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Today 

¤  n-grams 

¤  Zipf’s law 

¤  language models 
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Maximum Likelihood Estimation  

¤  We want to estimate the parameters of our model from 
frequency observations. There are many ways to do this. 
For now, we focus on maximum likelihood estimation, 
MLE.  

¤  Likelihood L(O ; p) is the probability of our model 
generating the observations O, given parameter values 
p.  

¤  Goal: Find value for parameters that maximizes the 
likelihood.  
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Bernoulli model 

¤  Let’s say we had training data C of size N, and we 
 had NH observations of H and NT observations of T.  
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Likelihood functions 

5 (Wikipedia page on MLE; licensed from Casp11 under CC BY-SA 3.0)  



Logarithm is monotonic 

¤  Observation: If x1 > x2, then ln(x1) > ln(x2).  

¤  Therefore, argmax L(C) = argmax l(C) 
     p      p 
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Maximizing the log-likelihood 

¤  Find maximum of function by setting derivative to zero: 
 

¤  Solution is p = NH / N = f(H).  
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Language Modelling 
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Let’s play a game 

¤  I will write a sentence on the board.  

¤  Each of you, in turn, gives me a word to continue that 
sentence, and I will write it down.  
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Let’s play another game 

¤  You write a word on a piece of paper.  

¤  You get to see the piece of paper of your neighbor, but 
none of the earlier words.  

¤  In the end, I will read the sentence you wrote.  
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Statistical models for NLP 

¤  Generative statistical model of language:  
 
prob. dist. P(w) over NL expressions that we can observe.  
¤  w may be complete sentences or smaller units  

¤  will later extend this to pd P(w, t) with hidden random 
variables t  

¤  Assumption: A corpus of observed sentences w is 
generated by repeatedly sampling from P(w).  

¤  We try to estimate the parameters of the prob dist from 
the corpus, so we can make predictions about unseen 
data.  
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Example 

¤  bla 
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Word-by-word random process 

¤  A language model LM is a probability distribution P(w) 
over words. 

¤  Think of it as a random process that generates sentences 
word by word: 

 

 X1  X2  X3  X4  … 
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Word-by-word random process 

¤  A language model LM is a probability distribution P(w) 
over words. 

¤  Think of it as a random process that generates sentences 
word by word: 

 

 X1  X2  X3  X4  … 

 

 Are   
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Word-by-word random process 

¤  A language model LM is a probability distribution P(w) 
over words. 

¤  Think of it as a random process that generates sentences 
word by word: 

 

 X1  X2  X3  X4  … 

 

 Are  you   
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Word-by-word random process 

¤  A language model LM is a probability distribution P(w) 
over words. 

¤  Think of it as a random process that generates sentences 
word by word: 

 

 X1  X2  X3  X4  … 

 

 Are  you  sure   
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Word-by-word random process 

¤  A language model LM is a probability distribution P(w) 
over words. 

¤  Think of it as a random process that generates sentences 
word by word: 

 

 X1  X2  X3  X4  … 

 

 Are  you  sure  that  … 
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Our game as a process 

¤  Each of you = a random variable Xt;  
 
event “Xt = wt” means word at position t is wt.  

¤  When you chose wt, you could see the outcomes of the 
previous variables: X1 = w1, ..., Xt-1 = wt-1.  

¤  Thus, each Xt followed a pd  

 P(Xt = wt | X1 = w1, ... ,Xt-1 = wt-1)  

18 



Our game as a process 

¤  Assume that Xt follows some given pd 

 P(Xt = wt | X1 = w1 ,... ,Xt-1 = wt-1)  

¤  Then probability of the entire sentence (or corpus) 
 w = w1 ... wn is  

P(w1 ... wn) = P(w1)P(w2 |w1)P(w3 |w1,w2) … 
 P(wn |w1, ... ,wn-1)  
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Parameters of the model 

¤  Our model has one parameter for  
 
P(Xt = wt | w1, ..., wt-1) for all t and w1, ..., wt.  

¤  Can use maximum likelihood estimation: 
  

¤  Let’s say a natural language has 105 different words.  
How many tuples w1, ... wt of length t?  
¤  t = 1: 105 

¤  t = 2: 1010 different contexts  
¤  t = 3: 1015; etc.  
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Sparse data problem 

¤  typical corpus size: 
¤  Brown corpus: 106 tokens 

¤  Gigaword corpus: 109 tokens 

¤  Problem exacerbated by Zipf ’s Law:  
¤  Order all words by their absolute frequency in corpus 

 (rank 1 = most frequent word).  

¤  Then rank is inversely proportional to  
 absolute frequency; i.e., most words are really rare.  

¤  Zipf’s Law is very robust across languages and corpora.  
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Interlude: Corpora 
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Terminology 

¤  N = corpus size; number of (word) tokens 

¤  V = vocabulary; number of (word) types 

¤  hapax legomenon = a word that appears exactly once 
in the corpus 
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An example corpus 

 

 

¤  Tokens: 86 

¤  Types: 53 
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Frequency list 
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Frequency list 
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Frequency profile 
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Plotting corpus frequencies 

Number of types rank frequency 

1 1 8 

2 3 5 

4 7 3 

10 17 2 

36 53 1 
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¤  How many different words in the corpus are there with 
each frequency? 



Plotting corpus frequencies 

 

¤  x-axis: rank 

¤  y-axis: frequency 
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Some other corpora Typical frequency patterns
Across text types & languages

30 



Zipf’s Law 

¤  Zipf’s Law characterizes the relation between frequent 
and rare words: 

          f(w) = C / r(w) 

or equivalently:  f(w) * r(w) = C 

¤  Frequency of lexical items (words types) in a large corpus 
is inversely proportional to their rank. 

¤  Empirical observation in many different corpora 

¤  Brown corpus: 
¤  half of all types are hapax legomena 
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Effects of Zipf’s Law 

¤  Lexicography: 
¤  Sinclair (2005): need at least 20 instances 

¤  BNC (108 Tokens): <14% of words appear 20 times or more 

¤  Speech synthesis: 
¤  may accept bad output for rare words 

¤  but most words are rare! (at least 1 per sentence) 

¤  Vocabulary growth: 
¤  vocabulary growth of corpora is not constant 

¤  G = #hapaxes / #tokens 
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Back to Language Models 
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Independence assumptions 

¤  Let’s pretend that word at position t depends only on the 
words at positions t-1, t-2, ..., t-k for some fixed k    
(Markov assumption of degree k).  

¤  Then we get an n-gram model, with n = k+1: 
 
 P(Xt | X1,...,Xt-1) = P(Xt | Xt-k,...,Xt-1)   for all t. 

¤  Special names for unigram models (n = 1),  
 bigram models (n = 2), trigram models (n = 3).  
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Independence assumption 

¤  We assume independence of Xt from events that are too 
far in the past, although we know that this assumption is 
incorrect.  

¤  Typical tradeoff in statistical NLP:  
¤  if model is too shallow, it won’t represent important linguistic 

dependencies  

¤  if model is too complex, its parameters can’t be estimated 
accurately from the available data  

  low n                   high n 

modeling errors                estimation errors 
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Tradeoff in practice 
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(Manning/Schütze, ch. 6) 



Tradeoff in practice 
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(Manning/Schütze, ch. 6) 



Tradeoff in practice 
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(Manning/Schütze, ch. 6) 



Conclusion 

¤  Statistical models of natural language 

¤  Language models using n-grams 

¤  Data sparseness is a problem. 
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next Tuesday 

¤  smoothing language models 
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