TA’s Notes # 1

October 25, 2016

Here’s a summary of all the important points we discussed in the session
today (if you think I forgot something, please tell me!).

General Homework /Submission Remarks

e Using either Python 2 or 3 is fine by me; I got both installed.

e Your submissions should include all the code I need to verify the correct-
ness/completeness of your program (you may assume that I'm capable of
installing common modules e.g. via pip).

e For any “discussions”, tables, figures etc., you would ideally type up a nice
little .pdf, e.g. via EXTEX.

The nltk.model issue

If you install NLTK like any normal person (e.g. from the main github branch,
via pip or by getting it with Anaconda), you will fail miserably at training an
nltk.model.ngram.NgramModel (as is requested in the second part of the first
assignment) because there is no such thing as nltk.model. This is because the
module was presumably broken and taken out of the main branch until it’s fixed,
which still hasn’t fully happened. Here are some work-arounds to this issue:

1. Implement your own module with all the necessary facilities to generate
random text. Do this only if you don’t feel challenged and/or have too
much time. I'm assuming doing this (correctly) will earn you extra credit
(which is ultimately pretty useless I might add, besides impressing your
teacher/TA).

2. Install NLTK 2 instead. This is what most of us did last year. I don’t know
to what extent the module is broken, but generating text should work.
Note that you shouldn’t be using NLTK 2 for any other task, so you should
either keep a separate python installation with NLTK 2 or use something
like virtualenv. Note: NLTK 2 may require Python 2. The most recent
version seems to be 2.0.5, requiring Python 2.5 or higher. Windows users



should use the installer found here: https://pypi.python.org/pypi/
nltk/2.0.5. Otherwise, pip install nltk==2.0.5 should suffice.

3. Install the model branch of NLTK 3. This can be done as follows: pip
install git+https://github.com/nltk/nltk.git@model. Note: If you
already have NLTK installed, you may need to include an --upgrade flag
to force reinstallation.

Should you decide to use NLTK 2, the only somewhat “mysterious” part is
the estimator argument to the NgramModel constructor. This needs to be any
of the classes (only the name, not an instance!) inheriting from ProbDistI in
nltk.probability. I'd advise you to use MLEProbDist since there are issues
with some of the more advanced alternatives. With the model created, you can
use its generate() function to easily produce random word sequences. Read
the source code to find out more. This is (unfortunately) a skill you will need
to get good at; academic software is usually badly documented. The safest way
to find out what the code is going to do is to read the code!

The interface in the NLTK 3 model branch seems to be more complex, and
it’s lacking a generate() function so far. You would need to implement this
yourself. This means that the most “sane” solution right now is probably
to use NLTK 2.

Other Remarks on Assignment 1

e You may run into problems when trying to process the Turkish/Bulgarian
newspaper texts for part 1. This is because these texts include non-ASCII
characters. In Python 3, this should be fixable by passing encoding=’utf-8’
into the open() function when opening the file (I think I said today that
Python 3 will automatically pick the right encoding. I don’t think this is
true. Better to make sure anyway!). In Python 2, you will need to use
codecs.open() instead because the default open() does not accept an
encoding argument.

e You will likely find nltk.tokenize.word_tokenize () to be helpful. This
function tokenizes a text, i.e. takes a string (which should be a “proper”
text with words and such) and returns a list of strings, where the entries are
the words and punctuation in the text. There’s also wordpunct_tokenize ().
The only difference I know of is that, for example ¢ ‘It’s’’ will be to-
kenized to [“‘It’’, ¢‘’s’’] using the former, and [‘‘It’’>, “¢?’’,
““s?’] using the latter. I would prefer word_tokenize myself.



