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Abstract
Natural language generation in the medical domain is heavily influenced by domain knowledge and genre-specific text characteristics.
We present SemScribe, an implemented natural language generation system that produces doctor’s letters, in particular descriptions of
cardiological findings. Texts in this domain are characterized by a high density of information and a relatively telegraphic style. Domain
knowledge is encoded in a medical ontology of about 80,000 concepts. The ontology is used in particular for concept generalizations
during referring expression generation. Architecturally, the system is a generation pipeline that uses a corpus-informed syntactic
frame approach for realizing sentences appropriate to the domain. The system reads XML documents conforming to the HL7 Clinical
Document Architecture (CDA) Standard and enhances them with generated text and references to the used data elements. We conducted
a first clinical trial evaluation with medical staff and report on the findings.
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1. Introduction
We present SemScribe, an implemented system that auto-
mates the mapping from individual medical observations
to a medical report in natural language, and thus eliminates
the need for a distinct text production step on the side of the
physician. The doctor enters observations into a structured
entry form, and the corresponding text is produced instan-
taneously. In contrast to simple text block-based systems,
SemScribe can systematically produce variants from the
same input (verbose versus brief text), and it aims at gen-
erating more cohesive text on the basis of a well-motivated
choice of referring expressions (in particular, decisions on
head noun and pronominalization).
The general idea of the SemScribe approach is inspired
by the SUREGEN system (Hüske-Kraus, 2003a; Hüske-
Kraus, 2003b) but adds an emphasis on re-usable genera-
tion components as well as a grounding in a (pre-existing)
domain ontology, which facilitates the transfer of the sys-
tem to other medical domains as well as to other target lan-
guages (at present, we generate German text only).
This paper is structured as follows: Section 2 provides more
details about the task. Section 3 outlines the overall ar-
chitecture of the system and section 4 details the sequence
of generation steps necessary for mapping non-linguistic
observation-data to text. Section 5 describes referring ex-
pression generation in greater detail. In section 6 we report
on findings of a first clinical evaluation. Section 7 discusses
related work and provides further discussion, for example
on domain adaptivity aspects of the approach (section 7.3).
Section 8 concludes this paper.

2. Task Description
We address a subtask of the larger endeavor of intelligent
assistance for the production of doctor’s letters. Depend-
ing on the particular clinical domain, the texts to be pro-
duced are more or less stereotypical, thus suggesting dif-
ferent methods for creating them. Our project focuses on
cardiology.

The first step was to obtain a corpus of authentic doctor’s
letters of a hospital in order to study the linguistic phenom-
ena and then to devise appropriate production strategies.
We selected a subcorpus of 70 texts produced by three dif-
ferent doctors. Overall, these texts contain 429 statements.
In the various cardiological diagnoses, one general finding
is a very high density of information, which leads to a rela-
tively telegraphic style of concatenated noun phrases, rather
than full-fledged sentences. Consider the example in Figure
1, taken from an echocardiography diagnosis. By ‘infor-
mational density’, we refer to the fact that individual units
of information (measurements, observations) are typically
fused into complex noun phrases, which has consequences
for deciding on the best strategy of production.
The text can also be characterized as being in a largely
‘context-less’ style, i.e. there is relatively little reference to
previous sentences. The domain is sufficiently known to the
reader (fellow doctors) that the ontology concepts can be
regarded as shared among participants. Many descriptions
are therefore definite upon first mention (‘the left atrium’ in
example 3), similar to reference to ‘the moon’ in everyday
language. However, it is a challenge to refer to more than
one concept at the time by using the ontology – this is one
of the challenges for natural language generation.

3. System Overview and Architecture
While it may be possible in principle to manage a large set
of text blocks (canned text) that accounts not only for indi-
vidual observations but for particular combinations of ob-
servations/measurements and expresses such information
bundles in corresponding text bundles, this approach be-
comes inflexible and extremely difficult to port to other do-
mains, where the problems are similar yet require a com-
pletely new set of text blocks. We therefore use a language
generator to systematically map non-linguistic information
to linguistic output, i.e., text. For architectural simplicity,
we employ a ‘slim’ processing pipeline (Reiter, 1994; Re-
iter and Dale, 2000) without search or large-scale overgen-
eration (Langkilde and Knight, 1998; Varges and Mellish,



(1) a. Beide Ventrikel und der rechte Vorhof sind normal di-
mensioniert.

b. (Both ventricles and the right atrium are of normal size.)

(2) a. Sämtliche LV-Wände sind leichtgradig verdickt.

b. (All LV-walls are mildly thickened.)

(3) a. Der linke Vorhof ist mit 53 mm mittelgradig dilatiert bei
unauffälliger globaler und regionaler linksventrikulärer
Pumpfunktion.

b. (The left atrium is moderately dilated at a size of 53mm
and exhibits an unremarkable global and regional ven-
tricular pumping function.)

Figure 1: Example sentences from the corpus of medical
reports.

2010). In order to deal with the module-interdependencies
of referring expression generation (GRE) in particular,
GRE is split into two parts and wrapped around sentence
planning (details below). The resulting generation pipeline
comprises the following modules:

1. Document planning: Serializing the information units
into an appropriate order.

2. GRE I: logical inferencing over the ontology, in par-
ticular to identify generalizations of sets of concepts.

3. Sentence planning: “Chunking” the information into
bundles that will later be expressed as individual sen-
tences, deciding on words to use for conveying the in-
formation, and deciding on how to bundle information
units into appropriate linguistic phrases.

4. GRE II: referring expression specification including
coreference-triggered generation of anaphoric expres-
sions.

5. Realization: the lexical items are morphologically re-
alized and the final sentence is produced.

Sentences planned in step 3 are realized left-to-right incre-
mentally before the next sentence is planned. This allows
the system to maintain a discourse memory of the left con-
text that can be used in the GRE II step.

3.1. Medical Data Sources and User Interface
The input data for text generation comes from two sources:

1. Electronic data available in clinical systems such as
measurements from ultrasound imaging devices or de-
mographic patient data from a hospital information
system is imported using interfaces for communica-
tion standards such as DICOM SR1 or HL7.2

2. Further diagnostic observations are entered by the
physician using a Web-based structured input form. A
screenshot of the graphical interface for data entry is
shown in figure 7.

1DICOM: http://medical.nema.org/
2HL7: http://www.hl7.org/

Ontology	  (fragment	  of	  ISA-‐rela3on):	  

Lexicon:	  
Node	   WNC	  Code	   German	   English	  

HH	   T002A05	   Herzhöhle	   heart	  chamber	  

V	   T000BCF	   Ventrikel	   ventricle	  

VH	   T000BB1	   Herzvorhof	   atrium	  

LV	   T000BE2	   linker	  Ventrikel	  	   leL	  ventricle	  

RV	   T000BDA	   rechter	  Ventrikel	  	   right	  ventricle	  

LVH	   T000BC8	   linker	  Vorhof	   leL	  atrium	  

RVH	   T000BBC	   rechter	  Vorhof	   right	  atrium	  

HH	  

	  V	  

	  LV	   RV	   	  LVH	   RVH	  

VH	  

Figure 2: Resources for NLG (fragments).

All input data are represented as a single XML document
conforming to the HL7 Clinical Document Architecture
(CDA) standard.3 The text generator reads this document
and adds generated text in XML elements that link it to
the data elements it is derived from. The resulting docu-
ment combines structured data with generated text. It is
both human-readable using a standard Web browser and
machine-readable by other e-health software that supports
the CDA standard.

4. Generation Pipeline
4.1. Example Input
The input can generally be described as a list of triples (ob-
ject,attribute,value) where the object typically is an organ,
the attribute a property (e.g. length) and the value the ac-
tual measurement or interpretation. Figure 5 shows as input
a set of observations that describe 3 organs to be of normal
size.4 All actual input is identified by a ‘WNC’ code (a
medical concept index). However, for readability we only
show short concept labels in figure 5; the lexicon in figure
2 shows their realizations.

4.2. Document Planning
The document planner defines the overall structure of the
document. This concerns paragraphs, headlines and con-
tent order. The planner can be configured individually ac-
cording to the needs of the application and the preferences
of the hospital or physician.
The general structure and order of the document is defined
in a document template. This organizes hierarchical para-
graphs, headlines and the order of the final content. To this
end, abstract ‘content elements’ are defined as containers

3HL7 CDA: http://www.hl7.org/implement/
standards/cda.cfm

4In contrast to the predicate-argument style notation of the ex-
ample in figure (5), the actual implementation is in Java with re-
sources in XML.



for observations, which may be arranged within the same
sentence. The user controls the content of these elements
by defining observation mappings using underspecified ob-
servation descriptions.
The document planner does not have to be adjusted to pro-
cess other languages (section 7.3). To generate texts in an-
other domain, the user supplies new configurations of the
document template and observation mappings. The result
of document planning is a document template filled with
input observations.

4.3. Sentence Planning
The sentence planning task includes aggregation and lexi-
calization of observations. Sentence planning is performed
by recursively composing partially specified syntactic trees.
The sentence planner works on all observations within a
content element and produces one or more sentences for
these. The linguistic knowledge used for sentence planning
is organized in frames and concept entries, which control
the lexicalization of the input. Each frame describes a spe-
cific aspect of the domain language and contains a set of
templates. These represent a syntactic tree as a possible
sentence plan for the aspect considered in the frame. Tem-
plates may recursively invoke other frames, thus construct-
ing the final sentence plan for an observation from multiple
substructures.

4.3.1. Concept Lexicon
Input observations contain medical codes for attribute, ob-
ject and value (see section 4.1). These codes point to con-
cepts in the ontology. The concept lexicon represents a set
of variants for each concept of the domain. Each variant
represents a syntactic tree which will be adjoined to the sen-
tence plan. The advantage of using a tree structure rather
than a plain string is that different inflectional forms can be
realized for the same entry.

4.3.2. Observation Aggregation
Multiple observations are aggregated by identical attributes
and values (as in figure 5) or by object, i.e. different obser-
vations were made about the same organ(s). The aggrega-
tion operations map observations to observations.

4.3.3. Referring Expression Generation: Step 1
Once aggregated observations are available, the first stage
of referring expression generation is invoked. This is ex-
plained in detail in section 5.1. The resulting referring ex-
pression specifications are used in the following step.

4.3.4. Frame Instantiation
The next step is to construct a sentence plan for each ag-
gregated observation. This is done by selecting and fill-
ing templates. Templates are syntactic structures with vari-
ables (slots) to be filled. They are organized in frames; each
frame describes an aspect of the domain.
The initial frame for processing an observation is deter-
mined by the observation attribute. Thus, an observation
with attribute ‘size’ will use the ‘size’-frame. The frame
contains several templates that produce a clause for describ-
ing the size of an object. Template selection is generally
controlled by the object and value of the input observation.

1. Die beiden Ventrikel und das rechte Atrium sind normal di-
mensioniert.
(Both ventricles and the right atrium are of normal size.)

2. Die beiden Herzkammern und der rechte Vorhof sind normal
dimensioniert.
(Both heart chambers and the right atrium are of normal
size.)

3. LV, RV und LA normal dimensioniert.
(LV, RV and LA of normal size.)

Figure 3: Example for different text versions for the same
input.

A template requires input slots and restricts them to spe-
cific values, such as a specific concept (code) or a syntactic
category for realization. Next, the slots are filled with the
concept’s lexical entry for the corresponding input code. In-
put concepts of organs are marked as referring expressions,
whose generation is done separately in GRE step II (see
Section 5.2). The result of frame instantiation is a syntactic
tree that usually represents a clause.

4.3.5. Variants Ranking
The selection of the best template or concept variant is
based on a ranking of the variant’s features. The linguis-
tic resources are annotated with predefined feature-value-
pairs. Currently, we use the boolean features ‘short’ and
‘simple’. By default, the system produces a text with med-
ical specialist’s terms and complete sentences. In the GUI,
the user has the option to either select the generation of a
short, abbreviated text of compact sentences (often with-
out a verb) or a version for the patient with understandable
medical terms. The variants are ranked by weight and the
best variant is used for realization. Figure 3 shows different
versions for the same input.

4.3.6. Sentence Construction
Frame instantiation supplies a list of syntactic clause trees.
For each clause, the system generates a simple sentence. In
some cases, two or more clauses are combined.
At this stage in the pipeline we have obtained most of the
final sentence plan with only the referring expressions still
remaining variables. Figure 4 shows such a sentence plan
for the example input of figure 5.

Figure 4: Sentence plan before stage 2 of referring expres-
sion generation.



4.3.7. Referring Expression Generation: Step 2
Discourse-related decision on GRE as well as the surface
features of the referring expression are determined at this
stage. For details see section 5.2.

4.4. Realization
In the final stage, a morphosyntactically-correct expression
of the sentence plan as a sentence (even if telegraphic) in
the target language (here: German) is produced. This in-
volves fixing word order, insertion of function words, and
producing proper inflection. We use a sentence realizer
called XbarGen (Sawitzky, 2011) that involves the notion
of Xbar-Theory and topological fields of German.

5. Referring Expression Generation
The task of generating referring expressions (GRE) can
be characterized by the following question: given a do-
main model – in this case the medical ontology – and a
set of referents, how can we uniquely identify the refer-
ent(s) using natural language? This task has often been
combined with the requirement to be minimal, i.e. to use
only a minimal number of properties, and with considera-
tions of computational complexity. Early work often cen-
tered around the ‘incremental algorithm’ (Dale and Reiter,
1995) which incrementally ‘intersects’ attributes until the
referent is uniquely identifiable. Due to the importance of
GRE to the field of language generation in general, several
alternative approaches have been developed, e.g. the graph
algorithm of (Krahmer et al., 2003) or the ‘overgeneration
and ranking’ approach of (Varges and van Deemter, 2005).

5.1. GRE I: Ontological inference
In SemScribe, where domain knowledge is available in the
form of a medical ontology that includes ISA relationships
between concepts, we often need to model reference to sev-
eral objects by the name of a dominating concept. The re-
sulting, possibly generalized concept can be used in com-
bination with attributes identified with standard GRE ap-
proaches (section 7.2).
In example 1, the use of ‘both ventricles’ presupposes that
the objects in question are of type ‘ventricle’ and that there
can be only two of them. Such inference is required be-
fore a syntactic frame is selected since this determines the
grouping of the input into the grammatical functions of the
sentence planner.
The required knowledge is part of the ISA relations of the
ontology. A fragment of the ontology ID MACS R© – med-
ical semantic network of about 80000 concepts/nodes pro-
vided by ID is shown in figure 2 along with some lex-
ical entries. Nodes/concepts in the ontology are concept
classes (TBox), not instances of a particular patient’s organ
(ABox). The input to NLG, on the other hand, is interpreted
as being at the instance level.

5.1.1. GRE Algorithm
In the ontological inference stage, we generally search for a
concept/node in the ontology that dominates as many input
concepts as possible without dominating any other nodes
not mentioned in the input. Immediate dominance is not
necessarily required. The ISA graph of the ontology is

Genera&on	  input:	  
Observation(LV, size, normal). 
Observation(RVH, size, normal). 
Observation(RV, size, normal). 
Aggrega&on:	  
observation([N4, N7, N5], size, normal). 
Chart	  items:	  

Structure	  of	  Referring	  Expression:	  

M:                        V          RVH 

Dtrs:              {LV, RV}     RVH 

Input:               {LV, RV, RVH} 
Realiza&on:	  
both ventricles and the right atrium 

Input	   M	   Dtrs	   Cov	  

e0 LV V LV, RV true 

e1 LV HH LV, RV, LVH, RVH false 

e2 RVH VH LVH, RVH false 

e3
* RV V LV, RV true 

e4
* RV HH LV, RV, LVH, RVH false 

Figure 5: Generation of RE for example (1).

queried by an algorithm that performs a mixed-order traver-
sal for each input concept in turn by walking ‘bottom-up’
from the input concepts to higher-level concepts and then
‘top down’ to the sisters of that input concept (functions
Build Chart and Traverse Ontology in the algorithm sketch in
fig. 6). This is repeated until sisters not in the input are
found. Since the ontology graph is large and we do not
necessarily deal with terminal nodes, the algorithm keeps
track of the number of levels in the bottom-up phase and
uses this in the top-down phase to identify the ‘level’ of
the daughters (counter i ; the terms ‘mother’ and ‘daughter’
are understood transitively here). If a terminal node or an-
other input concept is encountered ‘early’ because they are
located at a ‘higher’ level, the traversal stops.
The results of the ontology query are stored in a chart. This
enables reuse of edges at the discourse stage (section 5.2)
which is important since ontology access is provided by an
external service. Figure 5 shows some processing stages
for the input corresponding to example (1) in figure 1. The
chart edges are produced by the algorithm in figure 6 using
the ontology fragment in figure 2. The edges represent two
levels, the ‘lower’ input nodes (‘Dtrs’) and the dominating
upper node (‘M ’). Additionally, it is represented whether
all input nodes are present in the daughters set (‘Cov’). If
the redundancy check is used (function Redundant in figure
6), edges e3 and e4 are not produced.
Next, we search for a minimal combination of mutually ex-
clusive and complete/exhaustive chart edges that covers the
input, following the Gricean Maxim of Brevity (Dale and
Reiter, 1995) (mentioned as function Select Edges in the al-
gorithm sketch). This combination may also include input
concepts that could not be generalized. Each of the chart



def Gre(input):
chart← Build Chart(input)
refex← Select Edges(chart,input)
return refex

def Build Chart(input):
chart← []
for el ∈ input:

if not Redundant(el,chart):
cov← true, i← 0
while cov:

i← i+1
m, dtrs← Traverse Ontology(i, el)
cov← Dtrs Covered(dtrs, input)
chart.append((m, dtrs, cov))

return chart

def Traverse Ontology(i,el):
m← mother(el,i) # walk up i levels
dtrs← daughters(m,i) # walk down i levels
return m, dtrs

def Dtrs Covered(dtrs, input):
if for all d ∈ dtrs: d ∈ input: return true
else: return false

def Redundant(el, chart):
if el ∈ e.dtrs for some edge e ∈ chart:

return true
else: return false

Figure 6: Sketch of algorithm for ontology-based GRE

edges so selected will give rise to a referring expression
(the generalized edge e0 and the not generalizable concept
RVH in figure 5). The two concepts of level M will be real-
ized whereas level Dtrs represents the extensional seman-
tics. The union of the extensions is equivalent to the input
to the generator. The concepts resulting from this phase,
i.e. V and RVH in this case, will be used to determine the
‘type’ attribute of the referring expression to be generated
(see also section 7.2).

5.2. GRE II: Co-reference based Generalization
In addition to ontology-based generalization (section 5.1),
generalization may also be triggered by the discourse con-
text: a second mention of a specific car (‘the black Mer-
cedes’) might just refer to ‘the car’, clearly using the on-
tology (rather than just performing a syntactic operation).
In this type of generalization, the referents do not have to
comprise all the daughters of the dominating concept at a
certain level.
To keep track of previous mentions of referents, the dis-
course context is structured into sentence-sized units and
contains their referring expressions including their syntac-
tic features. This makes it possible to determine the ‘pre-
ferred center’ (Poesio et al., 2004) for possible pronomi-
nalization, for example. The discourse memory is updated
after a sentence is generated. It is used to identify back-
wards co-reference links for the top-level expression of the
input under consideration, i.e. the entire input grouped in a
grammatical function (set {LV,RVH,RV} in figure 5) as well
as for its parts (individual referring expressions such as V

and RVH). This identification is required because the gen-
eration input is underspecified in this respect as it originates
from a non-linguistic component. In our current model, the
antecedent needs to be a top-level expression. If a corefer-
ence link is available, the use of a more general concept is
triggered, based on the chart already obtained for the previ-
ous inference step (section 5.1). For example, a follow-up
sentence that uses the same input as in figure 5 could use
the (incomplete) chart edge e2, i.e. VH , to refer to RVH .

5.2.1. Syntactic Features and Lexical Choice
With the syntactic constraints known, the referring expres-
sion structure can be specified further and inserted into the
sentence plan. For generalized concepts, an appropriate
quantifier needs to be selected based on the size of the ex-
tensions: ‘both [ventricles]’, ‘all four [heart chambers]’.
Furthermore, the inner structure of the referring expression
is used to determine the need of a conjunction (used in fig.
5).

6. Evaluation
We have conducted a short task-based evaluation with med-
ical staff at a hospital.
The task was to form a diagnosis using the usual medical
tools (based on MRI scans etc.) and then to create the Doc-
tor’s letter using the new text generation tool. Following
each case, a detailed questionnaire was given to the doctor
in which he/she made judgments about both linguistic flu-
ency and expressibility of the generated text, and the gen-
eral usability characteristics of the tool and approach. De-
tailed comments were asked about the realization of indi-
vidual medical findings, for example the ordering of spe-
cific pieces of information.
Due to time constraints imposed by the project funding,
only few cases have been evaluated, and only by a single
doctor. Hence the results do not support a statistical anal-
ysis. Instead we summarize here our conclusions drawn
from the doctor’s judgments and comments.
The evaluation underlined, as expected, the need for a flex-
ible document planning component since our original doc-
ument plan extracted from our corpus was not entirely ac-
cepted by the Doctor. The capability of sorting, grouping,
and summarizing the given observations was regarded as
one of the systems greatest assets and resulted in an in-
creased acceptance of the generated text as Doctor’s let-
ters. Various helpful suggestions regarding vocabulary and
phrasing have been incorporated in a later release of the
prototype. The high number of medical clarifications re-
ceived shows that the customization of the NLG system
needs to be carried out by domain specialists using appro-
priate development tools.

7. Related Work and Discussion
7.1. NLG in Medical Applications

The general idea of the SemScribe approach is inspired
by the SUREGEN system (Hüske-Kraus, 2003a; Hüske-
Kraus, 2003b) but adds an emphasis on re-usable genera-
tion components as well as a grounding in a (pre-existing)



domain ontology, which facilitates the transfer of the sys-
tem to other medical domains as well as to other target lan-
guages (at present, we generate German text only). Our
approach is also related to Cawsey et al. (Cawsey et al.,
2000) who describe a system for generating tailored text
that explains treatments, diseases etc. to patients. More-
over, Reiter et al. (Reiter et al., 2001) generate customized
letters that encourage people to stop smoking. However,
both these approaches have a different focus (patients/end
users).
The BabyTalk project at Aberdeen (Gatt et al., 2009; Portet
et al., 2009) investigates data-to-text generation in Neona-
tal Intensive Care Units. A focus of the project is the actual
mining/analyzing of large amounts of numerical data. In
contrast, SemScribe’s input has already been analyzed ei-
ther automatically or by a specialist, which is reflected in
the two input sources of the system (section 3.1). The re-
sulting texts are quite different in these two systems since
SemScribe data does not reflect a time series of measure-
ments.

7.2. Referring Expression Generation
The ontology traversal algorithm searches the ontology for
dominating concepts and thus limits itself to the selection of
the type attribute. The resulting, possibly generalized con-
cept can be used in combination with attributes identified
with other, more general approaches to referring expression
generation; see (van Deemter, 2002; Krahmer et al., 2003;
Horacek, 2004; Gatt, 2007) for references to sets of objects,
for example. In the incremental algorithm of (Dale and Re-
iter, 1995), a generalized concept can be used as the value
of the ‘type’ attribute, which is always chosen regardless
of discriminatory power, and which is usually mapped to a
head noun. In the graph-based approach of (Krahmer et al.,
2003), our algorithm could provide (cheap) type edges.
In (Dale and Reiter, 1995), the importance of ‘basic-level
values’ is emphasized, i.e. lexical preferences for specific,
unmarked concepts (e.g. ‘dog’ rather than ‘pit bull’). In this
work, we made a related observation: the medical ontology,
which was not produced for NLP applications in the first
place, contains some concepts that are not required from a
language perspective (and that can thus prevent successful
generalization). We addressed this by introducing an ‘NLG
view’ of the ontology which defines a subset of language-
relevant concepts. The generalization algorithm only works
on this subset. The NLG view currently does not express
preferences for specific concepts within this subset of the
ontology.
The ontology traversal algorithm assumes a single inheri-
tance ontology. However, this requirement only applies to
the ISA relation. Other relations could use multiple inheri-
tance.
The algorithm identifies the least general (most special)
generalization. In the context of logic programming, this
is also called ‘anti-unification’ (Hinkelmann et al., 1994).
Ontological reasoning plays a big role in the semantic
web and its theoretical foundation OWL/Description Logic
(see (Mellish, 2010) and (Power, 2009) for applications to
NLG, for example). The ontology in the presented work is
maintained externally in relational form, thus requiring any

language-related inferences to be performed by the NLG
system.

7.3. Domain Adaptivity

A central aspect is the possibility of flexible adaptation of
the generation decisions to the physicians needs and pref-
erences. Therefore, the scenario also involves a toolbox for
defining and editing the document plans (i.e., defining the
ordering of information in the text), the devices (‘frames’)
for mapping non-linguistic information to linguistic expres-
sions (of different types) and a lexicon of concepts. Figure
8 shows a screenshot of the maintenance and adaptation
tool.

The frames are used to recursively compose partially spec-
ified syntactic trees, similar in spirit to the SPUD (Stone
and Doran, 1997) and PROTECTOR (Nicolov and Mel-
lish, 1999) systems. Concepts in turn contain fully spec-
ified syntactic trees, which can be referred to in frames.

Frames and concepts may contain several realization alter-
natives, for example for different target audiences (patients
vs specialists). The frame instantiation mechanism works
language-independently. It can combine any syntactic tree
of the frame and concept lexicons without making any as-
sumptions about the grammar. Furthermore, the realization
component of the system uses a dictionary of declinations
containing the variations of words according to tense, case,
number, gender etc. It can also be edited and extended with
a customized tool developed for this project.

In contrast to document plans, sentence planning resources
(frames and concept entries) and the realization dictionary
are language specific. Adapting the system to other lan-
guages entails providing all resources for the new language.

The tools are still being used in the development of new text
generation applications and have proven their practicability.

8. Conclusions and Future Work

We presented SemScribe, an implemented natural language
generation system that produces doctor’s letters, in partic-
ular descriptions of cardiological findings. The approach
is adaptable through configurable document plans and sen-
tence frames.

We evaluated the approach in a task-based user study with
medical staff. Due to the cost of specialist feedback and
time constraints imposed by the project funding, the evalu-
ation was qualitative rather quantitative in nature. It under-
lined the need for a flexible document planning component
and the importance of providing appropriate development
tools for customization by domain specialists.

Regarding the use of a medical ontology, we dealt with gen-
eralizations triggered by ontological inference and by dis-
course. We have not yet integrated mechanisms to special-
ize the descriptions to rule out distractors. For example, a
discourse-based generalization may not be desirable if this
results in confusability with other referents. Such an ac-
count should integrate earlier work on context-less GRE.
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Figure 7: Screenshot of the graphical interface for data entry (output text in German).

Figure 8: Screenshot of the maintenance and adaptation tool.


