Introduction to Transformational Grammar, LINGUIST 601 December 8, 2004

Crossover Phenomena and Variable Binding

1 Strong Crossover

Strong Crossover: a pronoun cannot bind a *wh*-chain it c-commands.

- (1) SCO with questions:
 - a. *Who_i does he_i think [t_i won the game]?
 (* bad on the reading: who is such that he thinks that he won the game? *)
 - b. Who_{*i*} t_i thinks that he_i left?
 - c. *Who_i does he_i think [you saw t_i]?
 (* bad on the reading: who is such that he thinks that you saw him? *)
 - d. Who_{*i*} t_i thinks that you saw him_{*i*}?
- (2) SCO with relative clauses:
 - a. The man [who_i [he_i thinks [t_i won the game]]]
 (* bad on the reading: the man such that he thinks that he won the game *)
 - b. The man [who_i [t_i thinks [he_i won the game]]]
 - c. The man [who_i [he_i thinks [you saw t_i]]](* bad on the reading: the man such that he thinks that you saw him *)
 - d. The man [who_i [t_i thinks [you saw him_i]]]

1.1 A Reduction to Binding Theory

(3) The SCO configuration: *Op_i ... pron_i ... x_i
 (where Op_i c-commands pron_i and pron_i c-commands x_i)

A popular explanation for Strong Crossover assimilates it to Condition C of the binding theory by making the following assumption:

(4) Traces/Copies left behind by A-bar movement are R-expressions. They cannot be bound.

1.2 No SCO with A-Movement

SCO is only found with A-bar movement.

- (5) No SCO with A-movement:
 - a. *It seems to him_i that $David_i$ is genius.
 - b. David, seems to himself, [t, to be a genius].
 - c. *It seems to him_{*i*} that David_{*i*}'s wife is genius.

d. David,'s wife seems to him, [t, to be a genius].

Traces/Copies left behind by A-movement in contrast are not R-expressions. They can be bound by c-commanding pronouns.

2 Weak Crossover

Weak Crossover: If a *wh*-chain and a pronoun are co-indexed, the tail of the *wh*-chain must c-command the pronoun.

- (6) a. Who_{*i*} t_i loves his_i mother?
 - b. *Who_i does his_i mother love t_i ?
 (* bad on the reading: Who is such that his mother loves him? *)
 (compare with: Who_i [t_i is loved [by his_i mother]]?)
 - c. [Which man]_{*i*} did you say $[t_i \text{ dislikes } [his_i \text{ boss}]]$?
 - d. *[Which man]_{*i*} did you say [[his_{*i*} boss] dislikes t_i]?
- (7) The WCO configuration: *Op_i ... pron_i ... x_i
 (where pron_i and x_i do not c-command each other, Op_i c-commands both)

An influential and attractive explanation of WCO comes in the form of Koopman and Sportiche (1983)'s Bijection Principle:

(8) There is a bijective correspondence between variable and A-bar positions i.e. each operator must A-bar exactly one variable and each variable must be bound by exactly one operator.

X A'-binds Y iff X is in an A-bar position, and X binds Y (who A'-binds its trace in Who_i does Dawood like t_i ?)

X A-binds Y iff X is in an A-bar position, and X binds Y (*Dawood* A-binds *his* in *Dawood likes his books*)

The Bijection Principle does not apply to A-binding. An A-binder can bind any number of variables: [Every student]_i told [his_i friends] [that [his_i siblings] disliked [his_i cousins]].

2.1 WCO Configurations: the role of Linear Order

(7) is not stated in terms of linear order i.e. the pronoun does not have to be linearly in between the operator and the variable. Another version of the WCO constraint specifically invokes linear order:

(9) The Leftness Condition: *Op_i ... pron_i ... x_i
 (where pron_i and x_i do not c-command each other, Op_i c-commands both, and pron_i precedes x_i.)

The Leftness Condition allows for the following cases which are ruled out by (7).

- (10) a. Sructural crossover, but no overt crossover: Op_i [[.....x_i......][....pron_i.....]]

To see if the prediction made in (10a) is correct consider the following example:

- (11) a. John [[told me [that Mona disliked her_{*i*}]] [because he was mad at Julie_{*i*}]].
 - b. John [[told me [that Mona disliked Julie_{*i*}]] [because he was mad at her_{*i*}]].
 - c. Which $girl_i$ did [John [[tell me [that Mona disliked t_i]] [because he was mad at her_i]]?
 - (7) \rightarrow (11c) is ungrammatical.
- (12) (from Lasnik and Stowell (1991):690)
 - a. Who_{*i*} did [[you say [t_i was a liar]] [before you met him_{*i*}]]?
 - b. Who_i did [[Jan say [she admired t_i]] [in order to please him_i]]?

If (11c) and (12) are grammatical, then we have evidence in favor of the Leftness Condition and againt (7).

To test the prediction made in (10b) is trickier because extractions of the sort shown in (10b) are not permitted in English - they would constitute extraction out of a left branch, something that does not seem to be possible in English. We will return to this kind of example later.

2.2 Weakest Crossover

WCO effects are known to be weaker than SCO effects - hence the name. Further WCO effects seem to be even weaker/absent with some relative clauses unlike SCO effects.

- (13) a. The student [who_i [t_i loves [her_i mother]]] arrived this morning.
 - b. ()The student [who_i [[her_i mother] loves t_i]] arrived this morning.

Compare with:

- (14) a. No student [who_i [t_i loves [her_i mother]]] arrived this morning.
 - b. ()No student [who_i [[her_i mother] loves t_i]] arrived this morning.

It seems that not all A-bar movement environments trigger WCO:

- (15) (from Lasnik and Stowell (1991):691, 698)
 - a. Tough Movement: Who_i t_i will be easy for us [to get [his_i mother] to talk to e_i]?
 - b. Parasitic Gaps:
 Who_i did you stay with t_i [before [his_i wife] had spoken to e_i]?
 - c. Topicalization: This book_i, I expect [its_i author] to buy e_i.

d. Appositive Relative Clauses: This book_i, [which [[its_i author] wrote t_i last week]], is a hit.

Lasnik and Stowell (1991) argue that the nature of the operator in (15) differs from the operator in the cases where we find WCO effects, and argue that the WCO constraint should be formulated with this distinction in mind.

2.3 No WCO with A-Movement

WCO is not found with A-movement:

- (16) a. Who_i [t_i' seems [to his_i mother] [t_i to be intelligent]]?(Can mean: Who is such that he seems to his mother to be intelligent?)
 - b. Every boy_i seems to his_i mother [t_i to be intelligent].(Note that the above chains involves both A and A-bar movement.)

3 Generalizing over SCO and WCO

Three Cases:

- (17) SCO, indicates c-command:
 - a. Op_i x_ipron_i \rightarrow binding possible (if not ruled out by Condn. B)
 - b. $Op_i....pron_i....x_i$ \rightarrow binding impossible
 - c. pron_{*i*}.....Op_{*i*}.....x_{*i*} \rightarrow binding depends upon nature of Op_{*i*}
- (18) a. Dave_{*i*} thinks that $[him_i, I admire t_i]$.
 - b. *Dave_i wonders [who_i I admire t_i].

The above contrast follows from the difference in meaning between *him* and *who*: *him* being a pronoun can be bound, while *who* being an interrogative expression cannot be bound.

- (19) WCO, indicates absence of c-command
 - a. $Op_i...[[..x_i..][...pron_i]$ \rightarrow binding should possible (but hard to test)
 - b. $Op_i....pron_i....x_i$ \rightarrow binding impossible
 - c. pron_{*i*}.....Op_{*i*}.....x_{*i*} \rightarrow binding depends upon nature of Op_{*i*}, but pron_{*i*} cannot directly bind Op_{*i*}

4 Crossover effects and Covert Movement

It has been noted that sentences with more than one quantifier phrase often display an ambiguity with respect to the scope of the quantifier phrases.

- (20) Some student admires every senator.
 - $a. \quad some > every: \\ [some student]_1 \ [[every senator]_2 \ [t_1 \ admires \ t_2]] \\ b. \quad every > some:$
 - [every senator]₂ [[some student]₁ [t_1 admires t_2]]

This ambiguity is typically derived by the operation of Quantifier Raising (QR).

- (21) Some student admires every senator. Some professor does, too.
 - a. ok: [some student > every senator], [some professor > every senator]
 - b. ok: [every senator > some student], [every senator > some professor]
 - c. not ok: [some student > every senator], [every senator > some professor]
 - d. not ok: [every senator > some student], [some professor > every senator]

Unlike instances of overt movement, QR tends to be finite-clause bound. Thus we generally do not find quantifiers interactions between quantifiers from two different clauses.

- (22) Some student believes [that every senator is a crook].
 - a. ok: some > every
 - b. not ok: every > some

Given that QR involves movement, we might expect to find crossover effects and we do.

- (23) SCO: *He_{*i*} likes [every student]_{*i*}.
- (24) WCO:
 - a. Every boy_{*i*} likes his_{*i*} mother.
 - b. *His_i mother likes every boy_i.
 (* bad on the reading that (a) had. *)

Once we apply QR, we are left with configurations that violate the SCO/WCO configurations respectively:

- (25) SCO: $[every student]_i [he_i likes t_i].$
- (26) WCO cases:
 - a. [Every boy]_{*i*} [t_{*i*} likes his_{*i*} mother].
 - b. *[Every boy]_{*i*} [his_{*i*} mother likes t_{*i*}].
 - c. Everyone_i is implicated by [the fact [that he_i owned a gun]].
 - d. *[The fact [that he_i owned a gun]] implicates everone_i.
 - e. No man_i should mistreat his_i friends.
 - f. *His_{*i*} friends should mistreat no man_{*i*}.

4.1 Variable Binding and Almost C-Command

The discussion of WCO/SCO involving covert movement of Quantificational Phrases (QP) can be recast as a discussion of when a given QP can bind a given pronoun.

From conditions on semantic interpretation, we know that at the level of semantic interpretation, a QP must c-command a pronoun that it binds. This accounts for the unambiguity of (27).

- (27) [Every man]_{*i*} loves [some painting in his_{*i*} house].
 - a. ok: every man > some painting in his house: [every man]_i [[some painting in his_i house]_k [t_i loves t_k]]
 - b. not ok: some painting in his house > every man: [some painting in his_i house]_k [[every man]_i [t_i loves t_k]] \rightarrow *his* cannot be bound by *every man* under this structure.

But the conditions on variable binding do not just make reference to the level of semantic representation. They also make reference to the surface position of the QP and the pronoun.

(28) A QP can bind a pronoun iff it (almost) c-commands the pronoun in its surface position (i.e. before covert movement).

In all the good cases of variable binding by a QP that we have seen so far, the QP c-commands the pronoun it binds from its surface position. It does not do so in any of the cases where binding is ruled out.

This c-command requirement is something we have already seen in the context of anaphor binding. However, it turns out that variable binding requires something that is very close to ccommand but not quite c-command. Some authors have called this notion 'almost c-command'.

- (29) Possessors:
 - a. Possessors do not c-command object:
 - i. *[His_{*i*} mother] loves himself_{*i*}.
 - ii. *[[Every boy]_{*i*}'s mother] loves himself_{*i*}.
 - iii. *[Whose_{*i*} mother] loves himself_{*i*}?
 - b. But variable binding of object by possessor QPs is ok:
 - i. [[Every boy]_{*i*}'s mother] loves him_{*i*}.
 - ii. [[[Every boy]_{*i*}'s mother]'s sister] loves him_{*i*}.
 - iii. [[[[Every boy]_{*i*}'s mother]'s sister]'s doctor] loves him_{*i*}.
 - c. And variable binding of object by possessive *wh*-XPs is also ok:
 - i. [[Which boy]_{*i*}'s mother] loves him_{*i*}?
 - ii. [[[Which boy]_i's mother]'s sister] loves him_i?
 - iii. [[[[Which boy]_i's mother]'s sister]'s doctor] loves him_i?
- (30) Inverse Linking:
 - a. [Someone from [every city]_{*i*}] despises it_{*i*}.

b. [Someone in [every city]_i] loves its_i mayor.

The intuition expressed by several authors (see Ruys (2000) for an overview) is that the putative c-command requirement is satisfied for the QP 'by proxy' by the 'container' DP.

An alternative: we had noted earlier in our discussion of the Leftness Condition formulation of WCO that the formulation allowed for the following configuration:

(31) No Structural Crossover: Op_i [.......[[...x_i...]......pron_i......]]

If we assume that at the level of semantic representation (call it LF, Logical Form), a QP must c-command a pronoun if it is to bind it, then the QP must move out of its 'container' DP and the problematic cases involving possessors and inverse linking can be seen as instances of the configuration in (31).

We seem to be left with a purely linear condition:

(32) A QP cannot bind a pronoun if it appears between the QP and its trace (i.e. if there is crossover).

4.2 Secondary Crossover Effects

Crossover Phenomena display a 'transitivity' effect. See Higginbotham (1980) and Postal (1993) for details.

- (33) Secondary SCO:
 - a. *[Whose_i sister]_j does he_i think [t_j is intelligent]?
 - b. *[[Whose_i sister]'s girlfriend]_j does he_i think [t_j is intelligent]?
 - c. *[Whose_i sister]_j did they inform him_i [that Joan would call t_j]?
 - d. *[[Whose_i sister]'s girlfriend]_j did they inform him_i [that Joan would call t_j]?
- (34) Secondary WCO:
 - a. ?? [His_{*i*} father] loves [[every boy]_{*i*}'s mother].
 - b. ?? [Whose_i mother]_j does [[his_i father] love t_j]?

These cases of secondary SCO/WCO can be shown to reduce to the regular SCO/WCO configurations if we assume that at the level of interpretation, everything but the Wh/Quantificational XP is in the base position:

- (35) Secondary Crossover and Reconstruction:
 - a. SCO: *[Whose_i sister]_j does he_i think [t_j is intelligent]? LF: Who_i does [he_i think [[t_i's sister] is intelligent]]?
 - b. WCO: ?? [His_i father] loves [[every boy]_i's mother].
 LF: [Every boy]_i [[his_i father] loves [t_i's mother]]

4.3 Odds and Ends

4.3.1 Traces vs. Pronouns

semantically bound pronouns and traces end up making very similar contributions.but Traces and not Pronouns are subject to SCO.

- (36) a. * the person $[who_i [he_i likes t_i]]$
 - b. * the person [such_i that [he_i likes him_i]]
 - c. * the person [who_i [he_i thinks [Ann_i likes t_i]]]
 - d. the person [who_i [he_i thinks [Ann_i likes him_i]]]

4.4 WCO and Functional Readings of Questions

Questions with quantifiers often permit an answer that has been dubbed a 'functional answer' by Chierchia (1993).

(37) Who does every Englishman depend upon? Answer: his mother

It has been noted that the functional reading is only available if the QP c-commands the trace of *wh*-movement:

- (38) a. Who_i does [[every Englishman] admire t_i]?
 Ok: Functional Answer: his mother
 Ok: Individual Answer: Prince William
 - b. Who_i [t_i admires [every Englishman]]? Not Ok: Functional Answer: his mother Ok: Individual Answer: Prince William

Giving a complex representation to the trace: t_i^j - where the superscript must be bound by the QP allows us to relate the availability of functional readings to WCO.

References

Chierchia, G. (1993) "Questions with Quantifiers," Natural Language Semantics 1, 181-234.

Higginbotham, J. (1980) "Pronouns and Bound Variables," Linguistic Inquiry 11:4, 679-708.

Koopman, H., and D. Sportiche (1983) "Variables and the Bijection Principle," *Linguistic Review* 2, 139–160.

Lasnik, H., and T. Stowell (1991) "Weakest Crossover," Linguistic Inquiry 22:4, 687-720.

Postal, P. M. (1993) "Remarks on Weak Crossover Effects," Linguistic Inquiry 24:3, 539-556.

Ruys, E. G. (2000) "Weak Crossover as a Scope Phenomenon," Linguistic Inquiry 31:3, 513-540.