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Abstract. Much research has been conducted on applying natural lan-
guage generation to the creation of technical documentation. A critical
issue for such applications is supplying the input: How does the tech-
nical writer interact with a system to produce representations that can
be processed by a generator? In this paper, we explore the possibility
of interaction with a virtual reality as a means to produce the kernel of
such representations; this needs, however, to be augmented with other
techniques in order to account for those portions of instructional text
that do not directly relate to physical actions.

1 Introduction and related work

Automatically generating instructional text (e.g., as a part of technical manu-
als) has become a popular application for text generation, as it offers a num-
ber of distinct advantages: text can be produced in multiple languages; regular
updates can be created without manual re-writing and re-translating; existing
data and knowledge sources can possibly be integrated into the document pro-
duction process; last but not least, the language found in technical documents
is typically not too complicated to impair their automatic generation. The crit-
ical issue, however, is in supplying the input to such a system: In what way
does the human (co-) author of the technical document interact with the sys-
tem to produce the desired text in an effective manner? Previous research has
suggested menu-based interfaces (e.g., in TECHDOC [Résner, Stede 1994] and
DRAFTER [Hartley, Paris 1997]) and incremental text-template filling (WYSI-
WYM, [Power, Scott 1998]). In this paper, we explore a new option: interactive
manipulation in a 3D graphical environment. While mixing text and graphics in
the instruction generation output has been realized in several systems (e.g., in
WIP/PPP [André 1997] or VISDOK [Hartmann et al. 1998]), graphics has to
our knowledge not yet been applied on the input side.

The idea of our approach is that the ‘author’ manipulates objects on the
screen using the mouse (for the time being), puts them together to create com-
posite objects, etc. A symbolic knowledge base monitors the graphical activities
and classifies them as conceptual ‘actions’. In an aggregation step, individual



actions are joined to form complex action representations. These are the input
to the verbalization component, which maps the conceptual representations first
to sentence-semantic specifications, and then to linguistic utterances. — This
scenario is not unlike those of systems producing descriptions of image data,
such as NAOS [Novak 1987] or SOCCER [André et al. 1988]. They also employ
domain knowledge to identify elementary actions and “chunk” them into linguis-
tic descriptions. In contrast to these systems, however, our input is the concrete
manipulation data; extracting relevant changes in image data is thus not a pri-
mary concern. As another point of contrast, we are interested in multilingual
output and, eventually, in combining graphics-input with other modes of user
interaction in the production of instructional text.

At present, we have implemented a first prototype intended as “proof of con-
cept”, which thus illustrates the basic functionality. Its architecture is described
in section 2. We illustrate the approach with our implemented pilot application,
a construction kit, in section 3. Specifically, we describe in detail the events lead-
ing to the construction of an axle; this would in a more complete implementation
be a part of building some kind of vehicle. In section 4, we discuss the advantages
and disadvantages of our approach, explore possibilities for extending it to more
complicated texts, and hint at some directions for practical applications of the
approach. In particular, we suggest to fuse our approach with the WYSIWYM
method in order to account for passages of instructional text that go beyond
descriptions of physical activities, and thus are not immediately amenable to
graphical input. Ultimately, we therefore view our approach as one part of an
“author’s workbench”, where interactive graphics can help producing the raw
text that needs to be further processed with appropriate tools.

2 System architecture

The architecture of the prototype is shown in figure 1. While the user manipu-
lates objects in the 3D environment, a stream of elementary events is produced
and written to a file. The events are in the format of assertions in the description
logic LOOM [MacGregor 1991]. When the user initiates text generation, a seg-
mentation module reads the event-file, performs aggregations and maps it to a
sequence of action representations in the format of ‘SitSpecs’ [Stede 1999]. This
process is driven by the LOOM knowledge base (KB), which holds the knowledge
about the level of abstraction desired for verbalizing the activities. The SitSpecs
are converted to sentence-semantic specifications (SemSpecs) using the MOOSE
module [Stede 1999], and SemSpecs are finally turned into English or German
sentences by the KPML generator [Bateman 1997].

2.1 Interactive graphics

The graphics module is implemented in Java-3D [Sowizral et al. 1998]. With the
mouse, the user can

1. enter a new object into the world, choosing it from a menu,



JAVA3D)
uses
GuI

—_

produces

LooM

action

| representation | production rules

i ied and/or
enhanced by

Moose
Disourse
Representation
20 lexical choice
N2
0
A))
sentence-
planning
KPML|
Sentence Semantic
Specifications

sentence generation

Text

Fig. 1. System architecture

2. move an object to a new location,
3. turn an object around,
4. connect an object to another one.

The set of objects that can be introduced to the world (1) is determined by a
menu, and thus the type of each new object in the world is fixed. This provides
the link to the Loom KB: For a new object, a LOOM instance of the respective
type is created.

Ttems (2) and (4) go beyond the level of straightforward graphical manip-
ulation: (2) needs to detect collisions, i.e., ensure that an object is not moved
“through” some other object. (4) needs to check whether the two objects in-
volved can indeed be connected, i.e., whether they are nut and bolt or some
other suitable pair. We decided to handle both tasks by the same mechanism.
For a start, Java-3D offers a “built-in” collision detection, which notices a topo-
logical overlap between two objects (or, alternatively, their bounding boxes).
Whenever this condition is triggered, we perform a deeper analysis of the topo-
logical relationship between the two objects in order to determine whether the
user is likely to intend a connection between them. The conditions depend on
the specific pair; for instance, if the tip of a screw collides with a wheel close



to the hole in the middle, and the angle between wheel and screw is close to 90
degrees, we surmise that the user intends to move the wheel over the screw. As
soon as the collision as well as the additional conditions have been detected, the
user is prompted to either confirm or reject the connection (in case the collision
was not on purpose). Upon confirmation, the system completes this move and
arranges the parts in their final position. For illustration of the results of the
graphical manipulations, see figure 3, which will be explained in section 3.

2.2 Knowledge base

A key idea in our approach is to realize a close connection between the graphical
representation of the “world” on the one hand and a symbolic representation
of this world within a description logic on the other hand, and to exploit the
power of automatic concept classification. For these purposes, we use the LOOM
language and classifier [MacGregor 1991].

The terminological part of the knowledge base (Tbox) holds the knowledge
about the various types of objects and their properties, and the possibilities
for connecting them: Nuts can be connected to bolts, liquids can be put into a
container, etc. The assertional part (Abox) is a symbolic representation of the
state of the world and the changes that occur; there is an instance for each ob-
ject in the world, and the connections between objects are modelled via LOOM
relations. These are explicitly asserted when the user performs a connect-event
in the 3D world. Importantly, as a result of a new connection-role, the LOOM
classifier can automatically determine new type information. An example in-
volving the classification of an assembled axle follows below. In other scenarios,
re-classification can also occur when some other attribute of an object changes,
e.g., when the user flips a switch or turns a knob.

In analogy, a sequence of actions can be automatically classified as a “mean-
ingful” macro-action. For instance, the sequence of elementary actions shown in
figure 2 can be classified as a ‘connect’ macro action with the connector being
the screw and the connectee the ring; the concept definition of the macro action
contains a sequence of elementary actions of appropriate types (which abstract
from the topological details that are not relevant for the classification).

While some aggregations can be performed by the classifier automatically,
others do not lend themselves to being formulated as a complex concept; for
these cases we use LOOM production rules to trigger additional inferences.

2.3 Text generation

Supported by the automatic classifier as just described, the first step of the text
generation process consists of “chunking” the sequence of elementary actions into
a text plan, which involves the well-known task of aggregation (e.g., [Dalianis
1996]). At the moment, we are using only a fairly simple aggregation module
that is geared to the scenario of our pilot application, to be explained in the
next section.
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Fig. 2. Sequence of elementary actions in the Java-3D world

The text plan is also represented in LOOM and follows the format of ‘Sit-
Specs’ as used in the MOOSE generator [Stede 1999]. MOOSE converts the
SitSpec into a sequence of sentence-semantic specifications; these are language-
specific, lexicalized structures that are in the final step converted to linguistic
utterances (in either English or German) by KPML [Bateman 1997]. MOOSE,
originally a single-sentence generator, is currently being upgraded to produce
complete paragraphs of text; thus it will accomplish sentence planning tasks
such as determining sentence boundaries and structure, and choice of referring
expressions. The input to the system can therefore be either an individual Sit-
Spec, or a rhetorical tree (in the spirit of RST [Mann, Thompson 1988]). As the
following section will show, however, the sentence planner at present is still in a
very preliminary stage.

3 Example: Constructing an axle

Our pilot implementation of the framework (documented in [Hemsen 2000]) deals
with a ‘construction kit’ with a set of parts that can be assembled into various
mechanical objects. (This scenario was also used by [Wachsmuth, Jung 1996]).
In the following, we describe the example of construcing a vehicle axle, composed
of two wheels, rings and screws, and a cube holding them together.

In the Java-3D world, the user enters the various objects and moves them
close together so that the system can infer the intended connections. The se-
quence of elementary actions shown in figure 2 is one possible beginning of the
activity. Abstracting from the movement events, the initial sequence of elemen-
tary actions is as follows. Two objects are introduced, which prompts the cre-
ation of two Loom instances (recall that their type is associated with the menu
options):

(createm ’HexaScrew@11d1c62 ’hexagon-headed)
(createm ’Ring@1778fcd ’ring)



When the ring has been moved to the screw, and the system detects that the
preconditions for a connection are fulfilled, the corresponding event instance
is created, together with two location states, which are linked to the event as
pre-state and post-state, respectively:

(createm ’connectl ’event)

(createm ’location-state2 ’loc-state)

(createm ’location-state3 ’loc-state)

(tellm (has-locst-locatum location-state2 Ring@1778fcd))
(tellm (has-locst-location location-state2 ’somewhere))
(tellm (has-locst-locatum location-state3 Ring@1778fcd))
(tellm (has-locst-location location-state3 HexaScrew@11d1c62))
(tellm (has-locst-localizer location-state3 ’onto))
(tellm (has-ev-activity connectl indefact2))

(tellm (has-ev-pre-state connectl location-state2))
(tellm (has-ev-post-state connectl location-state3))

This process continues until the axle is complete, which the LOOM classifier
notices automatically. Here is the definition of the concept:

(defconcept axle
:ig (:and cube-with-parts
(:exactly 2 has-connectee-part)
(:all has-connectee-part axle-part)
(:satisfies (?y) (Sum (has-connectee-pos 7Y) 7))))

‘Axle-part’ is in the same way defined as a screw with a ring and wheel connected
to it. The ‘satisfies’ clause in the concept ensures that the two axle-parts are
indeed mounted to opposite sides of the cube (otherwise, all the parts would be
there and connected, but not to the effect of a functioning axle). The resulting
object in Java-3D is shown in figure 3.

The text planning module, in charge of building a rhetorical graph structure,
consults the knowledge base to determine that the concept ‘axle’ is a sub-concept
of ‘integral-part’, which denotes an integral constituent of some higher-level en-
tity (here, some vehicle). Accordingly, it infers that constructing the axle was
indeed the purpose of the action sequence, and thus constructs a structure that
can be abbreviated as follows:

(PURPOSE (has-nucleus (construct-axle ...))
(has-satellite (SEQUENCE (take screw ...)
(take ring ...)
(put ring screw ...))))

Using only one aggregation rule (skip the second ‘take’ action), a straightforward
English version of the text produced by our system is

“Take a hexagon bolt, and put a ring onto the hexagon bolt, and put a
wheel onto the hexagon bolt, and fasten the hexagon bolt to a thread-
cube, and take a hexagon bolt, and put a ring onto the hexagon bolt,
and put a wheel onto the hexagon bolt, and fasten the hexagon bolt to
the thread-cube, in order to construct an axle.”



In our ongoing work on the sentence planner, this text is to be improved by
various additional aggregation rules. In contrast to “chunking” the elementary
events from the input data stream, we are now concerned with aggregation on
the text level: Sentence boundaries have to be introduced, which requires a dif-
ferent signal of the PURPOSE relation (some appropriate adverbial rather than
a conjunction), and referring expressions can be improved. Furthermore, the fact
that the two halfs of the axle are assembled in exactly the same way should be
reflected in the text (which is to be recognized on the level of action aggregation
rather than text aggregation, though). One possible target text incorporating
these improvements is:

“In order to construct an axle, take a hexagon bolt, put first a ring
and then a wheel onto the hexagon bolt, and fasten this bolt to a thread-
cube. Take another hexagon bolt and again put a ring and a wheel onto
it. After that, fasten this bolt to the thread on the opposite side of the
thread-cube.”
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Fig. 3. Screenshot Java-3D: assembled axle

4 Perspectives

4.1 Directions for extensions

The pilot application is merely a first “proof of concept” for the scenario, which
can now be enhanced into various directions. As mentioned above, an improved
sentence planning module is currently under development. Another step that



needs to be improved for a larger-scale application is constructing the input
to the text planner: Recall that at present, we use simple annotations to KB
concepts in order to determine whether the creation of some object was made
“on purpose” and is to be verbalized as such. In general, though, it is necessary
to map the (partly aggregated) stream of elementary actions first to a (pre-
verbal and pre-RST) plan structure that explicitly reflects what actions are
parts of other actions, and what goals are being followed [Mellish, Evans 1989].
This structure can then be mapped to an RST-inspired text plan, as it was for
instance done in TECHDOC [Résner, Stede 1994].

Improvements can also be envisioned on the side of the graphics input. For
example, instruments and tools that are necessary for certain actions can appear
as clickable icons, so the user can indicate that it is required for some activity
(“remove the wheel with a screwdriver”). Furthermore, the graphical world and
the knowledge base should be coupled more closely to the effect that graphics
activities by the user are immediately checked by the KB for their possible
consequences. For example, some rules of physics can be implemented so that
moving a liquid into a container has a different effect than moving it to the
outside of a container; this kind of knowledge does not belong to the Java-3D
model but to the symbolic knowledge. Also, visible consequences of user’s actions
(e.g., a light turning on in response to moving a switch) need to be computed in
the KB and propagated back to the visual scene.

Java-3D offers the advantage that the applications can be run over the web.
The associated disadvantage, however, is that the 3D models as well as the pos-
sible modes of interaction are relatively impoverished when compared to state-
of-the-art virtual reality environments. On the other hand, 3D web browsers,
coupled with more sophisticated input devices (3D mouse, data glove), will soon
become available and commonplace. Then, the task of creating verbal protocols
of user’s activities in the virtual reality will of course be much more complex
than in our example presented above, but it offers many applications, not only
for producing instructions but also for other purposes.

4.2 The role of the knowledge base

As we have stressed the role of automatic classification in the process leading to
verbalizing the user’s activities, it is clear that a comprehensive domain model
must provide the detailed concept representations enabling these classifications.
For our pilot implementation, the domain model was built by hand, but it reused
significant portions of the ontology and domain model that were developed earlier
for the MOOSE system. Re-usability is indeed a key factor for scaling up the
prototype to a practical application: When models are built in such a way that
the upper ontology as well as general knowledge about types of technical objects
can be carried across domains, the prohibitive costs of manually building domain
models can be reduced. Furthermore, it can be expected that the ongoing efforts
in standardizing knowledge representation formats and in sharing knowledge
bases will lead to the availability of standard modules that can be used as a
basis for the knowledge sources required for generation.



4.3 Toward an author’s workbench

Focusing now again on instructional text, we notice that extending the graphical
environment into a full-fledged virtual reality will, at any rate, cover only one side
of the coin. While descriptions of sequences of physical activities are a central
ingredient of instructional text, there are additional elements that also need to
be accounted for, and that are not easily accomplished with graphical means.
Consider a somewhat more complicated instructional text from a car manual.
We have divided it into ‘minimal units’ and marked them with square brackets.

[Wait]1 until [the engine is cool]2, then [turn the radiator cap clockwise]3
until [it stops]4. [DO NOT PRESS DOWN WHILE TURNING THE
CAP]5. After [any remaining pressure has been relieved]6, [remove the
cap|7 by [pressing down]8 and [again turning it counterclockwise]9. [Add
enough coolant]10 to [fill the radiator]11, and [reinstall the cap]12. [Be
sure to tighten it securely]13. [Fill the reserve tank up to the max mark]14
with [the engine cold]15.

Using the labels of the minimal units, the text can be assigned the following

RST analysis (notation: (RELATION NUCLEUS SATELLITE)):

(SEQUENCE (UNTIL 1 2)
(CIRCUMSTANCE (UNTIL 3 4)

5)
(PRECONDITION (PURPOSE (SEQUENCE 8 9)
7)
6)
(PURPOSE 10 11)
12
13

(PRECONDITION 14 15))

Several portions of this text cannot be inferred from actions in the graphics en-
vironment. First, the UNTIL-relation cannot be read off directly from an action
sequence; and in particular, ‘waiting’ is not an action that is easily demonstrated
in a virtual world. Second, both PRECONDITIONSs are problematic: noticing
that all pressure has been relieved would require a highly sophisticated simu-
lation; the engine being cold might be visualized in some way or another, but
the fact that it is a precondition for something else might not. Third, CTIRCUM-
STANCES typically convey information that accompanies an activity and is thus
difficult to simulate; here it is even more problematic since it is an instruction
not to do something. Finally, the “be sure...” sentence represents a cognitive
activity rather than a physical one.

To account for such problems, additional mechanisms are needed. While it
i1s not impossible that the user in between actions clicks on some buttons with
coherence relations on them, this would only be a partial answer. In general,
it seems more reasonable to open up the possibility of linguistic interaction in
addition to graphics interaction. Here, fusing our approach with the WYSIWYM
method proposed by Power and Scott [1998] seems to be a viable option. The
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graphics component would produce the “backbone text” that the user can further
augment by clicking on the text rather than on the image. For instance, text
segments spanned by a coherence relation can be marked and the relation chosen
from a menu, whereupon the system would alter the text to include a signal
for the relation. Similarly, new propositions can be inserted, such as cognitive
activities or circumstances of actions.

Assuming that our approach is developed into the directions just sketched,
it can address a significant problem in the production of technical documen-
tation: the knowledge gap between engineer and technical writer. Nowadays,
the technical writer typically receives a more or less precise specification from
the engineer and strives to produce a readily understandable text from it. This
can require feedback from the engineer, which is not always available, though.
The resulting instruction manuals often reflect this problem. When the engineer
can through virtual-reality interaction provide a detailled formal representation
of the instruction content, the gap may be narrowed: The generation system
turns the specification into a clear and unambiguous — yet raw — text, and the
technical writer can interactively polish it to the effect that a well-written and
understandable text results.
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