

Review: Probability

BM1: Advanced Natural Language Processing

University of Potsdam

Tatjana Scheffler

tatjana.scheffler@uni-potsdam.de

October 21, 2016

Today

- probability
- random variables
- Bayes' rule
- expectation
- maximum likelihood estimation

Motivations

- Statistical NLP aims to do statistical inference for the field of NL
- Statistical inference consists of taking some data (generated in accordance with some unknown probability distribution) and then making some inference about this distribution.
- Example: language modeling (i.e. how to predict the next word given the previous words)
- Probability theory helps us finding such model

Probability Theory

- How likely it is that something will happen
- Sample space Ω is listing of all possible outcome of an experiment
- Event A is a subset of Ω
- \square Event space is the powerset of $\Omega: 2^{\Omega}$
- Probability function (or distribution):

P: 2^Ω ↦ [0,1]

Examples

- An random variable X, Y, ... describes the possible outcomes of a random event and the probability of that outcome.
- flip of a fair coin
 - **sample space:** $\Omega = \{H, T\}$
 - probabilities of basic outcomes?
- dice roll
 - sample space?
 - probabilities?

 \square probability distribution of X is the function $a \mapsto P(X=a)$

a	P(X=a)
Н	0.5
Т	0.5

Events

- subsets of the sample space
- atomic events = basic outcomes
- We can assign probability to complex events:
 - $\square P(X = 1 \text{ or } X = 2): \text{ prob that } X \text{ takes value } 1 \text{ or } 2.$
 - $\square P(X \ge 4): prob that X takes value 4, 5, or 6.$
 - P(X = 1 and Y = 2): prob that rv X takes value 1 and rv Y takes value 2.
- In case of language, the sample space is usually finite, i.e. we have discrete random variables. There are also continuous rvs.
 - example?

Probability Axioms

The following axioms hold of probabilities:

- $0 \le P(X = a) \le 1$ for all events X = a
- $\square P(X \in \Omega) = 1$

$$\square P(X \in \emptyset) = 0$$

□
$$P(X \in A) = P(X = a_1) + ... + P(X = a_n)$$

for A = {a₁, ..., a_n} ⊆ Ω

Example: If the probability distribution of X is uniform with N outcomes, i.e. P(X = ai) = 1/N for all i, then P(X ∈ A) = |A| / N.

Law of large numbers

Where do we get probabilities from?

- reasonable assumptions + axioms
- subjective estimation/postulation
- Iaw of large numbers
- Law of large numbers: In an infinite number of trials, relative frequency of events converges towards their probabilities

Consequences of Axioms

- The following rules for calculating with probs follow directly from the axioms.
 - Union:

 $P(X \in B \cup C) = P(X \in B) + P(X \in C) - P(X \in B \cap C)$

- □ In particular, if B and C are disjoint (and only then), $P(X \in B \cup C) = P(X \in B) + P(X \in C)$
- Complement: $P(X \notin B) = P(X \in \Omega - B) = 1 - P(X \in B).$
- □ For simplicity, will now restrict presentation to events X = a. Basically everything generalizes to events $X \in B$.

Joint probabilities

- We are very often interested in the probability of two events X = a and Y = b occurring together, i.e. the joint probability P(X = a, Y = b).
 - e.g. X = roll of first die, Y = roll of second die
- If we know joint pd, we can recover individual pds by marginalization. Very important!

$$P(X = a) = \sum_{b} P(X = a, Y = b)$$

Conditional Probability

- Prior probability: the probability before we consider any additional knowledge: P(X = a)
- Joint probs are trickier than they seem because the outcome of X may influence the outcome of Y.
 - X: draw first card from a deck of 52 cards
 Y: after this, draw second card from deck of cards
 - P(Y is an ace | X is not an ace) = 4/51 P(Y is an ace | X is an ace) = 3/51
- We write P(Y = a | X = b) for the conditional probability that Y has outcome a if we know that X has outcome b.

Conditional and Joint Probability

□
$$P(X = a, Y = b) = P(Y = b | X = a) P(X = a)$$

= $P(X = a | Y = b) P(Y = b)$

(chain rule)

Thus:

$$P(Y = b \mid X = a) = \frac{P(X = a, Y = b)}{P(X = a)}$$

$$= \frac{P(X = a, Y = b)}{\sum_{b \in B} P(X = a, Y = b)}$$

(marginalization)

(Conditional) independence

Two events X=a and Y=b are independent of each other if :

D
$$P(X = a | Y = b) = P(X = a)$$

• equivalently: P(X = a, Y = b) = P(X = a) P(Y = b)

- This means that the outcome of Y has no influence on the outcome of X. Events are statistically independent.
 Typical examples: coins, dice.
- Many events in natural language not independent, but we pretend they are to simplify models.

Chain rule, independence

- Chain rule for complex joint events: $P(X_1 = a_1, X_2 = a_2, ..., X_n = a_n)$ $= P(X_1 = a_1)P(X_2 = a_2 | X_1 = a_1)...P(X_n = a_n | a_1...a_{n-1})$
- In practice, it is typically hard to estimate things like P(a_n | a₁, ..., a_{n-1}) well because not many training examples satisfy complex condition.
- Thus pretend all are independent. Then we have $P(a_1, ..., a_n) \approx P(a_1) ... P(a_n)$.

Bayes' Theorem

- Important consequence of joint/conditional probability connection
- Bayes' Theorem lets us swap the order of dependence between events

• We saw that $P(Y = b \mid X = a) = \frac{P(X = a, Y = b)}{P(X = a)}$

Bayes' Theorem:

$$P(X = a \mid Y = b) = \frac{P(Y = b \mid X = a) \cdot P(X = a)}{P(Y = b)}$$

Example of Bayes' Rule

- S:stiff neck, M: meningitis
- **P**(S | M) =0.5, P(M) = 1/50,000 P(S)=1/20

I have stiff neck, should I worry?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)}$$
$$= \frac{0.5 \times 1/50,000}{1/20} = 0.0002$$

Expected values / Expectation

- Frequentist interpretation of probability: if P(X = a) = p, and we repeat the experiment N times, then we see outcome "a" roughly p N times.
- Now imagine each outcome "a" comes with reward R(a). After N rounds of playing the game, what reward can we (roughly) expect?
- Measured by expected value:

$$E_P[R] = \sum_{a \in A} P(X = a) \cdot R(a)$$

Back to the Language Model

- In general, for language events, P is unknown
- We need to estimate P, (or model M of the language)
- We'll do this by looking at evidence about what P must be based on a sample of data (observations)

Example: model estimation

- Example: we flip a coin 100 times and observe H 61 times. Should we believe that it is a fair coin?
 - observation: 61x H, 39x T
 - model: assume rv X follows a Bernoulli distribution, i.e. X has two outcomes, and there is a value p such that P(X = H) = p and P(X = T) = 1 - p.
 - want to estimate the parameter p of this model

Estimation of P

- Frequentist statistics
 - parametric methods
 - non-parametric (distribution-free)
- Bayesian statistics

Frequentist Statistics

Relative frequency: proportion of times an outcome u occurs

 $f_{\cup} = C(\cup) / N$

- C(u) is the number of times u occurs in N trials
- For N approaching infinity, the relative frequency tends to stabilize around some number: probability estimates

Non-Parametric Methods

- No assumption about the underlying distribution of the data
- For ex, simply estimate P empirically by counting a large number of random events is a distribution-free method
- Less prior information, more training data needed

Parametric Methods

- Assume that some phenomenon in language is acceptably modeled by one of the well-known family of distributions (such binomial, normal)
- We have an explicit probabilistic model of the process by which the data was generated, and determining a particular probability distribution within the family requires only the specification of a few parameters (less training data)

Binomial Distribution

- Series of trials with only two outcomes, each trial being independent from all the others
- Number r of successes out of n trials given that the probability of success in any trial is p:

$$b(r;n,p) = \binom{n}{r} p^r (1-p)^{n-r}$$

Normal (Gaussian) Distribution

- Continuous
- \square Two parameters: mean μ and standard deviation σ

$$n(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Used in clustering

Maximum Likelihood Estimation

- We want to estimate the parameters of our model from frequency observations. There are many ways to do this. For now, we focus on maximum likelihood estimation, MLE.
- Likelihood L(O ; p) is the probability of our model generating the observations O, given parameter values p.
- Goal: Find value for parameters that maximizes the likelihood.

ML Estimation

- For Bernoulli and multinomial models, it is extremely easy to estimate the parameters that maximize the likelihood:
 - $\square P(X = a) = f(a)$
 - **I** in the coin example above, just take p = f(H)

Why is this?

Bernoulli model

Let's say we had training data C of size N, and we had N_H observations of H and N_T observations of T.

likelihood
$$L(C) = \prod_{i=1}^{N} P(w_i \mid p) = \prod_{i=1}^{N} p^{N_H} (1-p)^{N_T}$$

log-likelihood
 $\ell(C) = \log L(C) = \sum_{i=1}^{N} \log P(w_i \mid p) = N_H \log p + N_T \log(1-p)$

Likelihood functions

(Wikipedia page on MLE; licensed from Casp11 under CC BY-SA 3.0) 29

Logarithm is monotonic

р

Observation: If $x_1 > x_2$, then $\ln(x_1) > \ln(x_2)$.

Therefore, argmax L(C) = argmax I(C)

р

Maximizing the log-likelihood

□ Find maximum of function by setting derivative to zero:

$$\ell(C) = N_H \log p + N_T \log(1-p)$$

 $rac{d\ell(C)}{dp} = rac{N_H}{p} - rac{N_T}{1-p}$

Unique solution is $p = N_H / N = f(H)$.

More complex models

- Many, many models we use in NLP are multinomial probability distributions. More than two outcomes possible; think dice rolling.
- MLE result generalizes to multinomial models:
 P(X = a) = f(a).
- Maximizing log-likelihood uses technique called Lagrange multipliers to ensure parameters sum to 1.
- If you want to see the details, see Murphy paper on the website.

Conclusion

- Probability theory is essential tool in modern NLP.
- Important concepts today:
 - random variable, probability distribution
 - joint and conditional probs; Bayes' rule; independence
 - expected values
 - statistical models; parameters; likelihood; MLE
- We will use all of these concepts again and again in this course. If you have questions, ask me early.

next Friday

n-gram models

(Tuesday: practical session on Python, NLTK, getting ready for assignment 1, etc.)