Review: Probabillity

BM1: Advanced Natural Language Processing

University of Potsdam

Tatjana Scheffler

tatjana.scheffler@uni-potsdam.de

October 21, 2016



AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

probability
random variables
Bayes’ rule
expectation

maximum likelihood estimation
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Statistical NLP aims to do statistical inference for the field
of NL

Statistical inference consists of taking some data
(generated in accordance with some unknown
probability distribution) and then making some inference
about this distribution.

Example: language modeling (i.e. how to predict the
next word given the previous words)

Probability theory helps us finding such model
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Probbability Theory

How likely it is that something will happen

Sample space Q is listing of all possible outcome of an
experiment

Event Ais a subset of Q
Event space is the powerset of Q: 2%
Probability function (or distribution):

P: 2%~ [0,1]
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An random variable X, Y, ... describes the possible
outcomes of a random event and the probabillity of that
outcome.

flip of a fair coin “

O sample space: Q={H, T} H 0.5
O probabilities of basic outcomes?e T 0.5

dice rall
O sample spacee
O probabilities?

probability distribution of X is the function a » P(X=q)
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Events

subsets of the sample space
atomic events = basic outcomes

We can assign probability fo complex events:
O P(X=1orX=2):prob that X takes value 1 or 2.
O P(X=4): prob that X takes value 4, 5, or 6.

O P(X=1andY =2): prob that rv X takes value 1
and rv Y takes value 2.

In case of language, the sample space is usually finite, i.e.
we have discrefe random variables. There are also
continuous rvs.

O examplee
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Probability Axioms

The following axioms hold of probabilities:
O O<P(X=aq)<1forallevents X=a

OPXe Q)=1

OPXeEo2) =0

O P(Xe A)=P(X=a1)+...+P(X=an)
for A={a1, ... an} € Q

Example: If the probability distribution of X is uniform with
N outcomes,

l.e. P(X=aqi) =1/Nforalli, thenP(X € A)=|A]| /N.



Law of large numbers

Where do we get probabilities from?e
O reasonable assumptions + axioms

O subjective estimation/postulation

O law of large numbers

Law of large numbers: In an infinite number of trials,
relative frequency of events converges towards their
probabilities
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Conseguences of AXIoms

The following rules for calculating with probs follow
directly from the axioms.

O Union:
PIX€BUC)=P(X€B)+P(XE C)-P(XEB N C)

O In particular, if B and C are disjoint (and only then),
P(Xe B UC)=P(Xe€B)+P(XeEC)

O Complement:
P(X¢éB)=P(X € Q@ -B)=1-P(X € B).

For simplicity, will now restrict presentation to events
X = a. Basically everything generalizes to events X € B.
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Joint probabillities

We are very often interested in the probability of two
events X =a and Y = b occurring together, i.e. the joint
probability P(X =a, Y = b).

O e.g. X =roll of first die, Y =roll of second die

If we know joint pd, we can recover individual pds by
marginalization. Very important!

P(X=a)=) P(X=a,Y =b)
b



AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

Conditional Probability

Prior probability: the probability before we consider any
additional knowledge: P(X = Q)

Joint prolbs are trickier than they seem because the
outcome of X may influence the outcome of Y.

O X: draw first card from a deck of 52 cards
Y: after this, draw second card from deck of cards

O P(Yisan ace | Xisnot an ace) = 4/51
P(Y isan ace | Xisan ace) = 3/5]1

We write P(Y = a | X =Db) for the conditional probability
that Y has outcome a if we know that X has outcome b.
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Conditional and Joint Probability

P(X=a,Y=b) =P(Y=b | X=a) P(X = q|

(chain rule)
=P(X=a | Y=Db)P(Y=D)
Thus:
P(X=a,Y=0
P(Y=b|X=a)= (P(X“:a) )
P(X =a,Y =0)

- ZbeBP(X:aaYzb)

(marginalization)
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(Conditional) independence

Two events X=a and Y=b are independent of each other
if :

O P(X=a|Y=Db)=P(X=0q)
O equivalently: P(X=q,Y=Db)=P(X=a) P(Y =D)

This means that the outcome of Y has no influence on the
outcome of X. Events are statistically independent.

O Typical examples: coins, dice.

Many events in natural language not independent, but
we pretend they are to simplify models.
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Chain rule, iIndependence

Chain rule for complex joint events:
P(X,=a,, X,=0,, ... X, =0a,)
=P(X, =o,)P(X,=a,| X, =)...P(X,=qa,|q,...a,)

In practice, it is typically hard to estimate things like
P(a, | a,..... a,,) well because not many training
examples satisfy complex condition.

Thus pretend all are independent. Then we have
P(a,, ....a,) =P(a,) ... P(a,).
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Bayes’' Theorem

Important consequence of joint/conditional probability
connection

Bayes’ Theorem lets us swap the order of dependence
between events

P(X =a,Y =)

We saw that PY=b|X=a)= P(X = a)

Bayes’ Theorem:

P(Y=b| X =a) P(X =a)
P(Y =b)

P(X=a|Y =b)=
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Example of Bayes' Rule

S:stiff neck, M: meningitis
P(S| M) =0.5 P(M) =1/50,000 P(S)=1/20

| have stiff neck, should | worrye

Pt |5) < PSIMPOM)
P(S)
=(15x1/501XN)=(10002

1/20



AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

Expected values / Expectation

Frequentist interpretation of probability: if P(X = a) = p,
and we repeat the experiment N times, then we see
outcome “a” roughly p N fimes.

Now imagine each outcome “a” comes with reward
R(a). After N rounds of playing the game, what reward
can we (roughly) expect?

Measured by expected value:

Ep[R]=) P(X =a)-R(a)
acA



Back to the Language Model

In general, for language events, P is unknown
We need to estimate P, (or model M of the language)

We'll do this by looking at evidence about what P must
be based on a sample of data (observations)



Example: model estimation

Example: we flip a coin 100 times and observe H 61 times.
Should we believe that it is a fair coing
O observation: 61x H, 39x T

O model: assume rv X follows a Bernoulli distribution,

l.e. X has two outcomes, and there is a value p such that
P(X=H)=pand P(X=T)=1-p.

O want to estimate the parameter p of this model
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Estimation of P

Frequentist statistics
O parametric methods
O non-parametric (distribution-free)

Bayesian statistics

20
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Frequentist Stafistics

Relative frequency: proportion of times an outcome u
OCCUIS

f,=C(u) /N
C(u) is the number of times u occurs in N trials

For N approaching infinity, the relative frequency tends
to stabilize around some number: probability estimates

21
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Non-Parametric Methods

No assumption about the underlying distribution of the
data

For ex, simply estimate P empirically by counting a large
number of random events is a distribution-free method

Less prior information, more training data needed

22
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Parametric Methods

Assume that some phenomenon in language is
acceptably modeled by one of the well-known family of
distributions (such binomial, normal)

We have an explicit probabilistic model of the process by
which the data was generated, and determining @
particular probability distribution within the family requires
only the specification of a few parameters (less training
data)

23
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Binomial Distribution

Series of trials with only two outcomes, each trial being
independent from all the others

Number r of successes out of n trials given that the
probability of success in any trial is p:

n
b(r;n, p) = (r)p”(l -p)"

24
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Normal (Gaussian) Distribution

Continuous

Two parameters: mean g and standard deviation o

o w
n(x; 14,0) = e 2
O~N2m

Used in clustering

25
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Maximum Likelihood Estimation

We want to estimate the parameters of our model from
frequency observations. There are many ways to do this.
For now, we focus on maximum likelihood estimation,
MLE.

Likelihood L(O ; p) is the probability of our model
generating the observations O, given parameter values

D.

Goal: Find value for parameters that maximizes the
likelihood.

26
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ML Estimation

For Bernoulli and multinomial models, it is extremely easy
to estimate the parameters that maximize the likelihood:

O P(X=aq)=f(q)
O in the coin example above, just take p = f(H)

Why is this?

27
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Bernoulll model

Let’s say we had fraining data C of size N, and we
had N, observations of H and N; observations of T.

N N
likelihOOd L(C) = H P(wt [ p) — Hp.\'u (1 . p)_\'g‘
i=1 i=1

log-likelihood

N
£(C) =log L(C) = Y log P(w; | p) = Ny logp + Ny log(l — p)
i=]1

28



Likelihood functions

likelihood function for proportion value of a binomial process (n=10)

0.35 -

(1= ] —

count C(H): t=3 ——

(1= 6 w—

o
w

0.25

o
N

0.15

likelihood L(O; p)

o
—a

0 0.2 04 0.6 0.8 1

parameter p
(Wikipedia page on MLE; licensed from Casp11 under CC BY-SA 3.0) o



Observation: If x; > x,, then In(x;) > In(x,).

Therefore, argmax L(C) = argmax |(C)

P
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Maximizing the log-likelihood

Find maximum of function by setting derivative to zero:

£(C) = Ny logp + Nrlog(l - p)

dt(C) _Nu  Nr
dp p l1-p

Unique solutionis p = N / N = f(H).

31
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More complex models

Many, many models we use in NLP are multinomial
probability distributions. More than two outcomes
possible; think dice rolling.

MLE result generalizes to multinomial models:
P(X =a) =f(q).

Maximizing log-likelihood uses technique called
Lagrange multipliers to ensure parameters sum to 1.

If you want to see the details, see Murphy paper on the
website.

32



Conclusion

Probability theory is essential tool in modern NLP.

Important concepfts tfoday:

O random variable, probability distribution

O joint and conditfional probs; Bayes' rule; independence
O expected values

O statistical models; parameters; likelihood; MLE

We will use all of these concepts again and again in this
course. If you have questions, ask me early.

33
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next Friday

n-gram models

(Tuesday: practical session on Python, NLTK, getting ready
for assignment 1, etc.)

34



