
BM1 Advanced Natural Language Processing
University of Potsdam, Winter 2016/17

Assignment 1: Modelling Language

Tatjana Scheffler, Ph.D.

Due: Friday, November 4, 10:00 a.m.

Use Python 2 and the Natural Language Toolkit (NLTK) for your exercises.
The NLTK book (“Natural Language Processing with Python”) is available on-
line at http://www.nltk.org/book 1ed/ You should also familiarize yourselves
with working with unicode and UTF-8 in Python. The session on Tuesday, Oc-
tober 25 can be used to get up to speed with Python, NLTK, and the packages
used in the assignments below.

Problem 1: Zipf’s Law

Empirically verify Zipf’s law. Use the following freely available corpora:

• King James Bible,
http://www.gutenberg.org/cache/epub/10/pg10.txt

• The Jungle Book,
http://www.gutenberg.org/cache/epub/35997/pg35997.txt

• SETIMES Turkish-Bulgarian parallel newspaper text,
http://opus.lingfil.uu.se/download.php?f=SETIMES2/bg-tr.txt.zip

For each corpus, give a list of unique word forms sorted by descending fre-
quency. Preferably using the Python libraries numpy and matplotlib, plot the
frequency curves for the corpora. Make sure to provide both a linear curve, and a
log-log curve (see methods matplotlib.pyplot.plot and matplotlib.pyplot.loglog).

Provide a brief discussion of the findings, as well as the source code.

Problem 2: Random Text Generation

In this assignment, you will reimplement the “Dissociated Press” system that
was developed by MIT students in the 1970s (see Wikipedia). The purpose of
this system is to generate random text from an n-gram model over a corpus.

Train an nltk.model.ngram.NgramModel using a corpus of your choice (from
Problem 1 or elsewhere), and name it ngram. You can then use ngram[context]
to determine the probability distribution for the next word given the previous

1



n − 1 words. Given this distribution, you can use the method generate from
the NLTK class ProbDistI to generate the next random word.

Use your system to produce a number of text samples, 100 words in length
per each. Vary n from 2 to 4. Submit a few interesting texts that your system
generates, and discuss how the quality (and creativity) of the generated outputs
changes with n. Also submit your source code, and document any dependencies,
such as links to the selected corpora.

Problem 3: Pointwise Mutual Information

In statistical NLP we frequently make independence assumptions about relevant
events which are not actually correct in reality. We are asking you to test the
independence assumptions of unigram language models.

Pointwise mutual information,

pmi =
P (Xt = w1, Xt+1 = w2)

P (Xt = w1)P (Xt+1 = w2)
≈ f(w1, w2)N

f(w1)f(w2)

is a measure of statistical dependence of the events Xt = w1 and Xt+1 = w2;
f(w) is the absolute frequency of word w and N is the total size of the corpus.
If the probability of the next word in the corpus being w2 is unaffected by the
probability of the previous word being w1, then pmi(w1, w2) = 1; otherwise the
pmi is higher or lower than one.

Calculate the pmi for all successive pairs (w1, w2) of words in the King James
Bible corpus. Words (not word pairs!) that occur in the corpus less than 10
times should be ignored. List the 20 word pairs with the highest pmi value and
the 20 word pairs with the lowest pmi value.

Document and submit your observations and code. Discuss the validity of
the independence assumption for unigram models.

Submit your solutions and code via email to johannsmeier@uni-potsdam.de

2


