
SUMMaR: Combining Linguistics and Statistics
for Text Summarization

Manfred Stede and Heike Bieler and Stefanie Dipper and Arthit Suriyawongkul1

Abstract. We describe a text summarization system that moves be-
yond standard approaches by using a hybrid approach of linguistic
and statistical analysis and by employing text-sort-specific know-
ledge of document structure and phrases indicating importance. The
system is highly modular and entirely XML-based so that different
components can be combined easily.

1 INTRODUCTION

Most text summarization systems nowadays take the approachof
sentence extraction: Following the determination of most relevant
terms in the document, sentences are selected that contain such rele-
vant terms, and the sequence of these sentences is deemed thesum-
mary. Term relevance is traditionally measured by relativefrequen-
cies in different corpora; various extensions of this basicmethod are
being used, such as the position of sentences in documents (e.g., pre-
fer sentences at the beginning of the document or at the end).

In contrast to generic summarization systems that emphasize ro-
bustness (producesomesummary forany text), our project trades
breadth against quality and argues that good summarizationshould
be text-sort-specific. The idea is that the notion of ‘importance’ is
relative to the sort of text; for example, in a news story, themost im-
portant information is the event stated right at the beginning, whereas
for an op-ed piece, the most important information is the topic plus
the opinion the author conveys. Our approach is to use a declara-
tive representation of text-sort knowledge that supplements the stan-
dard extraction technique in creating the summary. With SUMMaR2,
we created a highly modular, XML-based architecture that allows
for plugging in various analysis tools and combining their results
flexibly. A GUI displays interim analysis results as well as the fi-
nal summary, thus facilitating further fine-tuning. SUMMaRis an
implemented prototype with some components still under improve-
ment. Among the text sorts we are working with (news, commentary,
scientific papers, reviews), reviews are currently most prominent; in
particular, here we usemovie reviewsto illustrate our approach.

2 OVERVIEW OF SYSTEM ARCHITECTURE

For text analysis in any application, flexible module combination is
an important desire. We achieve this by consistently usingstandoff
annotation: For each information layer, a single XML representation
is created, which points either to the tokenized source document, or
to another layer (e.g., PoS layer points to source text, whereas syntax-
chunk layer points to PoS layer). Details of the XML format can

1 University of Potsdam, Germany, email: stede|bieler|dipper|art@ling.uni-
potsdam.de

2 Project funded by Bundesministerium für Bildung und Forschung, grant
03WKH22. The authors are responsible for the content of thispaper.

be found in [Dipper 2005]. The analysis modules can then inspect
layers individually or create combinations of them by merging them
to a standard inline XML representation; for this purpose, we use the
approach of [Witt et al. 2005].

SUMMaR processes documents in plain text, XML, and (to some
extent) HTML. The first step is to map these input formats to a com-
mon XML format representing the basic layout of the text, i.e., the
structure of headlines and paragraphs (see Section 3). Then, tok-
enization identifies sentence and token boundaries. This isinput to
a syntactic parser followed by co-reference analysis; these steps are
taken to identify cohesion problems in the resulting text extracts,
which will later be resolved by partial re-generation.

For developing the system, it has proven useful to employ a
GUI that displays the source text and, on demand, the variousan-
notations as produced by analysis modules. This could to some
extent be achieved by configuring a workbench such as GATE
(http://gate.ac.uk), but we found it more comfortable to write our own
web-based GUI geared specifically to the needs of summarization, so
that, e.g., the most relevant sentences of the text can be highlighted
dynamically when changing relevance thresholds, etc.

We claim that for quality summarization, the system needs to
know the text sortof the document under consideration: It makes
a difference for the summarization process whether, for example,
a news report or a company white paper or a review article is be-
ing handled. The key is to encode these differences in a declarative
knowledge source so that the processing modules can in fact stay
the same. One piece of text-sort-specific information is thetarget
templatefor the summary: For movie reviews, it should contain the
source of the review, movie title, the assigned overall rating (if any),
indication of the story, and indication of more specific judgements of
the reviewer. Such a task-oriented summarization is in effect a mix-
ture of traditional information extraction (“find the title; find the over-
all rating”) and traditional summarization (“condense thedescription
of the story, and the evaluative portions, if any”).

Our module forcontent structureidentification employs text-sort
knowledge in order to assign labels to paragraphs similar tothezones
in [Teufel and Moens 1997]. When zones have been identified, their
contents are either directly transferred to the target template (for
movie reviews: title and overall rating), or they are subject to sen-
tence relevancecalculation, as described in Section 4.

3 DOCUMENT STRUCTURE KNOWLEDGE

The basis for our text analysis modules is an XML format that marks
paragraphs, headings, and emphasized text portions (e.g. italics, bold
face). It represents the logical document structure in a sense similar
to a Latex source, albeit much simpler. Considerably less simple is
the procedure to derive this logical structure from different types of

Figure 1. Excerpt from movie review webpage

source documents. We process different kinds of XML formats(from
our partner projects), plain text, and to some extent HTML. The cur-
rent implementation of our logical structure extractor is written in
Python, with optional help from an XSL Transformation engine. For
the case of plain text documents, the only layout information is the
use of spacing, vertically and horizontally, and some creative typo-
graphy like using asterisks around characters for **emphasis**. We
built a set of heuristic rules that identify paragraph breaks on the basis
of average line length and presence of single and double linebreaks
in the document; similarly, headings are identified on the basis of
length, cue words (like numbering), and surrounding line breaks.

Having derived the logical structure, we enrich it with infor-
mation on content zones. The inventory of zones has been deter-
mined by a corpus study. For movie reviews, it includes labels such
as Title, Rating, DescStory, CommentOnStory, CommentOnActors,
Credits, LegalNotice. Our corpus includes 50 reviews from 10 dif-
ferent sources, and so the documents differ widely, both in length
and in structure. There are regularities, however: Title isat the be-
ginning; legal notice, if any, at the end; overall rating either towards
beginning or towards end; story is usually told continuously (no in-
tervening non-story paragaraphs), and so on. We have formalised the
regularities not as a document grammar, but as a set of local rules,
and the process of assigning each paragraph of the logical structure
a content-label is one of constraint satisfaction with optimization.
These steps of inferring logical and content structure are described
in detail in [Stede and Suriyawongkul, to appear].

4 SUMMARY PRODUCTION

As mentioned earlier, the first items of the summary template(ti-
tle and rating) are determined by simple information extraction rules
from the content structure representation. For the indicative summary
of the story, only those paragraphs that have received a ‘Story’ label
are submitted to our sentence relevance calculation, whichis based
on computing term weights with thetf ∗ idf method, where the re-
lation of the frequency of the term in the specific document and the
number of documents in which this terms occur, plays a role. As to
the notion of ‘term’, we are experimenting with wordforms (easy to

detect, but with inflection problem), stems as determined bya Porter-
stemmer (resolves inflection problems, but overgenerates), ngrams
(all combinations ofn adjacent characters in the text; a very robust
method that can cope with spelling errors), and lemmas (for applica-
tions where a lemmatizer for the language is available). Thetf ∗ idf

measure counts how often a term occurs in the document (term fre-
quencytf), and in how many documents of our corpus for the spe-
cific text sort (document frequencydf). Terms with high term fre-
quency and a low document frequency are the most indicative terms,
because they reflect the specific topic (in this case, of the movie).

For a text like that of Figure 1, the method would find terms such as
East German’s, Lenin, amnesia– but it would not find terms such as
popular, seamlessly, satisfying. The latter are typical for any opinion-
conveying text and thus will be frequent in a corpus of reviews of
any kind, including movies. In order to determine the reviewer’s
opinion (which should be reflected in a good summary), we look
for sentences including such evaluative expressions (currently from
a hand-collected list, but this is being replaced by a trained statistical
classifier), and use these sentences as the basis for the finalentry of
the summary template, ‘Evaluation’. This is an important difference
to other approaches to sentence extraction: text-sort-specific terms
(here: evaluative ones) are used to determineimportant sentences,
whereas thetf ∗ idf measure is used to determine sentences that are
indicativeof the content. The list of evaluative phrases is thus part
of the text-sort knowledge (albeit in this case shared between movie
reviews and all kinds of other product reviews), which collectively is
represented as a distinct XML document. It contains the information
on necessary and possible zones for the text sort, and terms acting as
indicators for zones, such as the above-mentioned evaluative terms,
or a number of asterisks for the ‘Rating’ Zone (e.g., in Figure 1:
“***1/2 (our of four)”. In the end, the filled output templatefor the
text in Figure 1 would look like this:
Source: Film Freak Central, Feb 22, 2006
Title: Good Bye, Lenin (2003)
Rating: ***1/2 (out of four)
Story:<extract from story description>
Evaluation:<extract from evaluative portions>

5 CONCLUSION

Document analysis is to a large extent a matter of statistical relevance
calculations, but it should also be driven by information ondocument
structure. We have illustrated this for the case of text summarization:
Given loosely-structured documents consisting of a fairlypredictable
set of content zones (but not in a fixed order; otherwise it is ahighly-
structured document), we propose to first identify this content struc-
ture as a useful step of preprocessing. For summarization, this helps
to make sure that portions of all relevant zones are actuallypart of
the result.

REFERENCES
[Dipper 2005] S. Dipper. “XML-based Stand-off Representation and Ex-

ploitation of Multi-Level Linguistic Annotation.” In: Proc. of Berliner
XML Tage 2005, pp. 39-50, Berlin, Germany.

[Stede and Suriyawongkul, to appear] M. Stede, A. Suriyawongkul. “Identi-
fying Logical Structure and Content Structure in Loosely-Structured
Documents.” To Appear.

[Teufel and Moens 1997] S. Teufel, M. Moens. “Sentence extraction as a clas-
sification task.” In: Mani and Maybury, eds.:Advances in Automatic
Text Summarization, MIT Press, 1997.

[Witt et al. 2005] A. Witt, H. Lüngen, F. Sasaki, D. Göcke. “Unification of
XML Documents with Concurrent Markup.”Literary and Linguistic
Computing20(1), 103-116, 2005.

