the value of a parameter. Such a prior is called vague or “uninformative”. We have
chosen such a prior here, but if we already knew a great deal about the parameters,
we could have chosen a more informative prior.

We now define the random effects structure of our model. In this article we give
an explicit definition only for the by-subject random effects u0 and u1, but the same
definition is repeated for by-item random effects in the complete model specification.
In an experiment with J participants there will be J pairs of by-subject random
intercepts u0j and slopes u1j. Recall that our model specifies a covariance structure
between the u0 and u1. This is expressed in our model by drawing u0j and u1j from
a multivariate normal distribution, for j = 1, 2, . . . , J .

for(j in 1:J)

{

u[j,1:2] ~ dmnorm(zero.u,invSigma.u)

}

The first argument to the multivariate normal distribution is a vector of two 0s, which
specifies the mean values of u0j and u1j. The second argument is the precision matrix
Σ−1

u , which is the inverse of the variance-covariance matrix Σu from equation 4. A
definition of Σ−1

u involves the precisions of the by-subject random intercept and slope,
which we denote as τu0 and τu1 , respectively. We define the priors for these below
(see Chung, Gelman, Rabe-Hesketh, Liu, & Dorie, 2013 for the motivation).

tau.u1 ~ dgamma(1.5, 1.0E-4)

tau.u2 ~ dgamma(1.5, 1.0E-4)

That is, precision is drawn from a gamma distribution with shape parameter 1.5
and scale parameter small, defining a vague prior. Precision can be transformed to
standard deviation, which we do for ease of interpretability. The function pow below
is the power function: it takes a numerical value and raises it to some power (here,
−1/2).

sigma.u1 <- pow(tau.u1,-1/2)

sigma.u2 <- pow(tau.u2,-1/2)

The correlation parameter ρu also plays a role in the precision matrix Σ−1
u .

This is the correlation between u0 and u1. Accordingly, it is constrained to take
on values between −1 and 1. To express this, we define as prior for ρu a normal
distribution which has been truncated at −1 and 1 (the command T(-1,1) implements
the truncation).

rho.u ~ dnorm(mu_rho.u,tau_rho.u)T(-1,1)

mu_rho.u ~ dunif(-1,1)

tau_rho.u ~ dgamma(1.5,1.0E-4)

FITTING LINEAR MIXED MODELS 8

Notice that the mean and precision of the prior distribution on ρu are themselves
drawn from a probability distribution. When a parameter of a prior distribution
is drawn from a probability distribution, we say that it is drawn from a hyperprior
distribution. This has the effect of letting the mean and precision of the prior on ρu

vary probabilistically. We will discuss this in more detail below with some simulation
results.

We have now specified τu0 , τu1 , and ρu. We put these pieces together by defining
a prior on Σ−1

u , which determines the pattern of covariance displayed by u0 and u1.
In particular, we draw Σ−1

u from a Wishart distribution. This takes a scale matrix as
a parameter, which we specify as Ru, and a degrees of freedom argument, which we
specify to be 2.

R.u[1,1] <- pow(sigma.u1,2)

R.u[2,2] <- pow(sigma.u2,2)

R.u[1,2] <- rho.u*sigma.u1*sigma.u2

R.u[2,1] <- rho.u*sigma.u1*sigma.u2

invSigma.u ~ dwish(R.u,2)

Sigma.u <- inverse(invSigma.u)

This completes the definition of the prior on the by-subjects random effects. The
same definition also works for the by-item random effects; we leave this as an exercise
for the reader, although the solution is provided in the appendix.

The prior on u0 and u1 implements certain model assumptions which were dis-
cussed in the introduction. In particular, we have specified that the mean of the prior
distribution on u0 and u1 is zero and that their variances σu0 and σu1 covary. This
is done explicitly when we draw u0 and u1 from a multivariate normal distribution
with mean zero and precision matrix Σ−1. This contrasts with the prior on β0 and
β1, where no such assumptions were made. This is evident in the fact that they are
drawn from independent normal distributions.

Finally, we define the prior on the residual variance σe, which captures the noise
in the data; the upper bound of the uniform prior is simply chosen as a reasonable
value based on our knowledge of the research domain. We then transform this to the
precision scale, which we need in the model specification.

sigma_e ~ dunif(0,50)

tau.e <- pow(sigma_e,-2)

The prior distributions on the model parameters which we have specified com-
bine with the experimental data through the likelihood function to yield a posterior
distribution for each parameter. The likelihood function specifies how the various
parts of the model generate the dependent variable RT. Note that subj[i] and
item[i] gives the subject and item associated with the ith reading time and that
there are N reading times in all. Note also that the predictor condition i has been
replaced by xi, just for notational ease.

FITTING LINEAR MIXED MODELS 9

for(i in 1:N)

{

mu[i] <- (beta[1]

+ u[subj[i],1]

+ w[item[i],1])

+ (beta[2]

+ u[subj[i],2]

+ w[item[i],2]) * x[i]

RT[i] ~ dnorm(mu[i], tau.e)

}

Compare this with the varying intercepts, varying slopes model specification discussed
earlier (equation 3); the above code simply implements the statement in equation 3.
The variable mu[i] gives the expected value for RT[i]. Note that this expected value
is conditioned by the fixed effect for grammaticality and random effects for subject
and item. The residual variance absorbs whatever variance in RT remains unexplained
by the model.

JAGS simulations

In the preceding section, we implemented the linear mixed effects model 3 in
JAGS. Here we report the results of a simulation study in which this model was fit
to data-sets generated so as to exhibit properties of interest.

We generate data sets from an experimental design with one factor and two
levels within this factor. As before, the dependent measure will be reading time
and the experimental manipulation will be ungrammaticality. This data-set can be
generated quite straightforwardly in R. The relevant code chunks are provided below.
Complete code can be found in an online appendix. The fixed effects structure for J
subjects and K items is generated as follows.

beta_0 <- 600

beta_1 <- 10

x <- rep(0:1, J*K)

This corresponds exactly to the fixed effects structure of model 3. The intercept β0
is 600, the adjustment β1 is 10, and the treatment coded categorical predictor xi is
coded as a vector of zeros and ones which repeats J × K times so that each each
subject reads each item in both the grammatical and the ungrammatical condition.

The random effects structure of model 3 is defined in terms of the patterns of
variance and covariance which the population of subjects and items displays. Once
this variance-covariance structure is specified we can randomly draw subjects and
items from their respective populations. We now illustrate this for by-subject random
effects. First we define the population parameters σu0 , σu1 , and ρu.

FITTING LINEAR MIXED MODELS 10

sigma_u0 <- 10

sigma_u1 <- 10

rho_u <- 0.6

These population parameters stand in direct correspondence to the model parame-
ters which define the variance-covariance matrix Σu in equation 4. We now define the
variance-covariance matrix Σu, which determines the pattern of variance and covari-
ance displayed by the subjects.

Sigma_u <- matrix(c(sigma_u0^2,

rho_u*sigma_u0*sigma_u1,

rho_u*sigma_u0*sigma_u1,

sigma_u1^2),nrow=2)

Now that we have defined the way in which by-subject random intercepts and slopes
will vary, we draw J random intercept and slope pairs from a multivariate normal
distribution. For this we use the R package MASS.

u <- mvrnorm(n=J,c(0,0),Sigma_u)

This is a J-by-2 matrix whose first column contains J by-subject random intercepts
u0j and whose second column contains J by-subject random slopes u1j. Thus, each
row contains the random intercept and slope for one subject. We repeat this same
procedure to generate K by-item random intertercepts w0k and slopes w1k.

Now that we have defined the fixed and random effects structure of our model,
we turn next to the error component, �. For a data set with two conditions, J subjects,
and K items there will be 2 × J × K observations. We generate one error term for
each observation by drawing 2 × J × K numbers from a normal distribution with
mean zero and standard deviation 40.

sigma_e <- 40

epsilon <- rnorm(2*J*K, 0, sigma_e)

Each dependent measure RTi will be determined by the sum β0 + u0j + w0k + (β1 +
u1j + w1j)xi + �i. This is what the following command achieves for each row i in the
data frame:

RT[i] ~ dnorm(mu[i], tau.e)

Given that we have just generated a data-set whose structure corresponds ex-
actly to that which is assumed by model 3, we should be able to find reasonable
estimates for these population parameters using the JAGS implementation specified
above. In practice, whether we can obtain reasonable estimates depends on the sub-
ject and item sample sizes J and K, as well as the stochastic process which generates

FITTING LINEAR MIXED MODELS 11

0.00
0.05
0.10
0.15
0.20

590 600 610

β0

0.00
0.03
0.06
0.09

−10 0 10 20 30 40

β1

model M0 Mu Muw

Fixed effects

Figure 1 . Posterior distributions of the fixed effects intercept β0 and slope β1 plotted
against the known true values as vertical dashed lines.

a given sample of J subjects and K items. In order to assess the goodness of fit, we
choose a moderate sample size of 25 subjects and 16 items. This is a fairly typical
sample size in psycholinguistic experiments.

Three models will be fit to the same data. The first model M0 places no hyper-
prior on the mean and precision of the prior distributions of ρu and ρw; instead, the
prior distributions have mean zero and low precision. M0 is included to assess whether
a correlation parameter with hyperpriors yields a better estimate than a correlation
parameter which has none. The second model Mu has no by-item random slope. It is
included to demonstrate that the goodness of fit will deteriorate when the structure
of the data is richer than the model assumes. The varying intercepts, varying slopes
model 3 is referred to as model Muw here.

Assessing the goodness-of-fit in the Bayesian setting involves drawing samples
of model parameters from the posterior as a means of approximating the posterior
probability density function. To illustrate this, we sample β0 and β1 from their re-
spective posteriors and examine these distributions. The fact that we know the true
values of β0 and β1 enables a direct comparison of the posterior distribution with
these point values. In figure 1 we see that the three models essentially agree on their
estimates β̂0 and β̂1. This is expected because the fixed effects structure of all three
models exactly mirrors the way in which the data were generated.

The visual impression conveyed by figure 1 can be sharpened numerically. In
table 4 we report the credible intervals for β0 and β1 as derived under different models.
The credible interval is the range in which the β0 and β1 lie with probability 0.95.
This inference can be made directly, although here we make the usual caveat that the
result is contingent upon model assumptions, which include the form of the model
and the covariance structure which its parameters exhibit. With this in mind, we
could infer from model Muw that β1 is between 5.02 and 21.72 with 95% certainty.

The posterior distribution of the fixed effects coefficients is not very revealing
about the differences among models Muw, Mu, and M0. Recall that we fit Mu and
M0 in order to assess the adequacy of the random effects structure assumed in Muw.
To evaluate this we sample the random effects correlation parameters ρu and ρw from
their respective posterior distributions. Recall that the random effects were generated

FITTING LINEAR MIXED MODELS 12

true value posterior mean CrI: 2.5th% ile CrI: 97.5th% ile
Muw : β0 600 602.78 597.57 608.02
Muw : β1 10 13.47 5.02 21.72
Mu : β0 600 602.84 598.51 607.25
Mu : β1 10 13.53 5.54 21.52
M0 : β0 600 602.81 597.42 608.40
M0 : β1 10 13.45 4.38 22.52

Table 4
Posterior statistics on β0 and β1. The row names give the model and the parameter.
The columns give the known population parameter value, the posterior mean, and the
upper and lower bounds on the 95% credible intervals.

0.0
0.2
0.4
0.6
0.8

−1.0 −0.5 0.0 0.5 1.0

ρu

0.0
0.2
0.4
0.6
0.8

−1.0 −0.5 0.0 0.5 1.0

ρw

model M0 Mu Muw

Random Effects Correlation

Figure 2 . Posterior distributions of ρu plotted against the known sample correlation
ru and rw as vertical dashed lines.

such that both the by-subject and by-item random intercepts and slopes are correlated
with ρu and ρw equal to 0.6. The correlation of the random intercepts and slopes which
we drew from multivariate normal distributions, however, deviated somewhat from
this, due to sampling variability. The sample correlations ru and rw for the subject
and item random effects are 0.57 and 0.776, respectively. Figure 2 shows the posterior
distributions of ρu and ρw plotted against these sample correlations.

The posterior density function of ρu is visibly better for the full model Muw.
We see that the inclusion of a hyperprior has the effect of heightening the posterior’s
sensitivity to the likelihood function, which is the distribution of the data given the
parameters. In contrast, the posterior density derived by M0 is far more conservative.
Most of its probability density lies near zero. This makes sense considering that the
prior on ρu has mean zero in this model. For model M0 we see that, although there is a
hyperprior on ρu, the estimate is less precise. Here we see that the failure to account
for by-item variance in the ungrammatical condition increases the noise present in
the estimate of by-subject variance in the ungrammatical condition. Muw recovers
the underlying parameters best from among the three models considered. Table 5
corroborates this graphical argument with the posterior means and credible intervals,
which we derive from the posterior density functions.

The posterior density function of ρw is poor for both models which have by-item

FITTING LINEAR MIXED MODELS 13

random slopes. The estimate is particularly bad for the model with a hyperprior on
ρw. This is an indication that a sample size of 16 is too small to estimate correlation.
Nevertheless, even in cases where we do not care to include enough items to estimate
ρw we should not leave out the random slopes entirely, as we saw that this affects the
accuracy of our estimate ρ̂u.

sample correlation posterior mean CrI: 2.5%ile CrI: 97.5%ile
Muw : ρu 0.57 0.26 -0.72 0.96
Muw : ρw 0.78 -0.18 -0.97 0.91

Mu : ρu 0.57 0.11 -0.79 0.93
M0 : ρu 0.57 -0.02 -0.90 0.91
M0 : ρw 0.78 0.15 -0.74 0.91

Table 5
Posterior statistics on ρu and ρw. The rows names give the model and parameter.
The columns give the known population parameter value, the posterior mean, and the
lower and upper bounds on the 95% credible interval. Note that Mu has no by-item
random slope and therefore no correlation parameter ρw.

Fitting more complex Bayesian models

In this section we extend the model to more complicated experimental designs.
This gives us an opportunity to introduce the probabilistic programming language
Stan, which excels at fitting data sets with a multi-factorial, multi-level design. We
begin by introducing such a model and implement it in Stan. Then we demonstrate
how to generate more involved data sets for the purposes of simulation before eval-
uating the Stan-implemented model. There we introduce the notion of posterior
predictive checking and related test statistics (Gelman et al., 2014).

Stan syntax

The model which we fit here is the same as model 3 except that it has a second
predictor variable x1 with a fixed slope β2, a random slope u2 for by-subject variance,
and a random slope w2 for by-item variance.

RTi = β0 + u0j + w0k + (β1 + u1j + w1k)x0i + (β2 + u2j + u2k)x1i + �i (8)

We are now representing two factors with the indicator variables x0 and x1. They are
coded using centered constrasts: −0.5 and +0.5 for each level of each predictor. For
a 2 × 2 design, this will results in an ANOVA contrast coding.

As before, our model assumes that the by-subject and by-item random intercepts
and slopes covary. Each subject and item has one intercept and two slopes, and so

FITTING LINEAR MIXED MODELS 14

the variance-covariance matrices Σu and Σw are now 3 × 3 matrices. We define Σu as
follows, and Σw has the same structure.

Σu =




σ2

u0 ρu01 σu0 σu1 ρu02 σu0 σu2
ρu10 σu1 σu0 σ2

u1 ρu12 σu1 σu2
ρu20 σu2 σu0 ρu21 σu2 σu1 σ2

u2



 (9)

There are more parameters now, but the interpretation which we give to them is
similar to the simpler case discussed earlier. For instance, ρu12 is the correlation
between the by-subject slopes u1j and u2j. The parameter σu0 is the variance of the
by-subject intercepts u0. We generated the random intercepts and slopes by drawing
them from a multivariate normal distribution with a 3×3 variance-covariance matrix.
We specified this matrix by plugging in constants for all the paramters in 9. Thus,
the covariance structure 9 which our model assumes corresponds to the structure in
the data.

We now proceed to specify a model in Stan. A Stan model file is split into four
code blocks. The first is called the data block. Here we assign types and lower and
upper bounds to the variables in the data that are passed to the model. The data
will contain each of these variables as a list; see appendix for details.

data{

real<lower=-0.5,upper=0.5> x0[N];

real<lower=-0.5,upper=0.5> x1[N];

real RT[N];

int<lower=1> N; // number of observations

int<lower=1> J; // number of subjects

int<lower=1> K; // number of items

int<lower=1,upper=J> subj[N]; // subject ID

int<lower=1,upper=K> item[N]; // item ID

vector[3] zero; // a vector of zeros

}

The strings real, int, and vector specify the data type for each variable. The
variables x0, x1, and RT are vectors which are defined in the data. Each of their N
elements is declared to be of the real data type. The variables N, J, and K are integers
passed from R, so they are assigned the int data type. The vector subj contains N
integer elements which indicate the subject associated with the nth reading time. So
if the nth element is 3, then the nth reading time is associated with subject 3. The
same goes for item. We also declare a vector zero of three zeros.

Next we have the parameters block and the transformed parameters block. Here
we merely declare model parameters. We do not yet define priors for them. The

FITTING LINEAR MIXED MODELS 15

difference between these two blocks is that the parameters block declares parameters
which are defined without reference to other model parameters. In the transformed
parameters block we declare parameters in terms of the simpler parts which were
declared in the parameters block.

This is what the parameters block looks like.

parameters{

vector[3] beta; // fixeffs

vector[3] u[J]; // subj raneffs

vector[3] w[K]; // item raneffs

real<lower=0> sigma_e; // residual variance

vector<lower=0>[3] sigma_u; // subj variance

vector<lower=0>[3] sigma_w; // item variance

corr_matrix[3] Omega_u; // corr matrix for

// subj raneffs

corr_matrix[3] Omega_w; // corr matrix for

// item raneffs

}

The vector beta contains the three fixed effects coefficients for intercept β0, and the
two slopes β1 and β2. The expression vector[3] u[J] is a 3-by-J matrix which
contains the random intercept u0 and slopes u1 and u2 for the J subjects. The
same goes for the by-item random effects, which are specified by vector[3] w[K].
Recall that we assume the residuals of model 8 to have mean zero and unknown
variance. This residual variance is sigma_e. Stan has the data type corr_matrix for
a correlation matrix. This is a matrix of the parameters which determines correlation
between random effects coefficients. This is just a handy way to keep track of the
ρus. The by-subject random effects correlation matrix has the following structure.

Ωu =




1 ρu12 ρu13

ρu21 1 ρu23
ρu31 ρu32 1



 (10)

We need this matrix to define the random effects variance-covariance matrix Σu.
Recall from equation 9 that the variance-covariance matrix Σu is defined in terms of
variance and correlation parameters. These latter parameters were declared in the
parameters block, and we now use these in the transformed parameters block to define
Σu and Σw.

transformed parameters{

cov_matrix[3] Sigma_u; // varcov matrix for subj ranefs

cov_matrix[3] Sigma_w; // varcov matrix for item ranefs

for(r in 1:3){

for(c in 1:3){

FITTING LINEAR MIXED MODELS 16

Sigma_u[r,c] <- sigma_u[r] * sigma_u[c] * Omega_u[r,c];

Sigma_w[r,c] <- sigma_w[r] * sigma_w[c] * Omega_w[r,c];

}

}

}

So Σu and Σw are objects of data type cov_matrix. They are defined in a control
structure which loops over the variance of the by-subject and by-item random effects
coefficients. All the parameters used to define the variance-covariance matrices were
defined in the paramters block.

We now have defined all the parameters which will be used in the model speci-
fication. The fourth block of code in a Stan model file is the model block. The block
has the form given below.

model{

...

}

This is where priors are placed on the parameters which we declared above, and
where the likelihood is defined. We go through this line by line, beginning with the
subject random effects. The by-subject random intercept u0 and slopes u1, u2 are
drawn from a multivariate normal distribution with mean zero and unknown variance
and covariance. Notice that unlike JAGS, in Stan the variance-covariance matrix is
specified using the standard specification of the multivariate normal distribution in
terms of a variance-covariance matrix, not a precision matrix.

for(j in 1:J){

u[j] ~ multi_normal(zero,Sigma_u);

}

Just as in JAGS, drawing a vector of variables from a multivariate distribution imposes
covariance structure on the elements of that vector. The variance and covariance for
u0, u1, and u2 is determined by the matrix Σu. Here we do not place a prior on Σu

directly. Instead we place priors on its parts. In particular, we place gamma priors on
each of σu0, σu1, and σu2 with shape parameter 1.5 and scale parameter some small
number (Chung et al., 2013); Gelman suggests (p.c.) that this should be replaced
with a more informative prior. Figure 3 shows the prior distribution.

sigma_u ~ gamma(1.5,1.0E-4);

sigma_w ~ gamma(1.5,1.0E-4);

sigma_e ~ gamma(1.5,1.0E-4);

FITTING LINEAR MIXED MODELS 17

0e+001e−052e−053e−054e−055e−05

0 25000 50000 75000

de
ns

ity

Gamma distribution

Figure 3 . The gamma distribution with shape parameter 1.5 and scale parameter
some small number.

The Stan language has a built-in implementation of the lkj-prior, which is a prior on
correlation matrices. It takes a positive scalar value η as its parameter. We consider
the effect of varying η in detail in a later section. For now it is sufficient to understand
that a correlation matrix can have a prior specified in the following manner:

Omega_u ~ lkj_corr(2.0);

Omega_w ~ lkj_corr(2.0);

We now define the likelihood in terms of a mean mu and a residual variance
parameter sigma_e. Note that mu is not a model parameter, but only a variable
used to define the likelihood function. As in the JAGS model, the likelihood function
determines how the model parameters interact to generate the dependent variable RT.
Again, note here that unlike JAGS, Stan defines the normal distribution in terms of
the mean and standard deviation, not the mean and precision.

real mu[N];

for(i in 1:N){

mu[i] <- (beta[1] + u[subj[i],1] + w[item[i],1])

+ (beta[2] + u[subj[i],2] + w[item[i],2])*c1[i]

+ (beta[3] + u[subj[i],3] + w[item[i],3])*c2[i];

}

RT ~ normal(mu,sigma_e);

This concludes the specification of the model block. Together, the data, parameters,
transformed parameters, and model blocks make up the Stan model specification.

Stan simulations

In the previous section, we implemented the linear mixed effects model 8 in
Stan. Here we report the results of a simulation study in which this model is fit to
data sets generated to display properties of a 2 × 2 experimental design with one
dependent measure and by-subject and by-item random effects. We first demonstrate
how these data sets are generated using R before evaluating the fit of model 8 to
several data sets which have been generated to display qualitatively different patterns

FITTING LINEAR MIXED MODELS 18

of random effects correlation. In assessing the model, we introduce the procedure
of posterior predictive checking advocated by Gelman et al. (2014), and implement
it in Stan. We then evaluate the accuracy of the model’s random effects correlation
parameter estimates under different choices of η for the prior distributions on the
correlation matrices Ωu and Ωw. We conclude the section by fitting the model to a
data-set whose by-item random effects all have correlation near zero. We show that
the maximal model outperforms a model which assumes no by-item random effects
covariance structure even in this case.

We declare the fixed intercept β0 and slopes β1 and β2 as follows.

beta <- c(600,10,20)

The fixed intercept is of magnitude 600 and the treatment levels of the two categorical
predictors are adjusted by 10 and 20 up from the reference levels of the respective
factors.

We have now declared the magnitude of the fixed effects and we move on to the
random effects. Both model 3 and model 8 assume a “maximal” covariance structure
among the random effects (Barr, Levy, Scheepers, & Tily, 2013). Recall that the
random effects structure of model 3 consisted of an intercept and a single slope. The
random model components which could covary were thus only two. There was only
one correlation parameter for each the by-subject and by-item random effects, and
it determined how the random intercepts and slopes covaried. Model 8 now includes
a second slope, and so the maximal covariance structure is somewhat richer. Not
only can both random slopes covary with the random intercept, the two slopes can
also covary with each other. Thus, we estimate three correlation parameters for each
by-subject and by-item random effects. For by-subject random effects we have the
correlation ρu01 between the intercept u0 and slope u1, the correlation ρu02 between
the intercept u0 and slope u1, and the correlation ρu12 between the two slopes u1 and
u2. In general, we denote the i, j by-subject random effects correlation pararameter
as ρuij. The same goes for by-item random effects w.

We now declare the correlation matrix Ωu for the by-subject random effects.

Omega_u <- matrix(c(1.0,0.6,0.6,

0.6,1.0,0.6,

0.6,0.6,1.0),nrow=3)

This corresponds to the Stan model correlation matrix which we defined in equa-
tion 10. It is a square matrix of order 3 whose off-diagonal entries are the correlation
parameters. Next, we quite arbitrarily declare the standard deviations σu1, σu2, and
σu3 of the by-subject random effects to be of magnitude 10. In general these need not
be identical.

sdev_u <- c(10,10,10)

FITTING LINEAR MIXED MODELS 19

The correlation parameters of Ωu and the standard deviations σu1, σu2, and σu3
define the variance-covariance matrix Σu for by-subject random effects.

Sigma_u <- matrix(rep(NA,3^2),ncol=3)

for(i in 1:3){

for(j in 1:3){

Sigma_u[i,j] <- sdev_u[i]*sdev_u[j]*Omega_u[i,j]

}

}

We use this matrix to draw J by-subject random intercepts and slopes from a mul-
tivariate normal distribution. The entries of Σu specify the patterns of variance and
covariance which the random effects of our J subjects will display.

raneff_u <- mvrnorm(n=J,c(0,0,0),Sigma_u)

Row j of raneff_u contains random draws of an intercept u0j and two random
slopes u1j and u2j for subject j. We repeat the same procedure to generate a matrix
raneff_w whose entries are the random intercepts and slopes by item.

We have now specified the fixed effects β0, β1, and β2 as the vector beta, the
random effects u0j, u1j, and u2j of subject j in row j of the matrix raneff_u, and
the random effects w0k, w1k, and w2k of item k in row k of the matrix raneff_w. Let
us now assemble our data frame from these parts.

There are two factors, and each has two levels. Thus, the number of experimen-
tal conditions is four. If each of J subjects sees each each of K items in each of these
four conditions, then we have N = 4 × J × K observations.

n_factor <- 2

n_level <- 2

n_condition <- n_factor*n_level

N <- n_condition*J*K

For concreteness, let us take our dependent measure to be reading time RT.
So row i of the data frame corresponds to RTi, where i = 1, . . . , N . We now specify
which condition is associated with each RTi. The vector condition takes on the value
1, 2, 3, or 4 depending on which condition the item was read in. Since each subject
reads each item in each condition, the length of the vector should be 4 × J × K.

condition <- rep(1:n_condition, J*K)

Now that we know which condition is associated with each RTi, we have to determine
by how much the fixed slopes will adjust the fixed intercept in each condition. We see
jointly the effects of β1 and β2 in the first condition, the individual effects of factors
β1 and β2 in the second and third conditions, respectively, and no effect in the fourth
condition.

FITTING LINEAR MIXED MODELS 20

adjustment <- c(beta[1]+beta[2]+beta[3],

beta[1]+beta[2],

beta[1]+beta[3],

beta[1])

fixeff <- rep(0,N)

for(i in 1:N){

fixeff[i] <- adjustment[condition[i]]

}

Next we associate each RTi with one subject and one item. We define as follows
the vectors subj and item. These are vectors of length N which determine the subject
and item associated with each RTi.

item <- rep(1:K, J, each=n_condition)

subj <- rep(1:J, each=K*n_condition)

Now that we know which subject, which item, and which condition corresponds to
each RTi, we may determine the magnitude of the random effect on RTi as follows.

ind1 <- c(TRUE,TRUE,FALSE,FALSE)

ind2 <- c(TRUE,FALSE,TRUE,FALSE)

for(i in 1:N){

adjustment <- rep(0,n_cond)

adjustment[ind1] <- raneff_u[subj[i],2]

adjustment[ind2] <- adjustment[ind2] + raneff_u[subj[i],3]

raneff_u[i] <- raneff_u[subj[i],1] + adjustment[cond[i]]

}

We repeat this for the by-item random effects to generate the vector raneff_w. We
then take the sum raneff_u + raneff_w to get the vector raneff. Entry i of the
vector raneff is the sum of the random effects for subject and for item on RTi.
Finally, we generate N random draws from a normal distribution with mean zero and
arbitrary standard deviation. This is the noise component of the data.

sdev <- 40

epsilon <- rnorm(N,0,sdev)

We assemble RTi as follows.

RT <- fixeff + raneff + epsilon

We now fit the Stan model presented in section to a data sets which has been
generated following the procedure outlined just above. We assess the adequacy of the
model through a procedure called posterior predictive checking (Gelman et al., 2014).

FITTING LINEAR MIXED MODELS 21

As we will apply it here, posterior predictive checking is a process whereby a posterior
quantity of interest is drawn from the posterior distribution of the model. In this case
we are interested in generating random draws of RT from the posterior distribution.
This process is predictive in the sense that the draws are the RTs which the model
predicts on the basis of the interaction between the likelihood and the prior. Let us
denote a vector of N predicted RTs as �RT. We repeatedly sample such vectors, each
of which represents a set of RTs which we might observe in an experiment like the
one which generated the observed dependent measures RT. We suppose that if the
vectors �RT which our model generates resemble the one which we actually observed,
then the model predictions are adequate. Posterior predictive checking is a simple
way to check the adequacy of a statistical model, as such a comparison proceeds more
or less directly. One comparison which can be made is a comparison of the observed
maximum and minimum RT with the distribution of maxima and minuma of �RT.

We generate vectors �RT of length N by declaring a parameter RT_tilde in the
parameters block.

real RT_tilde[N];

We draw �RT from the normal distribution in the model block using the same sampling
statement as was used to draw RT.

RT_tilde ~ normal(mu,sigma_e);

We would like to find the maximum and the minimum of each vector �RT in order
to derive a posterior distribution for the maxima and minima predicted under the
model. In Stan we do this in a separate code block called the generated quantities
block, which we declare as follows.

generated quantities{

real minimum;

real maximum;

minimum <- min(RT_tilde);

maximum <- max(RT_tilde);

}

We generate a data set as described above, letting the number J of subjects
equal 35 and the number K of items equal 16. We then estimate the probability
density of the minima and maxima predicted by the model using the vectors minimum
and maximum. Figure 4 graphically compares the distributions of these posterior
predictive quantities to the observed maximum and minimum RT. Visual inspection
suggests that the posterior predictive distributions of MAX(�RT) and MIN(�RT) have
non-negligible probability density over the interval surrounding the observed extrema,
which means that the observed values are plausible.

FITTING LINEAR MIXED MODELS 22

0.00

0.01

0.02

300 400 500 600 700 800

de
ns
ity

Figure 4 . Posterior predictive distribution for extrema (blue) plotted along with the
observed maximum and minimum (green dots). The kernel density estimate of the
observed RT is given in red.

At this point we introduce a test statistic T , which is the probability that a
predicted extremum is more extreme than the observed value. Table 6 gives these
probabilities. The use of such a test statistic sharpens the impression gleaned visually
from figure 4. The non-negligible probability mass to the left and right of the ob-
served extrema suggests that the model is at least adequate enough to predict similar
outcomes.

observed posterior mean CrI: 2.5%ile CrI: 97.5%ile T (�RT)
minimum 457 440 404 467 0.85
maximum 773 788 761 828 0.81

Table 6
Posterior predictive statistics for minimum and maximum RT under the Stan model.
Columns give the observed value, the posterior mean, the upper and lower bounds of
the highest posterior density intervals, and the probability that the extrema of �RTi are
more extreme than the observed extrema of RT.

Posterior predictive checking is a very flexible method for model evaluation,
and accordingly we will avoid specifying a test statistic or procedure which is in-
tended to apply generally. The posterior predictive quantity and the corresponding
test statistic should instead be determined by the research question which the data
analysis addresses. For instance, a researcher may be interested in the distribution of
a dependent measure in a particular experimental condition. In this case the poste-
rior predictive distribution will be conditional on the value of a predictor like x0 or
x1. These can then be directly compared to the observations within that condition.
Posterior predictive distributions for model parameters such as u0 or Ωu01 can also
be derived. The comparison here will of course not be with observed quantities, as
model parameters — unlike dependent measures — are not observed. Nevertheless,
model evaluation can proceed given an explicit model that expresses how the data
were generated.

We now turn to the random effects correlation estimates of the Stan model

FITTING LINEAR MIXED MODELS 23

0
1
2
3
4
5

0.0 0.4 0.8

Ωu12

0.0
0.5
1.0
1.5
2.0

−1.0−0.5 0.0 0.5 1.0

Ωu13

0
1
2
3

−1.0 −0.5 0.0 0.5 1.0

Ωu23

factor(eta) 0.4 1 2

Ωu

Figure 5 . By-subject random effects correlation estimates for the Stan model with η
successively being given the values 0.4, 1, 2.

0.0
0.2
0.4
0.6
0.8

−1.0−0.5 0.0 0.5 1.0

Ωw12

0.0
0.3
0.6
0.9

−1.0−0.5 0.0 0.5 1.0

Ωw13

0.00
0.25
0.50
0.75

−1.0−0.5 0.0 0.5 1.0

Ωw23

factor(eta) 0.4 1 2

Ωw

Figure 6 . By-item random effects correlation estimates for the Stan model with η
successively being given the values 0.4, 1, 2.

and examine their posterior distribution in more detail. As mentioned in section ,
we placed lkj prior distributions on the correlation matrices Ωu and Ωw. This prior
distribution takes as a parameter a positive scalar value η. An lkj prior with η equal
to one corresponds to a uniform prior over the space of correlation matrices of a
given order (2-by-2, 3-by-3, etc.). When η is between zero and one, there is a trough
along the diagonal, meaning that for each correlation parameter the prior probability
density is shifted away from zero toward the upper and lower bounds of the interval
[−1, 1]. When η is greater than one, greater prior probability density lies near zero.

We fit the Stan model to the same data using different values for η. Again, we
let the number of participants be J = 35 and the number of items K = 16. The
population parameters Ωu and Ωw both uniformly had 0.6 on the off-diagonals. We
vary the parameters ηu on the prior for Ωu, and ηw on the prior for Ωw successively
over three values, 0.4, 1, 2. In each simulation, ηu and ηw had identical values. Figure 5
demonstrates that the resulting posterior density estimates become more accurate as
ηu is increased. Figure 6 shows that there is non-negligible probability density over
the entire interval [−1, 1]. This suggests that sample size K = 16 is too small to
estimate Ω̂w. This is consistent with the results from the JAGS simulations presented
earlier.

FITTING LINEAR MIXED MODELS 24

Case studies with real data

coming soon

Further reading

Gelman and Hill (2007) is an accessible introduction to fitting linear mixed
models using BUGS syntax, which is what JAGS uses. The Gelman and Hill book has
Stan translations available online, but at least some of this code has serious mistakes
in it, so, at least at the present time, it is better to work with the BUGS code when
reading the Gelman and Hill book). Lunn, Thomas, Best, and Spiegelhalter (2000)
is another important book that provides a lot of good examples, also using BUGS
syntax.

In order to learn more about Bayesian methods, Lynch (2007) strikes a nice com-
promise between formal rigor and accessibility. A less technical book is by Kruschke
(2010). For mathematical and probability-theory background we would recommend
Gilbert and Jordan (2002) and Kerns (2011) (the latter is available online). A more
advanced treatment is provided by Gelman et al. (2014).

For those who can afford the time, we recommend that they do the nine-month
graduate certificate in statistics taught online at the University of Sheffield, UK.

FITTING LINEAR MIXED MODELS 25

Appendix A
Linear mixed models using JAGS

Code for generating data for a two-condition repeated measures design

> ## This is the content of the file twocond_gen.R:

> new.df <- function(cond1.rt=600, effect.size=10,

sdev=40,

sdev.int.subj=10, sdev.slp.subj=10,

rho.u=0.6,

nsubj=10,

sdev.int.items=10, sdev.slp.items=10,

rho.w=0.6,

nitems=10) {

library(MASS)

ncond <- 2

subj <- rep(1:nsubj, each=nitems*ncond)

item <- rep(1:nitems, nsubj, each=ncond)

cond <- rep(0:1, nsubj*nitems)

err <- rnorm(nsubj*nitems*ncond, 0, sdev)

d <- data.frame(subj=subj, item=item,

cond=cond+1, err=err)

Sigma.u<-matrix(c(sdev.int.subj^2,

rho.u*sdev.int.subj*sdev.slp.subj,

rho.u*sdev.int.subj*sdev.slp.subj,

sdev.slp.subj^2),nrow=2)

Sigma.w<-matrix(c(sdev.int.items^2,

rho.u*sdev.int.items*sdev.slp.items,

rho.u*sdev.int.items*sdev.slp.items,

sdev.slp.items^2),nrow=2)

Adding random intercepts and slopes for subjects:

first col. has adjustment for intercept,

secdon col. has adjustment for slope

subj.rand.effs<-mvrnorm(n=nsubj,rep(0,ncond),Sigma.u)

item.rand.effs<-mvrnorm(n=nitems,rep(0,ncond),Sigma.w)

re.int.subj <- rnorm(nsubj, 0, sdev.int.subj)

FITTING LINEAR MIXED MODELS 26

re.int.subj <- subj.rand.effs[,1]

d$re.int.subj <- rep(re.int.subj, each=nitems*ncond)

re.slp.subj <- rnorm(nsubj, 0, sdev.slp.subj)

re.slp.subj <- subj.rand.effs[,2]

d$re.slp.subj <- rep(re.slp.subj,

each=nitems*ncond) * (cond - 0.5)

Adding random intercepts and slopes for items:

re.int.item <- rnorm(nitems, 0, sdev.int.items)

re.int.item <- item.rand.effs[,1]

d$re.int.item <- rep(re.int.item, nsubj, each=ncond)

re.slp.item <- rnorm(nitems, 0, sdev.int.items)

re.slp.item <- item.rand.effs[,2]

d$re.slp.item <- rep(re.slp.item, nsubj,

each=ncond) * (cond - 0.5)

d$rt <- (cond1.rt + cond*effect.size

+ d$re.int.subj + d$re.slp.subj

+ d$re.int.item + d$re.slp.item

+ d$err)

return(list(d,cor(re.int.subj,re.slp.subj),

cor(re.int.item,re.slp.item)))

}

Code for fitting models using JAGS

> ## We test whether the full model with a truncated

> ## normal prior on rho was overparameterized.

> ## We fit two models for comparison.

> ## One has no by-item slopes, the other has

> ## no hyperparameters on rho.w and rho.u.

>

> ###

> ### generate data sets

> ###

>

> source("./twocond_gen.R")

> dat25<-new.df(nsubj=25,nitems=16,rho.u=0.6,rho.w=0.6)

> d25 <- dat25[[1]]

> d25<-d25[,c(1,2,3,9)]

> d25$x0<-ifelse(d25$cond==1,-0.5,0.5)

FITTING LINEAR MIXED MODELS 27

> u_corr25 <- dat25[[2]]

> w_corr25 <- dat25[[3]]

> ## note that data is a list of vectors:

> dat25 <- list(subj = sort(as.integer(factor(d25$subj))),

item = sort(as.integer(factor(d25$item))),

rt = d25$rt,

x0 = d25$x0,

N = nrow(d25),

J = length(unique(d25$subj)),

K = length(unique(d25$item)))

> ###

> ### full model: model M_uw in paper

> ### truncated normal prior on rho,

> ### gamma prior on sigma

> ###

> cat("

data

{

zero.u[1] <- 0

zero.u[2] <- 0

zero.w[1] <- 0

zero.w[2] <- 0

}

model

{

Intercept and slope for each person,

including random effects

for(j in 1:J)

{

u[j,1:2] ~ dmnorm(zero.u,invSigma.u)

pred_u[j,1:2] ~ dmnorm(zero.u,invSigma.u)

}

Intercepts and slope by item

for(k in 1:K)

{

w[k,1:2] ~ dmnorm(zero.w,invSigma.w)

predicted by item effects:

pred_w[k,1:2] ~ dmnorm(zero.w,invSigma.w)

}

Define model for each observational unit

for(i in 1:N)

FITTING LINEAR MIXED MODELS 28

{

mu[i] <- (beta[1] + u[subj[i],1] + w[item[i],1]) +

(beta[2] + u[subj[i],2] + w[item[i],2]) * (x0[i])

rt[i] ~ dnorm(mu[i], tau.e)

predicted RTs:

pred[i] ~ dnorm(mu[i], tau.e)

}

minimum <- min(pred)

maximum <- max(pred)

mean <- mean(pred)

Fixed intercept and slope (uninformative)

beta[1] ~ dnorm(0.0,1.0E-5)

beta[2] ~ dnorm(0.0,1.0E-5)

Residual variance

tau.e <- pow(sigma.e,-2)

sigma.e ~ dunif(0,15)

variance-covariance matrix of subject ranefs

invSigma.u ~ dwish(R.u , 2)

R.u[1,1] <- pow(sigma.a,2)

R.u[2,2] <- pow(sigma.b,2)

R.u[1,2] <- rho.u*sigma.a*sigma.b

R.u[2,1] <- R.u[1,2]

Sigma.u <- inverse(invSigma.u)

varying intercepts, varying slopes

tau.a ~ dgamma(1.5, pow(1.0,-4))

tau.b ~ dgamma(1.5, pow(1.0,-4))

sigma.a <- pow(tau.a,-1/2)

sigma.b <- pow(tau.b,-1/2)

variance-covariance matrix of item ranefs

invSigma.w ~ dwish(R.w, 2)

R.w[1,1] <- pow(sigma.c,2)

R.w[2,2] <- pow(sigma.d,2)

R.w[1,2] <- rho.w*sigma.c*sigma.d

R.w[2,1] <- R.w[1,2]

Sigma.w <- inverse(invSigma.w)

FITTING LINEAR MIXED MODELS 29

varying intercepts, varying slopes

tau.c ~ dgamma(1.5, pow(1.0,-4))

tau.d ~ dgamma(1.5, pow(1.0,-4))

sigma.c <- pow(tau.c,-1/2)

sigma.d <- pow(tau.d,-1/2)

correlation

rho.u ~ dnorm(mu_rho.u,tau_rho.u)T(-1,1)

mu_rho.u ~ dunif(-1,1)

tau_rho.u ~ dgamma(1.5,10E-4)

correlation

rho.w ~ dnorm(mu_rho.w,tau_rho.w)T(-1,1)

mu_rho.w ~ dunif(-1,1)

tau_rho.w ~ dgamma(1.5,10E-4)

}",file="sim_over.jag")

> ###

> ### no rho hyperparameters model

> ### truncated normal prior on rho,

> ### gamma prior on sigma

> ### model M_0 in paper

> ###

> cat("

data

{

zero.u[1] <- 0

zero.u[2] <- 0

zero.w[1] <- 0

zero.w[2] <- 0

}

model

{

Intercept and slope for each person, including random effects

for(j in 1:J)

{

u[j,1:2] ~ dmnorm(zero.u,invSigma.u)

pred_u[j,1:2] ~ dmnorm(zero.u,invSigma.u)

}

Intercepts and slope by item

for(k in 1:K)

{

w[k,1:2] ~ dmnorm(zero.w,invSigma.w)

pred_w[k,1:2] ~ dmnorm(zero.w,invSigma.w)

FITTING LINEAR MIXED MODELS 30

}

Define model for each observational unit

for(i in 1:N)

{

mu[i] <- (beta[1] + u[subj[i],1] + w[item[i],1]) +

(beta[2] + u[subj[i],2] + w[item[i],2]) * (x0[i])

rt[i] ~ dnorm(mu[i], tau.e)

pred[i] ~ dnorm(mu[i], tau.e)

}

minimum <- min(pred)

maximum <- max(pred)

mean <- mean(pred)

Fixed intercept and slope (uninformative)

beta[1] ~ dnorm(0.0,1.0E-5)

beta[2] ~ dnorm(0.0,1.0E-5)

Residual variance

tau.e <- pow(sigma.e,-2)

sigma.e ~ dunif(0,15)

variance-covariance matrix of subject ranefs

invSigma.u ~ dwish(R.u , 2)

R.u[1,1] <- pow(sigma.a,2)

R.u[2,2] <- pow(sigma.b,2)

R.u[1,2] <- rho.u*sigma.a*sigma.b

R.u[2,1] <- R.u[1,2]

Sigma.u <- inverse(invSigma.u)

var intercepts, var slopes

tau.a ~ dgamma(1.5, pow(1.0,-4))

tau.b ~ dgamma(1.5, pow(1.0,-4))

sigma.a <- pow(tau.a,-1/2)

sigma.b <- pow(tau.b,-1/2)

variance-covariance matrix of item ranefs

invSigma.w ~ dwish(R.w, 2)

R.w[1,1] <- pow(sigma.c,2)

R.w[2,2] <- pow(sigma.d,2)

R.w[1,2] <- rho.w*sigma.c*sigma.d

FITTING LINEAR MIXED MODELS 31

R.w[2,1] <- R.w[1,2]

Sigma.w <- inverse(invSigma.w)

var intercepts, var slopes

tau.c ~ dgamma(1.5, pow(1.0,-4))

tau.d ~ dgamma(1.5, pow(1.0,-4))

sigma.c <- pow(tau.c,-1/2)

sigma.d <- pow(tau.d,-1/2)

correlation

rho.u ~ dnorm(0,1)T(-1,1)

correlation

rho.w ~ dnorm(0,1)T(-1,1)

}",file="sim_under1.jag")

> ###

> ### no by-item slopes model

> ### truncated normal prior on rho,

> ### gamma prior on sigma

> ### Model M_u in paper

> ###

> cat("

data

{

zero.u[1] <- 0

zero.u[2] <- 0

}

model

{

Intercept and slope for each person, including random effects

for(j in 1:J)

{

u[j,1:2] ~ dmnorm(zero.u,invSigma.u)

pred_u[j,1:2] ~ dmnorm(zero.u,invSigma.u)

}

Intercepts by item

for(k in 1:K)

{

w[k] ~ dnorm(0,tau.w)

pred_w[k] ~ dnorm(0,tau.w)

}

Define model for each observational unit

FITTING LINEAR MIXED MODELS 32

for(i in 1:N)

{

mu[i] <- (beta[1] + u[subj[i],1] + w[item[i]]) +

(beta[2] + u[subj[i],2]) * (c0[i])

rt[i] ~ dnorm(mu[i], tau.e)

pred[i] ~ dnorm(mu[i], tau.e)

}

minimum <- min(pred)

maximum <- max(pred)

mean <- mean(pred)

Fixed intercept and slope (uninformative)

beta[1] ~ dnorm(0.0,1.0E-5)

beta[2] ~ dnorm(0.0,1.0E-5)

Residual variance

tau.e <- pow(sigma.e,-2)

sigma.e ~ dunif(0,15)

by-item itercept variance

tau.w ~ dgamma(1.5, pow(1.0,-4))

sigma.w <- pow(tau.w,-1/2)

variance-covariance matrix of subject ranefs

invSigma.u ~ dwish(R.u , 2)

R.u[1,1] <- pow(sigma.a,2)

R.u[2,2] <- pow(sigma.b,2)

R.u[1,2] <- rho.u*sigma.a*sigma.b

R.u[2,1] <- R.u[1,2]

Sigma.u <- inverse(invSigma.u)

var intercepts, var slopes

tau.a ~ dgamma(1.5, pow(1.0,-4))

tau.b ~ dgamma(1.5, pow(1.0,-4))

sigma.a <- pow(tau.a,-1/2)

sigma.b <- pow(tau.b,-1/2)

correlation

rho.u ~ dnorm(mu_rho.u,tau_rho.u)T(-1,1)

mu_rho.u ~ dunif(-1,1)

tau_rho.u ~ dgamma(1.5,10E-4)

FITTING LINEAR MIXED MODELS 33

}",file="sim_under2.jag")

> .libPaths("./")

> require(rjags)

> set.seed(9991)

> ###

> ### fit models

> ###

>

> track.variables<-c("beta","sigma.e","sigma.a",

"sigma.b","rho.u","pred_u","pred_w")

> # full model: M_uw in paper

> sim_25_over.mod <- jags.model(

file = "sim_over.jag",

data = dat25,

n.chains = 4,

n.adapt = 200000,quiet=T)

> sim_25_over.res <- coda.samples(sim_25_over.mod,

var = track.variables,

n.iter = 50000,

thin = 20)

> save(list=c("sim_25_over.res"),

file="RdaFiles/sim_overparam_full.Rda")

> # model lacking hyperprior on the hyperparameters

> # of rho.

> ## M_0 in paper:

> sim_25_under1.mod <- jags.model(

file = "sim_under1.jag",

data = dat25,

n.chains = 4,

n.adapt = 200000,quiet=T)

> sim_25_under1.res <- coda.samples(sim_25_under1.mod,

var = track.variables,

n.iter = 50000,

thin = 20)

> save(list=c("sim_25_under1.res"),

file="RdaFiles/sim_overparam_under1.Rda")

> # model lacking by-item slopes

> ## M_u in paper:

> sim_25_under2.mod <- jags.model(

file = "sim_under2.jag",

data = dat25,

n.chains = 4,

FITTING LINEAR MIXED MODELS 34

n.adapt = 200000,quiet=T)

> sim_25_under2.res <- coda.samples(sim_25_under2.mod,

var = track.variables,

n.iter = 50000,

thin = 20)

> save(list=c("sim_25_under2.res"),

file="RdaFiles/sim_overparam_under2.Rda")

Appendix B
Code for fitting a 2 × 2 design using Stan

> ## SENSITIVITY ANALYSIS FOR RANEFFS I

> ##

> ## We vary the shape parameter eta of the lkj correlation. In

> ## particular, we go from small eta (0.1) to large eta (4).

> ##

> ## The other thing we manipulate is whether the same full

> ## variance-covariance structure is assumed for the by-item

> ## random effects.

> ##

> ## In this script, we assume zero by-item raneff correlation.

> ##

> ## Note that, for eta = 1, the prior is uniform over all

> ## correlation matrices of a given order (in our case, the

> ## order is three). There is a trough at the diagonal when

> ## eta < 1 and a peak on the diagonal when eta > 1.

> ## (cf. Stan users manual).

>

> require(rstan)

> source("./two_by_two_gen.R")

> sessionInfo()

> ## This is the loop which fits models with no covariance

> ## structure for item raneffs

> for (eta in c(.4,1,2)){

###################################

DECLARE MODEL AS STRING

###################################

code<-sprintf('
data{

int<lower=1> N; //no. rows

real<lower=-0.5,upper=0.5> c1[N];

real<lower=-0.5,upper=0.5> c2[N];

FITTING LINEAR MIXED MODELS 35

real rt[N];

int<lower=1> I; //no. subj

int<lower=1,upper=I> subj[N]; //subj id

int<lower=1> K; //no. item

int<lower=1,upper=K> item[N]; //item id

vector[3] zero;

}

parameters{

vector[3] beta; // fixeff

vector[3] u[I]; // by-subj raneff

vector[3] w[K]; // by-item raneff

real<lower=0> sigma_e; //resid

vector<lower=0>[3] sigma_u; //subj var

vector<lower=0>[3] sigma_w; //item var

corr_matrix[3] Omega_u; //corr matrix for

// subj ran int and slope

real y[N]; // post. pred.

}

transformed parameters{

cov_matrix[3] Sigma_u; // varcov matrix for

// subj ranefs

for(r in 1:3){

for(c in 1:3){

Sigma_u[r,c] <- sigma_u[r] * sigma_u[c] * Omega_u[r,c];

}

}

}

model{

real mu[N];

for(i in 1:N){

mu[i] <- (beta[1] + u[subj[i],1] + w[item[i],1]) +

(beta[2] + u[subj[i],2] + w[item[i],2])*c1[i] +

(beta[3] + u[subj[i],3] + w[item[i],3])*c2[i];

}

for(i in 1:I){

u[i] ~ multi_normal(zero,Sigma_u); // subj ranef

}

for(k in 1:K){

w[k,1] ~ normal(0,sigma_w[1]); // item int

w[k,2] ~ normal(0,sigma_w[2]); // item slpA

w[k,3] ~ normal(0,sigma_w[3]); // item slpB

}

FITTING LINEAR MIXED MODELS 36

rt ~ normal(mu,sigma_e);

y ~ normal(mu,sigma_e);

sigma_u ~ gamma(1.5,10E-4);

sigma_w ~ gamma(1.5,10E-4);

sigma_e ~ gamma(1.5,10E-4);

Omega_u ~ lkj_corr(%f);

}

generated quantities{

real minimum;

real maximum;

minimum <- min(y);

maximum <- max(y);

}

',eta)

###

GENERATE DATA

###

dat <- two_by_two(n_u=35,n_w=16,

Omega_w=matrix(c(1,0,0,

0,1,0,

0,0,1),nrow=3),

seed=999)

df <- dat[[1]]

d<-df[,c(1,2,3,4,10)]

sum coding the two factors, which each have two levels

d$c1<-ifelse(d$factor_a==1,0.5,-0.5)

d$c2<-ifelse(d$factor_b==1,0.5,-0.5)

u_corr[[1]] is by-subj. int-factor_a raneff correlation

u_corr[[2]] is by-subj. int-factor_b raneff correlation

u_corr[[3]] is by-subj. factor_a-factor_b raneff correlation

and the same goes, mutatis mutandis, for the w_corr35, which

is by-item raneffs.

u_corr <- dat[[2]]

w_corr <- dat[[3]]

dat <- list(subj = sort(as.integer(factor(d$subj))),

item = sort(as.integer(factor(d$item))),

rt = d$rt,

FITTING LINEAR MIXED MODELS 37

c1 = d$c1,

c2 = d$c2,

N = nrow(d),

I = length(unique(d$subj)),

K = length(unique(d$item)),

zero = rep(0,3))

###

FIT MODELS

###

fit <- stan(model_code = code,

data = dat,

iter = 1500, warmup=1000, chains = 2)

###

SAVE

###

save(list=c('fit','d','u_corr','w_corr'),
file=sprintf('./w_nocov_eta%.2f.Rda',eta))

}

> ## This is the loop which fits models with full covariance

> ## structure for both item and subject raneffs

> for (eta in c(.4,1,2)){

###################################

DECLARE MODEL AS STRING

###################################

code<-sprintf('
data{

int<lower=1> N; //no. rows

real<lower=-0.5,upper=0.5> c1[N];

real<lower=-0.5,upper=0.5> c2[N];

real rt[N];

int<lower=1> I; //no. subj

int<lower=1,upper=I> subj[N]; //subj id

int<lower=1> K; //no. item

int<lower=1,upper=K> item[N]; //item id

vector[3] zero;

}

parameters{

vector[3] beta; // fixeff

vector[3] u[I]; // by-subj raneff

vector[3] w[K]; // by-item raneff

FITTING LINEAR MIXED MODELS 38

real<lower=0> sigma_e; //resid

vector<lower=0>[3] sigma_u; //subj var

vector<lower=0>[3] sigma_w; //item var

corr_matrix[3] Omega_u; //corr matrix for

//subj ran int and slope

corr_matrix[3] Omega_w; //corr matrix for

//item ran int and slope

real y[N]; // post. pred.

}

transformed parameters{

cov_matrix[3] Sigma_u; // varcov matrix for subj ranefs

cov_matrix[3] Sigma_w; // varcov matrix for item ranefs

for(r in 1:3){

for(c in 1:3){

Sigma_u[r,c] <- sigma_u[r] * sigma_u[c] * Omega_u[r,c];

Sigma_w[r,c] <- sigma_w[r] * sigma_w[c] * Omega_w[r,c];

}

}

}

model{

real mu[N];

for(i in 1:N){

mu[i] <- (beta[1] + u[subj[i],1] + w[item[i],1]) +

(beta[2] + u[subj[i],2] + w[item[i],2])*c1[i] +

(beta[3] + u[subj[i],3] + w[item[i],3])*c2[i];

}

for(i in 1:I){

u[i] ~ multi_normal(zero,Sigma_u); // subj ranef

}

for(k in 1:K){

w[k] ~ multi_normal(zero,Sigma_w); // item ranef

}

rt ~ normal(mu,sigma_e);

y ~ normal(mu,sigma_e);

sigma_u ~ gamma(1.5,10E-4);

sigma_w ~ gamma(1.5,10E-4);

sigma_e ~ gamma(1.5,10E-4);

Omega_u ~ lkj_corr(%f);

Omega_w ~ lkj_corr(%f);

}

FITTING LINEAR MIXED MODELS 39

generated quantities{

real minimum;

real maximum;

minimum <- min(y);

maximum <- max(y);

}

',eta,eta)

###

GENERATE DATA

###

dat <- two_by_two(n_u=35,n_w=16,

Omega_w=matrix(c(1,0,0,

0,1,0,

0,0,1),nrow=3),

seed=999)

df <- dat[[1]]

d<-df[,c(1,2,3,4,10)]

sum coding the two factors, which each have two levels

d$c1<-ifelse(d$factor_a==1,0.5,-0.5)

d$c2<-ifelse(d$factor_b==1,0.5,-0.5)

u_corr[[1]] is by-subj. int-factor_a raneff correlation

u_corr[[2]] is by-subj. int-factor_b raneff correlation

u_corr[[3]] is by-subj. factor_a-factor_b raneff correlation

and the same goes, mutatis mutandis, for the w_corr35, which

is by-item raneffs.

u_corr <- dat[[2]]

w_corr <- dat[[3]]

dat <- list(subj = sort(as.integer(factor(d$subj))),

item = sort(as.integer(factor(d$item))),

rt = d$rt,

c1 = d$c1,

c2 = d$c2,

N = nrow(d),

I = length(unique(d$subj)),

K = length(unique(d$item)),

zero = rep(0,3))

###

FIT MODELS

FITTING LINEAR MIXED MODELS 40

###

fit <- stan(model_code = code,

data = dat,

iter = 1500, warmup=1000, chains = 2)

###

SAVE

###

save(list=c('fit','d','u_corr','w_corr'),
file=sprintf('./w_cov_eta%.2f.Rda',eta))

}

> ## SENSITIVITY ANALYSIS FOR RANEFFS II

> ##

> ## We vary the shape parameter eta of the lkj correlation.

> ## In particular, we go from small eta (0.1) to large eta (4).

> ##

> ## The other thing we manipulate is whether the same full

> ## variance-covariance structure is assumed for the by-item

> ## random effects.

> ##

> ## In this script, we assume by-item correlation of 0.6.

> ##

> ## Note that, for eta = 1, the prior is uniform over all

> ## correlation matrices of a given order (in our case, the

> ## order is three). There is a trough at the diagonal when

> ## eta < 1 and a peak on the diagonal when eta > 1.

> ## (cf. Stan users manual).

>

> require(rstan)

> source("./two_by_two_gen.R")

> sessionInfo()

> ## This is the loop which fits models with no covariance

> ## structure for item raneffs

> for (eta in c(.4,1,2)){

###################################

DECLARE MODEL AS STRING

###################################

code<-sprintf('
data{

int<lower=1> N; //no. rows

real<lower=-0.5,upper=0.5> c1[N];

real<lower=-0.5,upper=0.5> c2[N];

FITTING LINEAR MIXED MODELS 41

real rt[N];

int<lower=1> I; //no. subj

int<lower=1,upper=I> subj[N]; //subj id

int<lower=1> K; //no. item

int<lower=1,upper=K> item[N]; //item id

vector[3] zero;

}

parameters{

vector[3] beta; // fixeff

vector[3] u[I]; // by-subj raneff

vector[3] w[K]; // by-item raneff

real<lower=0> sigma_e; //resid

vector<lower=0>[3] sigma_u; //subj var

vector<lower=0>[3] sigma_w; //item var

corr_matrix[3] Omega_u; //corr matrix for

// subj ran int and slope

real y[N]; // post. pred.

}

transformed parameters{

cov_matrix[3] Sigma_u; // varcov matrix for

// subj ranefs

for(r in 1:3){

for(c in 1:3){

Sigma_u[r,c] <- sigma_u[r] * sigma_u[c] * Omega_u[r,c];

}

}

}

model{

real mu[N];

for(i in 1:N){

mu[i] <- (beta[1] + u[subj[i],1] + w[item[i],1]) +

(beta[2] + u[subj[i],2] + w[item[i],2])*c1[i] +

(beta[3] + u[subj[i],3] + w[item[i],3])*c2[i];

}

for(i in 1:I){

u[i] ~ multi_normal(zero,Sigma_u); // subj ranef

}

for(k in 1:K){

w[k,1] ~ normal(0,sigma_w[1]); // item int

w[k,2] ~ normal(0,sigma_w[2]); // item slpA

w[k,3] ~ normal(0,sigma_w[3]); // item slpB

}

FITTING LINEAR MIXED MODELS 42

rt ~ normal(mu,sigma_e);

y ~ normal(mu,sigma_e);

sigma_u ~ gamma(1.5,10E-4);

sigma_w ~ gamma(1.5,10E-4);

sigma_e ~ gamma(1.5,10E-4);

Omega_u ~ lkj_corr(%f);

}

generated quantities{

real minimum;

real maximum;

minimum <- min(y);

maximum <- max(y);

}

',eta)

###

GENERATE DATA

###

dat <- two_by_two(n_u=35,n_w=16,seed=999)

df <- dat[[1]]

d<-df[,c(1,2,3,4,10)]

sum coding the two factors, which each have two levels

d$c1<-ifelse(d$factor_a==1,0.5,-0.5)

d$c2<-ifelse(d$factor_b==1,0.5,-0.5)

u_corr[[1]] is by-subj. int-factor_a raneff correlation

u_corr[[2]] is by-subj. int-factor_b raneff correlation

u_corr[[3]] is by-subj. factor_a-factor_b raneff correlation

and the same goes, mutatis mutandis, for the w_corr35, which

is by-item raneffs.

u_corr <- dat[[2]]

w_corr <- dat[[3]]

dat <- list(subj = sort(as.integer(factor(d$subj))),

item = sort(as.integer(factor(d$item))),

rt = d$rt,

c1 = d$c1,

c2 = d$c2,

N = nrow(d),

I = length(unique(d$subj)),

K = length(unique(d$item)),

FITTING LINEAR MIXED MODELS 43

zero = rep(0,3))

###

FIT MODELS

###

fit <- stan(model_code = code,

data = dat,

iter = 1500, warmup=1000, chains = 2)

###

SAVE

###

save(list=c('fit','d','u_corr','w_corr'),
file=sprintf('./w_nocov_eta%.2f_wcor6.Rda',eta))

}

> ## This is the loop which fits models with full covariance

> ## structure for both item and subject raneffs

> for (eta in c(.4,1,2)){

###################################

DECLARE MODEL AS STRING

###################################

code<-sprintf('
data{

int<lower=1> N; //no. rows

real<lower=-0.5,upper=0.5> c1[N];

real<lower=-0.5,upper=0.5> c2[N];

real rt[N];

int<lower=1> I; //no. subj

int<lower=1,upper=I> subj[N]; //subj id

int<lower=1> K; //no. item

int<lower=1,upper=K> item[N]; //item id

vector[3] zero;

}

parameters{

vector[3] beta; // fixeff

vector[3] u[I]; // by-subj raneff

vector[3] w[K]; // by-item raneff

real<lower=0> sigma_e; //resid

vector<lower=0>[3] sigma_u; //subj var

vector<lower=0>[3] sigma_w; //item var

corr_matrix[3] Omega_u; //corr matrix for

//subj ran int and slope

FITTING LINEAR MIXED MODELS 44

corr_matrix[3] Omega_w; //corr matrix for

//item ran int and slope

real y[N]; // post. pred.

}

transformed parameters{

cov_matrix[3] Sigma_u; // varcov matrix for subj ranefs

cov_matrix[3] Sigma_w; // varcov matrix for item ranefs

for(r in 1:3){

for(c in 1:3){

Sigma_u[r,c] <- sigma_u[r] * sigma_u[c] * Omega_u[r,c];

Sigma_w[r,c] <- sigma_w[r] * sigma_w[c] * Omega_w[r,c];

}

}

}

model{

real mu[N];

for(i in 1:N){

mu[i] <- (beta[1] + u[subj[i],1] + w[item[i],1]) +

(beta[2] + u[subj[i],2] + w[item[i],2])*c1[i] +

(beta[3] + u[subj[i],3] + w[item[i],3])*c2[i];

}

for(i in 1:I){

u[i] ~ multi_normal(zero,Sigma_u); // subj ranef

}

for(k in 1:K){

w[k] ~ multi_normal(zero,Sigma_w); // item ranef

}

rt ~ normal(mu,sigma_e);

y ~ normal(mu,sigma_e);

sigma_u ~ gamma(1.5,10E-4);

sigma_w ~ gamma(1.5,10E-4);

sigma_e ~ gamma(1.5,10E-4);

Omega_u ~ lkj_corr(%f);

Omega_w ~ lkj_corr(%f);

}

generated quantities{

real minimum;

real maximum;

minimum <- min(y);

maximum <- max(y);

FITTING LINEAR MIXED MODELS 45

}

',eta,eta)

###

GENERATE DATA

###

dat <- two_by_two(n_u=35,n_w=16,seed=999)

df <- dat[[1]]

d<-df[,c(1,2,3,4,10)]

sum coding the two factors, which each have two levels

d$c1<-ifelse(d$factor_a==1,0.5,-0.5)

d$c2<-ifelse(d$factor_b==1,0.5,-0.5)

u_corr[[1]] is by-subj. int-factor_a raneff correlation

u_corr[[2]] is by-subj. int-factor_b raneff correlation

u_corr[[3]] is by-subj. factor_a-factor_b raneff correlation

and the same goes, mutatis mutandis, for the w_corr35, which

is by-item raneffs.

u_corr <- dat[[2]]

w_corr <- dat[[3]]

dat <- list(subj = sort(as.integer(factor(d$subj))),

item = sort(as.integer(factor(d$item))),

rt = d$rt,

c1 = d$c1,

c2 = d$c2,

N = nrow(d),

I = length(unique(d$subj)),

K = length(unique(d$item)),

zero = rep(0,3))

###

FIT MODELS

###

fit <- stan(model_code = code,

data = dat,

iter = 1500, warmup=1000, chains = 2)

###

SAVE

###

save(list=c('fit','d','u_corr','w_corr'),
file=sprintf('./w_cov_eta%.2f_wcor6.Rda',eta))

FITTING LINEAR MIXED MODELS 46

}

References

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure in

mixed-effects models: Keep it maximal. Journal of Memory and Language.
Bates, D., & Sarkar, D. (2007). lme4: Linear mixed-effects models using s4 classes [Com-

puter software manual]. (R package version 0.9975-11)

Chung, Y., Gelman, A., Rabe-Hesketh, S., Liu, J., & Dorie, V. (2013). Weakly informative

prior for point estimation of covariance matrices in hierarchical models. Manuscript
submitted for publication.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014).

Bayesian data analysis (Third ed.). Chapman and Hall/CRC.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical
models. Cambridge, UK: Cambridge University Press.

Gilbert, J., & Jordan, C. (2002). Guide to mathematical methods. Macmillan.

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual

differences in working memory. Psychological Review , 99(1), 122–149.
Kerns, G. (2011). Introduction to probability and statistics using r.
Kliegl, R., Masson, M. E., & Richter, E. M. (2010). A linear mixed model analysis of

masked repetition priming. Visual Cognition, 18 (5), 655–681.
Kruschke, J. (2010). Doing bayesian data analysis: A tutorial introduction with r. Academic

Press.

Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). Winbugs-a bayesian modelling

framework: concepts, structure, and extensibility. Statistics and computing , 10 (4),
325–337.

Lynch, S. M. (2007). Introduction to applied bayesian statistics and estimation for social
scientists. Springer.

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York:

Springer-Verlag.

Plummer, M. (2012). Jags version 3.3.0 manual. International Agency for Research on
Cancer. Lyon, France.

Searle, S. R., Casella, G., & McCulloch, C. E. (2009). Variance components (Vol. 391).

John Wiley & Sons.

Stan Development Team. (2013). Stan: A C++ library for probability and sampling, version
2.1. Available from http://mc-stan.org/

