
n-grams

BM1: Advanced Natural Language Processing

University of Potsdam

Tatjana Scheffler

tatjana.scheffler@uni-potsdam.de

October 28, 2016

Today

¤  n-grams

¤  Zipf’s law

¤  language models

2

Maximum Likelihood Estimation

¤  We want to estimate the parameters of our model from
frequency observations. There are many ways to do this.
For now, we focus on maximum likelihood estimation,
MLE.

¤  Likelihood L(O ; p) is the probability of our model
generating the observations O, given parameter values
p.

¤  Goal: Find value for parameters that maximizes the
likelihood.

3

Bernoulli model

¤  Let’s say we had training data C of size N, and we
 had NH observations of H and NT observations of T.

4

Likelihood functions

5 (Wikipedia page on MLE; licensed from Casp11 under CC BY-SA 3.0)

Logarithm is monotonic

¤  Observation: If x1 > x2, then ln(x1) > ln(x2).

¤  Therefore, argmax L(C) = argmax l(C)
 p p

6

Maximizing the log-likelihood

¤  Find maximum of function by setting derivative to zero:

¤  Solution is p = NH / N = f(H).

7

Language Modelling

8

Let’s play a game

¤  I will write a sentence on the board.

¤  Each of you, in turn, gives me a word to continue that
sentence, and I will write it down.

9

Let’s play another game

¤  You write a word on a piece of paper.

¤  You get to see the piece of paper of your neighbor, but
none of the earlier words.

¤  In the end, I will read the sentence you wrote.

10

Statistical models for NLP

¤  Generative statistical model of language:

prob. dist. P(w) over NL expressions that we can observe.
¤  w may be complete sentences or smaller units

¤  will later extend this to pd P(w, t) with hidden random
variables t

¤  Assumption: A corpus of observed sentences w is
generated by repeatedly sampling from P(w).

¤  We try to estimate the parameters of the prob dist from
the corpus, so we can make predictions about unseen
data.

11

Example

¤  bla

12

Word-by-word random process

¤  A language model LM is a probability distribution P(w)
over words.

¤  Think of it as a random process that generates sentences
word by word:

 X1 X2 X3 X4 …

13

Word-by-word random process

¤  A language model LM is a probability distribution P(w)
over words.

¤  Think of it as a random process that generates sentences
word by word:

 X1 X2 X3 X4 …

 Are

14

Word-by-word random process

¤  A language model LM is a probability distribution P(w)
over words.

¤  Think of it as a random process that generates sentences
word by word:

 X1 X2 X3 X4 …

 Are you

15

Word-by-word random process

¤  A language model LM is a probability distribution P(w)
over words.

¤  Think of it as a random process that generates sentences
word by word:

 X1 X2 X3 X4 …

 Are you sure

16

Word-by-word random process

¤  A language model LM is a probability distribution P(w)
over words.

¤  Think of it as a random process that generates sentences
word by word:

 X1 X2 X3 X4 …

 Are you sure that …

17

Our game as a process

¤  Each of you = a random variable Xt;

event “Xt = wt” means word at position t is wt.

¤  When you chose wt, you could see the outcomes of the
previous variables: X1 = w1, ..., Xt-1 = wt-1.

¤  Thus, each Xt followed a pd

 P(Xt = wt | X1 = w1, ... ,Xt-1 = wt-1)

18

Our game as a process

¤  Assume that Xt follows some given pd

 P(Xt = wt | X1 = w1 ,... ,Xt-1 = wt-1)

¤  Then probability of the entire sentence (or corpus)
 w = w1 ... wn is

P(w1 ... wn) = P(w1)P(w2 |w1)P(w3 |w1,w2) …
 P(wn |w1, ... ,wn-1)

19

Parameters of the model

¤  Our model has one parameter for

P(Xt = wt | w1, ..., wt-1) for all t and w1, ..., wt.

¤  Can use maximum likelihood estimation:

¤  Let’s say a natural language has 105 different words.
How many tuples w1, ... wt of length t?
¤  t = 1: 105

¤  t = 2: 1010 different contexts
¤  t = 3: 1015; etc.

20

Sparse data problem

¤  typical corpus size:
¤  Brown corpus: 106 tokens

¤  Gigaword corpus: 109 tokens

¤  Problem exacerbated by Zipf ’s Law:
¤  Order all words by their absolute frequency in corpus

 (rank 1 = most frequent word).

¤  Then rank is inversely proportional to
 absolute frequency; i.e., most words are really rare.

¤  Zipf’s Law is very robust across languages and corpora.

21

Interlude: Corpora

22

Terminology

¤  N = corpus size; number of (word) tokens

¤  V = vocabulary; number of (word) types

¤  hapax legomenon = a word that appears exactly once
in the corpus

23

An example corpus

¤  Tokens: 86

¤  Types: 53
24

Frequency list

25

Frequency list

26

Frequency profile

27

Plotting corpus frequencies

Number of types rank frequency

1 1 8

2 3 5

4 7 3

10 17 2

36 53 1

28

¤  How many different words in the corpus are there with
each frequency?

Plotting corpus frequencies

¤  x-axis: rank

¤  y-axis: frequency

29

Some other corpora Typical frequency patterns
Across text types & languages

30

Zipf’s Law

¤  Zipf’s Law characterizes the relation between frequent
and rare words:

 f(w) = C / r(w)

or equivalently: f(w) * r(w) = C

¤  Frequency of lexical items (words types) in a large corpus
is inversely proportional to their rank.

¤  Empirical observation in many different corpora

¤  Brown corpus:
¤  half of all types are hapax legomena

31

Effects of Zipf’s Law

¤  Lexicography:
¤  Sinclair (2005): need at least 20 instances

¤  BNC (108 Tokens): <14% of words appear 20 times or more

¤  Speech synthesis:
¤  may accept bad output for rare words

¤  but most words are rare! (at least 1 per sentence)

¤  Vocabulary growth:
¤  vocabulary growth of corpora is not constant

¤  G = #hapaxes / #tokens

32

Back to Language Models

33

Independence assumptions

¤  Let’s pretend that word at position t depends only on the
words at positions t-1, t-2, ..., t-k for some fixed k
(Markov assumption of degree k).

¤  Then we get an n-gram model, with n = k+1:

 P(Xt | X1,...,Xt-1) = P(Xt | Xt-k,...,Xt-1) for all t.

¤  Special names for unigram models (n = 1),
 bigram models (n = 2), trigram models (n = 3).

34

Independence assumption

¤  We assume independence of Xt from events that are too
far in the past, although we know that this assumption is
incorrect.

¤  Typical tradeoff in statistical NLP:
¤  if model is too shallow, it won’t represent important linguistic

dependencies

¤  if model is too complex, its parameters can’t be estimated
accurately from the available data

 low n high n

modeling errors estimation errors
35

Tradeoff in practice

36

(Manning/Schütze, ch. 6)

Tradeoff in practice

37

(Manning/Schütze, ch. 6)

Tradeoff in practice

38

(Manning/Schütze, ch. 6)

Conclusion

¤  Statistical models of natural language

¤  Language models using n-grams

¤  Data sparseness is a problem.

39

next Tuesday

¤  smoothing language models

40

