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Today 

¤  probability 

¤  random variables 

¤  Bayes’ rule 

¤  expectation 

¤  maximum likelihood estimation 
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 Motivations  

¤  Statistical NLP aims to do statistical inference for the field 
of NL 

¤  Statistical inference consists of taking some data 
(generated in accordance with some unknown 
probability distribution) and then making some inference 
about this distribution. 

¤  Example: language modeling (i.e. how to predict the 
next word given the previous words) 

¤  Probability theory helps us finding such model 
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Probability Theory 

¤  How likely it is that something will happen 

¤  Sample space Ω is listing of all possible outcome of an 
experiment 

¤  Event A is a subset of Ω 

¤  Event space is the powerset of Ω: 2Ω 

¤  Probability function (or distribution): 

  P: 2Ω ↦ [0,1] 



Examples 

¤  An random variable X, Y, ... describes the possible 
outcomes of a random event and the probability of that 
outcome.  

¤  flip of a fair coin 
¤  sample space: Ω= { H , T } 
¤  probabilities of basic outcomes? 

¤  dice roll 
¤  sample space? 
¤  probabilities? 

¤  probability distribution of X is the function a ↦ P(X=a) 
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a P(X=a) 

H 0.5 

T 0.5 



Events 

¤  subsets of the sample space 

¤  atomic events = basic outcomes 

¤  We can assign probability to complex events:  
¤  P(X = 1 or X = 2): prob that X takes value 1 or 2.   
¤  P(X ≥ 4): prob that X takes value 4, 5, or 6.  
¤  P(X = 1 and Y = 2): prob that rv X takes value 1  

 and rv Y takes value 2.  

¤  In case of language, the sample space is usually finite, i.e. 
we have discrete random variables. There are also 
continuous rvs. 
¤  example? 
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Probability Axioms 

¤  The following axioms hold of probabilities: 
¤  0 ≤ P(X = a) ≤ 1 for all events X = a  

¤  P(X ∈ Ω) = 1 

¤  P(X ∈ ∅) = 0 

¤  P(X ∈ A) = P(X = a1) + ... + P(X = an)  
 for A = {a1, ..., an} ⊆ Ω 

¤  Example: If the probability distribution of X is uniform with 
N outcomes, 
 i.e. P(X = ai) = 1/N for all i, then P(X ∈ A) = |A| / N.  
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Law of large numbers 

¤  Where do we get probabilities from? 
¤  reasonable assumptions + axioms 

¤  subjective estimation/postulation 

¤  law of large numbers 

¤  Law of large numbers: In an infinite number of trials, 
relative frequency of events converges towards their 
probabilities 
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Consequences of Axioms 

¤  The following rules for calculating with probs follow 
directly from the axioms.  
¤  Union: 

P(X ∈ B ∪ C) = P(X ∈ B) + P(X ∈ C) - P(X ∈ B ∩ C)  

¤  In particular, if B and C are disjoint (and only then), 
P(X ∈ B ∪ C) = P(X ∈ B) + P(X ∈ C)  

¤  Complement: 
P(X ∉ B) = P(X ∈ Ω - B) = 1 - P(X ∈ B).  

¤  For simplicity, will now restrict presentation to events         
X = a. Basically everything generalizes to events X ∈ B.  
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Joint probabilities 

¤  We are very often interested in the probability of two 
events X = a and Y = b occurring together, i.e. the joint 
probability P(X = a, Y = b).  
¤  e.g. X = roll of first die, Y = roll of second die  

¤  If we know joint pd, we can recover individual pds by 
marginalization. Very important!  
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Conditional Probability 

¤  Prior probability: the probability  before we consider any 
additional knowledge: P(X = a) 

¤  Joint probs are trickier than they seem because the 
outcome of X may influence the outcome of Y.  
¤  X: draw first card from a deck of 52 cards 

Y: after this, draw second card from deck of cards  

¤  P(Y is an ace | X is not an ace) = 4/51 
 P(Y is an ace | X is an ace) = 3/51  

¤  We write P(Y = a | X = b) for the conditional probability 
that Y has outcome a if we know that X has outcome b.  
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Conditional and Joint Probability 

¤  P(X = a, Y = b)  = P(Y = b | X = a) P(X = a) 

 = P(X = a | Y = b) P(Y = b)  

¤  Thus: 
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(marginalization) 

(chain rule) 



16-10-20 
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(Conditional) independence 

¤  Two events X=a and Y=b are independent of each other 
if : 
¤  P(X = a|Y = b) = P(X = a) 

¤  equivalently: P(X = a, Y = b) = P(X = a) P(Y = b) 

¤  This means that the outcome of Y has no influence on the 
outcome of X. Events are statistically independent.  
¤  Typical examples: coins, dice.  

¤  Many events in natural language not independent, but 
we pretend they are to simplify models.  



Chain rule, independence 

¤  Chain rule for complex joint events:                    
P(X1 = a1, X2 = a2, … Xn = an)    

 = P(X1 = a1)P(X2 = a2|X1 = a1)…P(Xn = an|a1…an-1) 

¤  In practice, it is typically hard to estimate things like     
P(an | a1, ..., an-1) well because not many training 
examples satisfy complex condition.  

¤  Thus pretend all are independent. Then we have 
 P(a1, ..., an) ≈ P(a1) ... P(an).  
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Bayesʼ’ Theorem 

¤  Important consequence of joint/conditional probability 
connection 

¤  Bayesʼ’ Theorem lets us swap the order of dependence 
between events 

¤  We saw that   

¤  Bayesʼ’ Theorem: 
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Example of Bayes’ Rule  

¤  S:stiff neck, M: meningitis 

¤  P(S|M) =0.5, P(M) = 1/50,000 P(S)=1/20 

¤  I have stiff neck, should I worry? 
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Expected values / Expectation 

¤  Frequentist interpretation of probability: if P(X = a) = p, 
and we repeat the experiment N times, then we see 
outcome “a” roughly p N times.  

¤  Now imagine each outcome “a” comes with reward 
R(a). After N rounds of playing the game, what reward 
can we (roughly) expect?  

¤  Measured by expected value:  

 

17 



18 

Back to the Language Model 

¤  In general, for language events, P is unknown 

¤  We need to estimate P, (or model M of the language) 

¤  Weʼ’ll do this by looking at evidence about what P must 
be based on a sample of data (observations) 



Example: model estimation 

¤  Example: we flip a coin 100 times and observe H 61 times. 
Should we believe that it is a fair coin?  
¤  observation: 61x H, 39x T  

¤  model: assume rv X follows a Bernoulli distribution,  
 i.e. X has two outcomes, and there is a value p such that  
 P(X = H) = p and P(X = T) = 1 - p.  

¤  want to estimate the parameter p of this model  
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Estimation of P 

¤  Frequentist statistics 
¤  parametric methods 

¤  non-parametric (distribution-free) 

¤  Bayesian statistics 
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Frequentist Statistics  

¤  Relative frequency: proportion of times an outcome u 
occurs 

 fu = C(u) / N 

¤  C(u) is the number of times u occurs in N trials 

¤  For N approaching infinity, the relative frequency tends 
to stabilize around some number: probability estimates 
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Non-Parametric Methods 

¤  No assumption about the underlying distribution of the 
data 

¤  For ex, simply estimate P empirically by counting a large 
number of random events is a distribution-free method 

¤  Less prior information, more training data needed 
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Parametric Methods 

¤  Assume that some phenomenon in language is 
acceptably modeled by one of the well-known family of 
distributions (such binomial, normal) 

¤  We have an explicit probabilistic model of the process by 
which the data was generated, and determining a 
particular probability distribution within the family requires 
only the specification of a few parameters (less training 
data) 
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Binomial Distribution 

¤  Series of trials with only two outcomes, each trial being 
independent from all the others 

¤  Number r of successes out of n trials given that the 
probability of success in any trial is p: 
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¤  Continuous  

¤  Two parameters: mean  μ  and standard deviation σ 

¤  Used in clustering 

Normal (Gaussian) Distribution 
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Maximum Likelihood Estimation  

¤  We want to estimate the parameters of our model from 
frequency observations. There are many ways to do this. 
For now, we focus on maximum likelihood estimation, 
MLE.  

¤  Likelihood L(O ; p) is the probability of our model 
generating the observations O, given parameter values 
p.  

¤  Goal: Find value for parameters that maximizes the 
likelihood.  
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ML Estimation 

¤  For Bernoulli and multinomial models, it is extremely easy 
to estimate the parameters that maximize the likelihood:  
¤  P(X = a) = f(a)  

¤  in the coin example above, just take p = f(H)  

¤  Why is this?  
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Bernoulli model 

¤  Let’s say we had training data C of size N, and we 
 had NH observations of H and NT observations of T.  
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Likelihood functions 

29 (Wikipedia page on MLE; licensed from Casp11 under CC BY-SA 3.0)  



Logarithm is monotonic 

¤  Observation: If x1 > x2, then ln(x1) > ln(x2).  

¤  Therefore, argmax L(C) = argmax l(C) 
     p      p 

30 



Maximizing the log-likelihood 

¤  Find maximum of function by setting derivative to zero: 
 

¤  Unique solution is p = NH / N = f(H).  
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More complex models 

¤  Many, many models we use in NLP are multinomial 
probability distributions. More than two outcomes 
possible; think dice rolling.  

¤  MLE result generalizes to multinomial models: 
 P(X = a) = f(a).  

¤  Maximizing log-likelihood uses technique called 
Lagrange multipliers to ensure parameters sum to 1.  

¤  If you want to see the details, see Murphy paper on the 
website.  
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Conclusion 

¤  Probability theory is essential tool in modern NLP. 

¤  Important concepts today:  
¤  random variable, probability distribution  

¤  joint and conditional probs; Bayes’ rule; independence  

¤  expected values 

¤  statistical models; parameters; likelihood; MLE  

¤  We will use all of these concepts again and again in this 
course. If you have questions, ask me early.  
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next Friday 

¤  n-gram models 

¤  (Tuesday: practical session on Python, NLTK, getting ready 
for assignment 1, etc.) 
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