Understanding and tracking

temporal descriptions in dialogue*

Manfred Stede, Stefan Haas, Uwe Kiissner
Technische Universitat Berlin

Abstract

The Verbmobil system provides speech-to-speech translations for appointment schedul-
ing dialogues, where two partners seek a date that suits both. The ‘context-evaluation’
module of Verbmobil monitors this negotiation by tracking and comparing the temporal
descriptions in a two-step manner: first, the temporal expressions of an utterance are
mapped to a shallow representation language “ZeitGram”; these terms are then given a
semantic interpretation as “interval descriptions” (IDs). In this paper, we describe both
representation levels and the mapping between them. We sketch the inferences imple-
mented on the ID level and illustrate their application in Verbmobil’s context evaluation.

Das Verbmobil System erstellt Ubersetzungen gesprochener Sprache in der Domane von
Terminvereinbarungsdialogen, bei denen zwei Gesprachspartner sich auf ein Datum eini-
gen. Das Modul ‘Kontextauswertung’ verfolgt diesen Prozef8 durch die Analyse und den
Vergleich der temporalen Ausdrucke in den Auflerungen. In einer zweistufigen Abbildung
werden zunachst Ausdrucke in der flachen Reprasentationssprache “ZeitGram” aufge-
baut, die anschlieflend durch “interval descriptions” (IDs) semantisch interpretiert wer-
den. Dieses Papier beschreibt beide Reprasentationsebenen und die Abbildungen, sowie
die auf IDs definierten Inferenzen und ihre Verwendung in der Kontextauswertung von

Verbmobil.

1 Temporal expressions in negotiating appointments

1.1 The Verbmobil scenario

The Verbmobil system [Wahlster 1993] provides speech-to-speech translations among German,
English, and Japanese for dialogues in the domain of appointment negotiation. In such
dialogues, the partners try to find a date that suits both their schedules; typical conversations
of this kind include a sequence of proposals and rejections, or a successive “zooming in” on
some particular date. A sample dialogue (taken from the Verbmobil corpus) containing both
these elements is given in Figure 1.

*This paper appeared in: B. Schroder, W. Lenders, W. Hess, T. Portele (eds.): Computers, Linguistics,
and Phonetics between Language and Speech — Proceedings of the 4th Conference on Natural Language

Processing KONVENS ‘98. Frankfurt: Peter Lang, 1998.

Al: ja, guten Morgen, Icks hier. ich rufe an, damit wir einen Termin finden fir unsere funftagige
Reise zur DGFS Tagung in Mannheim.

B1: ja, Morgen, Frau Icks, wann wdr’s Thnen denn recht.

A2: ja, ich konnte zum Beispiel am siebzehnten Januar, wenn das der erste Tag wdre, bis zum ja, bis
zum zwetundzwanzigsten Januar.

B2: oh, das tut mir leid, ich muff am achtzehnten und neunzehnten zum ZDF in Mainz.

A3: ja, dann klappt das ja schon mal nicht. wir mussen auch ins Auge fassen , daff wir ein
Vorbereitungstreffen vorher haben mussen. wielleicht sollten wir das erstmal festlegen, weil einen
gemeinsamen Tag zu finden, wird ja einfacher sein.

B3: ja, mit dem eintagigen Vorbereitungstreffen. war’ Ihnen das recht, wenn wir das auf 'n
Wochenende legen?

A4: ja, naturlich, kein Problem. also, schlagen Sie was vor.

B4: wie war’s mit Februar ah der vierten Februar, das ist ein Samstag.

Ab: ja, gut. ist zwar nur recht spat, aber also, ich kann da. das legen wir da mal fest. okay. und
sollen wir dann direkt die anschlieffende Woche fiir die fiinftdgige Reise nehmen?

Bb: ja, das war’ mir ganz recht. allerdings kann ich am siebten und achten auch nicht, das heifit, wir
mufiten die finftdgige Reise tiber ein Wochenende legen. wdre Thnen das recht?

AG6: kein Problem. wenn wir dann vom neunten bis zum vierzehnten fahren wirden.

B6: ja, das ist mir auch sehr recht. alles klar.

Figure 1: Sample dialogue from the Verbmobil corpus

1.2 Tasks of the ConEval module

Given the domain of discourse, the majority of utterances processed by Verbmobil contain
temporal expressions. The evaluation of these expressions takes place in the contextual evalu-
ation (ConEval) module. To provide the background for our approach, we first briefly describe
how ConEval fits into the overall architecture of Verbmobil.

In the “deep analysis” line of Verbmobil, the central data structure is a syntactic/semantic
representation called the Verbmobil Interface Term (VIT). It is produced in the analysis
component and passed on to the transfer module, which converts it to a target language VIT.
In parallel, the source VIT is also given to ConEval, which is in charge of deeper semantic and
pragmatic analyses. ConEval performs disambiguations, resolves anaphors, determines the
dialogue act of the utterance, and extracts the “kernel message” from the utterance (which
is later used for a dialogue protocol). For these tasks, we map the VIT to a conceptual
representation implemented in the description logic LOOM [MacGregor, Bates 1987]; the
sequence of utterance representations is our context model.

From the perspective of translation, a “deep understanding” of temporal expressions is often
not necessary: in order to translate etwas spdter into a bit later one need not know what
exactly is being negotiated to be later than what. On the other hand, determining the dialogue
act often requires the information whether a proposed date is in fact a new suggestion, a return
to a previous suggestion, or a specialization of a broader suggestion made just earlier. Thus,
the same utterance can in different contexts be a SUGGEST or an ACCEPT. Also, extracting

kernel messages and protocoling the dialogue requires knowledge on how temporal expressions
connect; protocoling requires abstracting from fine-grained details and presupposes knowledge
of the precise relationships between temporal expressions.

A final reason for paying close attention to the temporal expressions is robustness of the overall
system. When translating spontaneous speech, recognition errors need to be reckoned with.
And since negotiating an appointment is the primary goal of the dialogue, such recognition
errors should, if at all possible, not lead to incorrect translations of temporal expressions. To
have a chance of identifying implausible analyses of temporal expressions, we need to check
both the consistency of individual expressions (to notice, e.g., *dreissigster Februar) as well
as the overall consistency of the date negotiation process.

For all these reasons, the ConEval module monitors temporal expressions and builds complete
and coherent date descriptions from them. E.g., given the utterance An dem Montag kann ich
erst etwas spater, ConEval figures out which exact Monday is being referred to and what the
reference point for spater is. Using knowledge of the preceding discourse as well as language-
independent calendar information, we determine that the speaker has stated his availability
at (for example) any time after 3pm on Monday the 30th of March, 1998.

1.3 Related work

A similar problem is addressed in the COSMA system [Busemann et al. 1997], which pro-
vides a NL interface for communication with appointment scheduling agents. COSMA also
tracks temporal expressions and thereby resolves “temporal ellipses” by supplementing from
previous utterances those parts of date descriptions that are not explicit in the current utter-
ance; it also detects certain kinds of inconsistencies. The major differences to our work are
COSMA’s dealing with German input only and with written language; as indicated above, the
confrontation with spontaneous speech creates many additional problems in Verbmobil. In
particular, the range of temporal expressions to be handled seems much wider in our corpus,
even though a detailed comparison is not possible on the basis of the paper [Busemann et al.
1997]. Further, due to the different scenario, COSMA employs shallow parsing techniques for
its purpose of analyzing email messages, which is not sufficient for translation in Verbmobil.

Wiebe et al. [1997] also work in the same domain and present an algorithm for temporal
reference resolution, which maintains descriptions of temporal intervals by looking for the
most likely antecedent temporal expression in the prior discourse. They do not address the
issues of successively constructing the interval descriptions from a syntactic representation,
but already assume a semantic representation as input. In contrast, our emphasis here is on
robustly building up the representations from a syntactic input.

2 Two-step evaluation

For the task of tracking temporal expressions, our application scenario poses three specific
problems. 1) Natural language offers many ways to refer to a particular date/time, and
we have to reduce them all to a single canonical representation. 2) As we are dealing with
spontaneous speech, we cannot rely on nice and clean input, but on the contrary have to
reckon with incomplete or erroneous information. 3) As the system performs bidirectional

translation, we must deal with both German and English input.

Under these circumstances, it is not feasible to map the VIT directly to a canonical repre-
sentation which allows for the necessary computations — the gap between such a level and
the VIT input is too wide. Therefore, we introduce an intermediate level of representation
for temporal expressions, the ‘ZeitGram’ language. ZeitGram expressions are relatively close
to natural language expressions; for example, der dritte Montag nach Ostern is represented
as [after(3,dow:mon,holiday:easter)]. In this way, ZeitGram abstracts from surface-
linguistic idiosyncrasies but mirrors the underlying constructions. The target for developing
ZeitGram was thus a language whose expressions are relatively easy to build from a VIT, and
that can be further processed by deeper referential analysis. This second step maps ZeitGram
expressions to ‘interval descriptions’ (IDs): canonical representations of temporal information
that allow for the necessary computations. In the following, we first explain the ZeitGram
language, and then the ID representations together with the possible inferences.

2.1 ZeitGram

For reasons of space, our description of ZeitGram given here is quite brief and omits a few
details. In the following, we first explain the general form of ZeitGram expressions using a
context-free grammar' and discuss the role of modifiers (frith am Morgen, in der Mitte des
Monats, ...). Then we turn to simple expressions like time of day and weekday, and proceed
to more complex expressions: intervals (zwischen acht und neun Uhr), expressions with a
point of reference and a temporal distance (drei Wochen vor Ostern), and expression with a
counter (der dritte Freitag im Februar).

The shape of ZeitGram expressions The basic shape of a ZeitGram expression is a list
of TEMPOBJs; a phrase like Am Dienstag um elf Uhr is thus represented by this unordered list:
[dow:tue, tod:11:00]. TEMPOBJs have the shape TYPE:VALUE, i.e., each expression has a
type prefix. The other subtype of DATE _EXPR adds a “fuzzyfier” to the list.

DATE_EXPR ::= TEMPOBJ+ | fuzzy(TEMPOBJ+)

TEMPOBJ ::= POINT | INTERVAL | MOD | COMPOSED_POINTLIKE |
MOD (MODIFIABLE_POINTLIKE) | MODIFIABLE_POINTLIKE

MODIFIABLE_POINTLIKE ::= UNIT | POINTLIKE | COUNT_POINTLIKE

MOD ::= early | late | begin | middle | end

Modifiers and “fuzzyfication” Most TEMPOBJs can be qualified with modifiers such as
early or late, which have scope over a POINTLIKE object. Examples are Mitte der Woche,
friith am Nachmittag. Among the non-modifiable TEMPOBJs are clock times (see below): ?friih
um vierzehn Uhr. However, the modifier can also be used as a single object, without scope over
a TEMPOBJ: treffen wir uns friih, um sieben vielleicht is represented as [early, tod:07:00].
Therefore, MOD in itself is also a TEMPOBJ. “Fuzzy” in our terminology are expressions like
gegen drei Uhr; so um den achten Mai. For these, we use the functor fuzzy with scope over
a TEMPOBJ list.

'For the description, we use an extended BNF notation: ITEM+ denotes a nonempty list of ITEMs, ITEM* a
list that might be empty. <ITEM1 | ITEM2 | ITEM3> says that one of the ITEMs is to be chosen.

Simple TEMPOBJs Among the simple TEMPOBJs, clock times are to be separated from other
expressions. The former denote points of time (POINT), while the latter denote time spans;
these can however be conceptualized as points, and hence are called POINTLIKE.

Clock times (time of day, TOD) are normalized to the form hh:mm, so we abstract over linguistic
variants like zwanzig nach elf or fiinf vor halb acht. The reason is that such variants are
typically language-specific or even dialect-specific (e.g. dreiviertel vier). For ambiguous
expressions like halb vier (03:30 or 15:30) we add an expression am or pm (as part of POD, see
below) if the intended reading is clear; otherwise the expression is left underspecified. Hence,
TOD runs from 00:00 to 11:59.

POINT ::
TOD

tod:TOD
00:00 | ... | 11:59

POINTLIKEs comprise part of day (POD), day of week, part of year (seasons), week of year (e.g.
die dritte Kalenderwoche), week of month (i.e. die zweite Woche im Januar), day of month,
month, year, and holidays. Furthermore, a totally unspecific expression as in Paft Ihnen der
dritte can be represented as xoy (for ‘x of y’). In most cases, this would refer to the third
day of a month, but other options are possible: Wie ware der zweite Montag im Februar? —
Nein. PaBt Ihnen der dritte? In English, due to the lack of morphological gender, the third
can also refer to the third week. The above-mentioned am and pm are taken to belong to POD,
because they can occur as independent expressions. E.g., English offers phrases like let’s have
a pm meeting tomorrow.

The final POINTLIKE is ana, short for ‘anaphoric’, which can be used in expressions like der
Tag danach = [after(1,day,ana)] or vier Wochen friiher = [before(4,week,ana)].

POINTLIKE ::= ana | pod:POD | dow:DOW | poy:POY | woy:WOY | wom:WOM |
dom:DOM | moy:MOY | year:YEAR | holiday:HOLIDAY | xoy:NUMBER

POD ::= morning | beforenocon | noon | afternoon | evening | night |
daytime | am | pm

DOW ::= mon | tue | wed | thu | fri | sat | sun | today | tomorrow |
totomorrow | yesterday | yeyesterday | workday | weekend

POY ::= spring | summer | fall | winter

WoYy ::= 1] 2] ... | 52

WOM ::= 1| 2131|415

DOM ::= 1] 2| ... | 31

MOY ::= jan | feb | ... | dec

YEAR ::= 1900 |...| 1999

HOLIDAY ::= easter | christmas | ...

Intervals As INTERVAL we treat all time spans with one or two boundaries. For one thing,
these are DURATIONs that refer to the length of an interval (Wir sollten uns fiir drei Stunden
treffen) and are represented by a NUMBER and a temporal UNIT.

For intervals with one boundary (ab 14 Uhr, vor dem Dienstag), we use the functors before
and after, followed by a DATE_EXPR. Also, we allow the variants ‘inclusive’ and ‘exclusive’,
which are sometimes explicitly referred to: Nidchste Woche pafBt es nur bis einschlieBlich
Dienstag.

Closed intervals consist of two DATE_EXPRs and an atom describing the kind of interval: 1)
from_to: The expression denotes the complete span between the boundaries of the interval

— Wir treffen uns von halb vier bis um sieben. 2) point_between: The expression denotes
a time span in which a point is to be localized — Wir sollten zwischen drei und vier Uhr
anfangen. 3) between: The expression is ambiguous between the two cases — Wie wire es
zwischen fiinf und sechs? As the examples show, the verb can often help in disambiguating
the category of INTERVAL.

INTERVAL ::= DURATION | LIMIT | BOUNDARIES

DURATION ::= dur (NUMBER,UNIT)

UNIT ::= year | month | week | day | hour | minute

LIMIT ::= BEFORE_OR_AFTER(TEMPOBJ+)

BEFORE_OR_AFTER ::= before | after | ex_before | ex_after
in_before| in_after

BOUNDARIES ::= boundaries(TEMPOBJ+, TEMPOBJ+, <from_to | between |

point_between>)

Expressions with reference point A time point can be characterized by a reference
point and the distance from it: In vier Tage nach Ostern, Ostern is the reference point.
We distinguish four cases. 1) Implicit reference: if the reference point is not mentioned,
it is to be understood as ‘now’. Example: Wir treflen uns in drei Wochen means heute
in drei Wochen. For these cases, we use the functor in and a DURATION. 2) Weekday as
reference: phrases like Freitag in acht Tagen or Freitag in drei Wochen are quite common in
German. For these we also use in, which hence can also be a two-place functor, with the
extra argument of a weekday. 3) Time span before/after reference point: a POINTLIKE serves
as referent; a COUNTER and a UNIT or a weekday (DOW) characterize the time span before or
after. Examples: die letzte Woche vor Ostern = [before(last, week, holiday:ostern)];
drei Tage danach = [after(3, day, ana)l; der zweite Samstag nach Neujahr = [after(2,
dow:sat, holiday:neujahr)] 4) Weeks with reference day: as a special case, calendar weeks
are often referred to by stating a day therein: die Woche ab dem vierzehnten, die Woche vor
Ostern, die Woche um den dreizehnten herum. For theses cases we use a POINT_M0OD: before,
after, or around.

COMPOSED_POINTLIKE ::= <before | after>(COUNTER, <UNIT | DOW>, POINTLIKE)
in (DURATION) | in(DOW, DURATION) | POINT_MOD(week, POINTLIKE)
POINT_MOD ::= before | after | around

Expressions with counter The final class comprises expressions that identify the time
point or interval by counting a UNIT or a weekday. In case of a UNIT, there is always a
larger UNIT serving as reference span. We distinguish three cases: 1) The reference span is
not mentioned: in der dritten Woche. 2) Weekdays or months can be modified by nédchsten,
letzten o.4. (DEIC_COUNTER): am vorletzten Freitag, im ndchsten Januar. 3) When giving
the reference span, weeks or weekdays can be determined by counting: die dritte Woche im
Januar, der letzte Samstag im Januar. Furthermore, the reference span can be determined
by counting either of the UNITs year or month; here, however, the counter is restricted to
DEIC_COUNTER: die dritte Woche im ndchsten Jahr, der zweite Samstag im ndchsten Monat.

COUNT_POINTLIKE ::= counted(COUNTER,UNIT) | DEIC_COUNTER(<DOW | MOY>)
counted (COUNTER,<week | DOW>, COUNT_UNIT_OR_MOY)
COUNT_UNIT_OR_MOY ::= MOY | DEIC_COUNTER(<year | month>)

COUNTER ::= NUMBER | DEIC_COUNTER
DEIC_COUNTER ::= this | last | lastlast | lastlastlast | next | nextnext
NUMBER ::=1 | 2 | ...

2.2 Constructing interval descriptions

The Verbmobil application scenario implies that a good deal of information necessary for
understanding an utterance is given implicitly in the context. This holds in particular for
temporal expressions; in Figure 1, for instance, the year is missing in A2 (and implicitly
“filled in” by the hearer as the current or following year). The response B2 does not give an
explicit month, but it can be inferred to be the same as that in the previous utterance. For
automatically tracking temporal expressions, inferences of this kind need to be computed.
For this step, we map the ZeitGram terms to another level of representation, which is more
amenable to semantic interpretation.

IDs In order to deal elegantly with underspecifications, we chose typed feature structures
as representation formalism, where any temporal expression is represented as an interval
(following Allen [1984]). We devised a modified unification algorithm that realizes “zooming”
as a monotonic addition of information. The algorithm takes two interval descriptions and
computes a consistent partial unifier and possibly a pair of non-unifiable rest items. We impose
an ordering Spec on unifying items following their granularity; this way, the inconsistent rest
of unifications is most specific.

An interval description 1D is a IS of type Id consisting of two date expressions:

Id
BEG: [date]
END: [date]

date has a range of subtypes reflecting the presence and absence of the four attributes YEAR,
MONTH, DAY, and TIME. Any combination of these corresponds to a distinct type, which
allows for measuring the informativeness of a date expression. Figure 2 shows the type
hierarchy. As an example, the most specific type, tdmy_date is defined as follows:

tdmy _date

YEAR: [year]
MONTH: [month]
DAY: [day]
TIME: [time]

The three types month, day, time are in turn composed structures. day has the two at-
tributes dow (day of week) and dom (day of month), because it can be defined either way
(am Montag versus am vierten). month is decomposed into moy and wom (week of month),
and time into hour and minute. The terminal atomic types, finally, can be ordered by their
specificity. To this end, we define the Spec relation, which reflects the inclusion relation be-
tween temporal units:

year >g,.. MOy >g,.. WOmM >g,.. dow >g,.. dom >, hour >, minute

date

7 T

t_date d_date m_date vy date

e e

td_date tm_date ty date dm_date dy date my_date

-]
tdm_date dmy_date

t(glr;ﬁ_aate

Figure 2: The type hierarchy for date

Building IDs from TEMPOBJs The basic idea of translating ZeitGram terms, i.e. lists of
TEMPOBJs, to IDs is to successively build an underspecified F'S for each item in the TEMPOBJ
list and to unify it with the FS built up so far. Following Spec, unification proceeds from
the coarse to the fine-grained terms. In case unification fails at some point, the ZeitGram
term is inconsistent. Otherwise, the resulting ID represents all the information derived from
the term. For translating the individual TEMPOBJs, we use four knowledge sources: 1) A table
provides a heuristic mapping from pod and poy terms (e.g., morning, evening, summer, ...)
to concrete intervals. 2) A calendar provides the interpretation model, including dates for
holidays, the precise intervals for week-of-year, etc. 3) The situation of utterance provides a
time stamp for interpreting indexical terms (e.g., today). 4) The previous context provides
anchors for resolving anaphoric expressions such as in der folgenden Woche.

Figure 3 shows an abridged sample derivation. Given the utterance das Treffen beginnt um
3:30, Montag nachmittag, we first show the ZeitGram term and then the F'Ss for the individual
TEMPOBJs. In the first one, notice the disjunction representing the ambiguity between 3:30
and 15:30. The bottom of the figure gives the final result for the complete term.

Comparing IDs After constructing IDs for individual utterances, we now have to provide
comparisons for pairs of IDs, so that the relation between subsequent temporal expressions
in dialogue turns can be found. This step is performed in in conjunction with the dialogue
processing module of Verbmobil [Alexandersson et al. 1995].

Our unification, as pointed out above, produces a unifier plus (possibly) an incompatible
rest structure. Since unification follows the Spec ordering, any failure will occur at the least
specific attribute. Therefore, the pair of unifier and incompatible rest F'S can serve as the
reference frame for comparing two date FSs. Since the attributes where unification fails
have the same type (one of year, month, day, time), a relation before can be defined for
computing which date precedes the other on the calendar. Then, by applying before to the
combinations of BEGINs and ENDs of two interval descriptions, the relationships used by
Allen [1984] can be determined; for example, we determine whether one interval precedes the
other or one includes the other. To this end, the specificity of an ID is defined by the width

S: das Treffen beginnt um 3:30, montag nachmittag
ZG: [tod:3:30, dow:mon, pod:afternoon]

T ([tod:3:30]) :=

_dmy_date i

YEAR: [year]

MONTH: [month]

idy : BEG : | DAY: [day | Jidy: END : [[1dmy_date |
mh _time

TIME: | HOUR:{ [15], [3]}
MINUTE: | 30 | |

7 ([dow:mon]) :=

_my_date
idy : BEG b'/'w dow_day idy: END : [dmy_date}
i " | DOW: [mon]
T ([pod:afternoon]) :=
[tdmy_date T [tdmy_date T
YEAR: [ear} YEAR: [year}
idy: BEG : | MONTH: [[2jmonth | | ;) py . | MONTH: | [Zmonth
DAY: {day} DAY: {day}
h_time h_time
| TIME: [HOUR: [13]] | TIME: [HOUR: [18]]
idl L ng L Zd3 =
—dmy_date i
DAY dow_day
id : BEG : " | DOW: [mon | id: END : | [1dmy_date

hm _time
TIME: | HOUR: [15 |
MINUTE: [30]

Figure 3: Representation example

of the interval as well as the respective types of the end points. A FS ID1 is more specific
than a F'S D2 if 1) the interval denoted by ID1 is within the boundaries of ID2, or if 2) both
unify without rest and the begin/end types of ID2 subsume those of ID1, and they are of the
same or a coarser granularity w.r.t. Spec (i.e., 1d2. BEG >, 1d1.BEG ...)

The types of unifier and incompatible rest also provide important clues for relating the current
ID to previous ones and thus for finding anaphoric antecedents within the “history list” of
previous expressions. This part of our algorithm is still under development, though.

3 The representations at work: temporal inferences

Finally, we describe how our procedure would deal with the dialogue in Figure 1. In Al,
we assign the dialogue act INIT and recognize the presence of a temporal expression (‘tem-
pex’ for short), represented as [dur(5, day)]. Bl is a REQUEST-SUGGEST-DATE, and A2 is
a SUGGEST-DATE with tempex [boundaries([dom:17, moy:jan], [dom:22], between)].
At this point, we verify that the tempex is compatible with the previous [dur(5, day)].
Next, speaker B performs a SUGGEST-EXCLUDE-DATE with the tempex [boundaries([dom:18],
[dom:19], from_ to)]. Comparing this to the previous tempex yields the relation INCLU-
SION and we conclude that the proposal made in A2 is rejected. In A3, speaker A opens
discussion on a separate appointment and states its duration as [dur(1, day)]. B3 responds
with a SUGGEST-SUPPORT-DATE but makes a fairly general proposal, indicated by the indef-
inite determiner (’'n Wochenende): [dow:weekend]. It follows a REQUEST-SUGGEST-DATE
in A4, and then in B4 we get a SUGGEST-DATE with [moy:feb, dom:4, dow:sat]. Using
the calendar knowledge, we verify the consistency of this description and also find that it is
indeed compatible with the previous [dow:weekend] — the negotiation is still on track. In
Ab we first get an ACCEPT-DATE and then the speaker returns to the original appointment
under negotiation. Die direkt anschliefende Woche is [after([ana]), dur(1, week)]. To
resolve ana, we take the most recent tempex, which was Sat, Feb 4; and thus we can calculate
die anschlieBende Woche as Feb 6 to Feb 13. Now, however, in B5 we encounter a SUGGEST-
EXCLUDE-DATE by speaker B, with [boundaries([dom:7], [dom:8], from_to)] which we
find to be included by the previous proposal; accordingly, the week suggested by A is re-
jected. Still in B5, B suggests [dow:weekend], and A responds with [boundaries([dom:9],
[dom:14], from_to)]. Filling in the month information from the previous turn (February),
we verify that a weekend is indeed included. Finally, B6 is an ACCEPT-DATE that concludes
the conversation, and ConkEval regards the date negotiation as having succeeded.

4 Summary

For a system translating appointment-scheduling dialogues, it is important that temporal
expressions be understood and tracked, so that the relevant connections between the expres-
sions can be computed. Given the wide range of linguistic possibilities for stating a date and
time in German and English, we have argued that a two-step mapping of such expressions is
appropriate. To this end, we first defined ‘ZeitGram’, a representation language that is rela-
tively close to linguistic surface forms but provides some first abstractions. Then, ZeitGram
terms are mapped to Interval Descriptions, typed feature structures that allow for well-defined

10

computations. We have described the syntax of IDs and the mechanism of a unification-like
procedure that successively constructs IDs from ZeitGram terms. Also, we described how the
unification procedure can be employed for comparing distinct IDs and determining which re-
lationship holds between them. For dialogue processing, we have devised an initial algorithm
that determines the points at which new date proposals are made or old ones are re-opened.

References

[Alexandersson et al. 1995] J. Alexandersson, E. Maier, N. Reithinger. “A Robust and Efficient Three-
Layered Dialog Component for a Speech-to-Speech Translation System.” In: Proceedings of the
7th Conference of the European Chapter of the ACL (EACL-95), Dublin, 1995.

[Allen 1984] J. Allen. “Toward a general theory of action and time.” In: Artificial Intelligence 23:
123-154

[Busemann et al. 1997] S. Busemann, T. Declerck, A K. Diagne, L. Dini, J. Klein, S. Schmeier. “Nat-
ural Language Dialogue Service for Appointment Scheduling Agents.” In: Proceedings of Fifth
Conference of Applied Natural Language Processing, Washington DC, April 1997.

[MacGregor and Bates 1987] R. MacGregor, R. Bates. “The loom knowledge representation lan-
guage.” Technical Report IST/RS-87-188, USC/ISI, 1987.

[Wahlster 1993] W. Wahlster. Verbmobil: Translation of face-to-face dialogues. In: Proceedings of the
Third European Conference on Speech Communication and Technology, Berlin, 1993.

[Wiebe et al. 1997] J. Wiebe, T. O’Hara, K. McKeever, T. Ohrstrém—Sandgren. “An empirical ap-
proach to temporal reference resolution.” In: Proceedings of the Second Conference On Empirical
Methods in Natural Language Processing (EMNLP-2), August 1997, Providence, RI.

11

