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Abstract. In this article, we conduct quantitative and qualitative anal-
yses of unknown words in German Twitter messages, and propose a
normalization method which prepares German tweets for standard text
processing tools. In the first part, the prevalence of different types of
out-of-vocabulary (OOV) tokens and non-standard language in German
Twitter data is determined. In a second step, we present a set of ad-hoc
techniques which can tackle some of the most prominent effects found
during the analyses. We show how this set of techniques helps us lower
the average rate of out-of-vocabulary tokens in Twitter messages and
how this lower OOV-rate in turn helps improve the quality of automatic
part-of-speech tagging.
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1 Introduction

When Jack Dorsey, the present CEO of Twitter Inc., was sending the very first
tweet on March 21, 2006 (Dorsey, 2006), he probably did not realize that his
message – “just setting up my twttr” – already contained a word which was
unknown to the majority of NLP applications existing at that time and that
there would be many such words in tweets in the future causing a lot of problems
for automatic text analysis tools.

And though the problem of out-of-vocabulary words and textual normaliza-
tion have been extensively studied in computational linguistics since as early as
the late 1950s (cf. Petersen, 1980) and were anything but new at the time when
online communication emerged, it were small messages that revived interest in
these fields in the past two decades.

In the next section, we will give an overview of existing scientific approaches
to the problem of tackling text noisiness in non-standard texts. After that, in
Section 3, we will analyze which types of noisiness phenomena are especially
characteristic for German Twitter. Section 4 will subsequently describe an auto-
matic procedure for mitigating some of the most prominent of those effects. In
a concluding step, we will perform an evaluation of the results of this procedure
and give some possible suggestions for future research.
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2 Related Work

At the very onset of the works on noisy text normalization (NTN), the two
major sources of data where most text noisiness came from were texts produced
by automatic optical character recognition and speech recognition applications.
A relatively low average accuracy of those applications at the beginning of the
1990-s forced researchers to think about how words distorted during recognition
could be restored to their respective standard language forms at the end of the
processing. A method which seemed to be most suitable for these purposes at
that time was the technique called “noisy channel model” (NCM) first proposed
by Shannon in 1948.

NCM divided the complex task of text normalization in three smaller sub-
problems which could be formulated as follows a) given an unknown and pur-
portedly not normalized word (NNW) how could its normalized variants (NVs)
be retrieved; b) given the devised NVs, how probable would it be that they really
were the correct variants for normalizing NNW; and finally c) given the devised
NVs, how probable would it that they would ever occur in a normalized text.

It is no wonder that NCM was one among the first methods which was
applied for normalization of mobile messages and Internet-based communication
(IBC) texts. In 2003, Clark proposed a unified NCM-based system which jointly
performed tokenization, sentence splitting, and word normalization of Usenet
forum posts. Choudhury et al. (2007) extended the NCM-approach proposed by
Toutanova and Moore (2002) by converting it to a Hidden Markov Model and
then applied this model for normalization of SMS messages. Beaufort et al. (2010)
made use of finite state methods (FSM) to perform French SMS normalisation
by combining the advantages of FSM and NCM.

Starting from the early 2000-s, the increasing quality of statistical machine-
translation (SMT) applications and gradual realization of the shortcomings of
NCM methods operating solely on the character level of words spurred the re-
searchers on the development of NTN methods which were more similar to the
established SMT techniques. In the scope this framework, normalization task
was defined as a task of mapping an unnormalized word phrase to its normalized
counterpart. This counterpart could either be specified manually as was done by
Clark and Araki (2011) or it could be derived automatically during the align-
ment of normalized and unnormalized training data as was suggested by Aw et
al. (2006). The latter approach however presupposed that a sufficiently large col-
lection of such data was available. One of the first attempts to apply an SMT-like
technique to normalization of Twitter messages was made by Kaufmann (2010)
who used a corpus of SMS messages as his training set though.

Finally, as it was noticed by Kobus et al. (2008), NTN methods relying on
either NCM or SMT techniques usually revealed complementary strengths and
weaknesses. This notion led to the idea that incorporating these two normaliza-
tion approaches into one system would improve the overall performance as differ-
ent sources of information would benefit from each other. So Kobus et al. (2008)
proposed an approach which first used a trained SMT module and then fed its
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output into a finite state transducer (FST) whose transitions represented pho-
netic or graphematic substitutions frequently occurring in unnormalized words.

It should however be noted that almost all of the above methods mainly
concentrated on only English data. A few exceptions from this were approaches
suggested by Beaufort et al. (2010) and Kobus (2008) for French. Oliva et al.
(2013) proposed a hybrid procedure for normalization Spanish SMSes. To the
best of our knowledge, not very much research has been done for German in
this field so far. In order to get a better intuition what the nature of words
requiring normalization is in this language and to be able to answer the three
fundamental questions formulated by NCM, we decided to have a closer look at
German Twitter and to analyze words occurring there which were regarded as
unknown by standard NLP tools commonly used for processing German texts.

3 Analysis of Unknown Tokens

In order to estimate the percentage of unknown words in Twitter, we randomly
selected 10,000 messages from a corpus of 24,179,871 German tweets gathered
in April 2013. We developed a Twitter-aware sentence splitter. For tokenization,
we slightly adjusted the specialized Twitter tokenizer1 developed by Christo-
pher Potts to the peculiarities of German. After skipping all words which did
not contain any alphabetic characters (i.e., numbers and punctuation marks) or
consisted only of a single letter, we obtained a list of 129,146 tokens. As refer-
ence systems for dictionary lookup we used the open-source spell checking pro-
gram hunspell2 and the publicly available part-of-speech tagger TreeTagger3

(Schmid, 1994).
Out of this token list, 26,018 tokens (20.15 %) were regarded as unknown by

hunspell and 28,389 tokens (21.98 %) were considered as OOV by TreeTagger.
We also performed these estimations for word types. The relative rate of unknown
words raised as expected and ran up to 46.96 % for hunspell and 58.24 % for
TreeTagger, out of a total of 32,538 types.

We classified found OOV tokens into the following three groups according
to the reasons why these tokens could have been omitted from applications’
dictionaries:

1. Objective limitation of machine-readable dictionaries (MRD). Among
this group, we counted valid words of basic vocabulary which had erroneously
been omitted from an applications’ MRD;

2. Stylistic specifics of text genre. This group comprised words which did
not belong to the standard language but were perfectly valid terms in the
domain of web discourse or more specifically in Twitter communication;

3. Spelling deviations. In the scope of this group, we considered non-standard
spellings of words encountered in text.

1 http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py
2 Ispell Version 3.2.06 (Hunspell Version 1.3.2); dictionary de DE.
3 Version 3.2 with German parameter file UTF-8.
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In order to see how detected OOV words were distributed among and within
these 3 major groups, we manually analyzed all OOV tokens which appeared
in the text more than once and also looked at 1,000 randomly selected hapax
legomena. The breakdown of these OOV tokens into the three major classes is
shown in Table 1. More fine-grained analysis is discussed below.

Table 1. Distribution of OOV words over the three major classes

OOV subclass
hunspell TreeTagger

% of OOV
tokens

% of OOV
types

% of OOV
tokens

% of OOV
types

Objective limitation of
MRD

45.87 54.62 40.46 43.36

Stylistic specifics of
text genre

41.65 33.64 48.02 44.59

Spelling deviations 11.87 10.75 9.09 8.23
Intended deviations 8.06 5.09 5.97 3.7
Unintended deviations 3.81 5.66 3.12 4.54

We subdivided the class 1 into the following subcategories:

1. regular German words, e.g. Piraterie, losziehen;
2. compounds, e.g. Altwein, Amtsapothekerin;
3. abbreviations, e.g. NBG, OL;
4. interjections, e.g. aja, haha;
5. named entities, with subclasses:

(a) persons, e.g. Ahmadinedschad, Schweiger ;
(b) geographic locations, e.g. Biel, Limmat ;
(c) companies, e.g. Apple, Facebook ;
(d) product names, e.g. iPhone, MacBook ;

6. neologisms, with subclasses:
(a) newly coined German terms, e.g. entfolgen, gegoogelt ;
(b) loanwords, e.g. Community, Stream;

7. and, finally, foreign words like is or now which in contrast to 6b were not
mentioned in any existing German lexica and did not comply with inflec-
tional rules of German grammar.

Such taxonomy was supposed to reflect the fact that valid words could have
been omitted from an MRD either due to the limitations of developers’ capacities
(group 1), active word formation processes or lexical productivity of the language
itself (groups 2 through 6a) or also due to language’s openness to foreign language
systems (groups 6b and 7).

Percentage figures for each of the above subgroups are shown in Table 2.
We have considered OOV-distributions for both hunspell and TreeTagger. For
each of them, we estimated the percentage of a particular subclass with regard
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to the total number of occurrences of all OOVs (column “% of OOV tokens”)
as well as with regard to the percentage rate in the list of only unique unknown
tokens disregarding their frequencies (column “% of OOV types”).

Table 2. Distribution of OOV words belonging to the class “Objective limitedness of
MRD”

OOV subclass
hunspell TreeTagger

% of OOV
tokens

% of OOV
types

% of OOV
tokens

% of OOV
types

regular German words 7.27 8.66 2.74 3.46
compounds 1.27 2.65 2.5 4.54
abbreviations 3.96 4.8 3.26 3.43
interjections 5.99 4.6 5.56 4.27
person names 4.77 6.49 2.31 3.46
geographic locations 1.53 2.6 1.16 1.87
company names 2.28 2.87 4.34 3
product names 2.16 2.65 2.45 3.22
newly coined terms 1.37 1.35 3.32 2.38
loanwords 3.7 4.06 3.28 2.86
foreign words 11.57 13.89 9.54 10.87

Similarly to class 1, we divided the group – “Stylistic specifics of text genre”
– into the following subclasses:

1. @-tokens, e.g. @ZDFonline, @sechsdreinuller ;
2. hashtags, e.g. #Kleinanzeigen, #wetter ;
3. links, e.g. http://t.co, sueddeutsche.de;
4. smileys, e.g. :-P, xD ;
5. slang, e.g. OMG, WTF etc.

according to the formal or lexical class which tokens of this group belonged
to. As slang, we considered colloquial and dialectal lexical expressions (e.g. nö,
bissl), common phrases pertaining to the genre of internet-based communication
(e.g. LOL, ava), as well as spellings of words which resembled their colloquial
pronunciation in everyday speech (e.g. Tach instead of Tag, grade instead of
gerade). The latter cases were assigned by us to two categories, namely, slang
and spelling deviations. Detailed statistics on the afore-mentioned subgroups of
class 2 are shown in Table 3:

A striking outlier of 16.22 % for slang tokens in column 1 of the Table is
explained by the fact that the word “RT” which occurred 1,235 times in our
texts and was by far the most frequent OOV in the analyzed data set, was
recognized as OOV by hunspell but was not deemed as such by TreeTagger.

The last major class is “Spelling deviations”, which includes both intended
(see above for “slang”) and unintended spelling variations. It was split into the
groups:
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Table 3. Distribution of OOV words belonging to the class “Stylistic specifics of text
genre”

OOV subclass
hunspell TreeTagger

% of OOV
tokens

% of OOV
types

% of OOV
tokens

% of OOV
types

@-tokens 13.12 20.49 16.14 21.84
hashtags 7.41 6.26 13.02 10.56
links 2.45 0.4 4.88 6.05
smileys 2.01 0.74 6.86 1.2
slang 16.66 5.75 7.12 4.94

1. insertions, e.g. dennen instead of denen;

2. deletions, e.g. scho instead of schon;

3. substitutions, e.g. fur instead of für ;

according to the type of operation which led to a particular spelling mistake.
In cases when multiple different operations were involved simultaneously on one
word, we explicitly marked each of these operations in our data. Statistical dis-
tribution of these subclasses is shown in Table 4 on page 6.

Table 4. Distribution of OOV words belonging to the class “Spelling deviations”

OOV subclass
hunspell TreeTagger

% of OOV
tokens

% of OOV
types

% of OOV
tokens

% of OOV
types

insertions 1 1.66 0.79 1.08
deletions 8.3 6.28 6.55 5.33
substitutions 2.57 2.81 1.75 1.82

As is clear from the table, deletions are by far the most common type of
deviant spellings. This is partially explained by either deliberate or accidental
omissions of characters made by users, but an even bigger part of deletions was
due to the automatic truncations of too long messages which were performed by
the Twitter service itself.4

Since the latter two major groups of OOVs (Twitter-specific phenomena and
spelling deviations) accounted for more than a half of all unknown tokens found
in Twitter and posed a significant problem for automatic analysis, we decided
to address these classes by applying a set of normalization procedures to each
of them.

4 Since Twitter imposes a strict restriction of 140 characters on the length of posted
messages, longer tweets get automatically truncated.
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4 Text Normalization Procedure

4.1 Replacement of Twitter-Specific Phenomena

In order to remove noise caused by Twitter-specific phenomena (TSP) and to
reduce data sparsity for further processing, we replaced TSPs, which played a
significant syntactic role in a sentence, with generic tokens representing the class
of TSP being replaced. Those phenomena which did not have any particular
syntactic function and did not bear any relevant semantic information were
deleted from messages. This approach is similar to the syntactic disambiguation
steps suggested by Kaufmann (2010) for normalization of English tweets.

For our purposes, we developed a prototypic Python system analogous to a
finite-state transducer in which a set of regular expressions was associated with
corresponding actions performed on matched subgroups.

In this system, we replaced all smileys with the tokens “%PosSmiley” or
“%NegSmiley”, depending on the type of emotion conveyed by a particular
emoticon. In cases when the polarity of a smiley was unclear, the generic substi-
tution token “%Smiley” was used. For hyperlinks and e-mail addresses, we looked
at the surrounding context. If these items occurred outside of any sentence, and
were not preceded or followed by a preposition or conjunction, we removed them
from the text. Otherwise, these tokens were replaced with the dummy words
“%Link” and “%Mail” respectively. Furthermore, we stripped all leading “#”
characters from the beginning of hashtags, since the alphabetic part of these to-
kens practically always bore some significant semantic information, even if these
tags appeared outside of a sentence.

For @-mentions, we had to decide whether the occurrences of these mentions
were meant simply as reply addresses or formed an indispensable constituent in
a sentence. In the former case, @-mentions were deleted, in the latter case, we
replaced them with the artifical token “%Username”.

When multiple rules matched the same context, we decided which rule to
apply by looking at the starting and ending positions of the first matched sub-
groups of each of the matched expressions, the starting and ending positions of
the whole regular expressions, the number of subgroups in each generated match
object and, finally, the order in which these rules appeared in our rule file.

We added all introduced artificial tokens to the custom dictionaries of Tree-
Tagger and hunspell. Furthermore, we remembered positions and lengths of
all made replacements along with the original input words which were deleted
or replaced, so that a restoration step could be performed any time after the
processing.

4.2 Restoration of spelling deviations

In order to get a deeper insight into the nature of incorrect spellings in Twit-
ter, we calculated what part of spelling deviations in our annotated data were
also assigned to the slang category. Such slang or colloquial spelling variants
accounted for 67,06 % of all spelling deviations found by hunspell and formed
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64,36 % of all spelling deviations detected by TreeTagger. Another noticeable
fact about these spellings was that the prevailing majority of them occurred
more than once in our texts. This could be explained by the fact that colloquial
spelling variants are usually formed by more or less regular processes. Such pro-
cesses are commonly applied to frequently used words which appear over and
over again in text. Non-colloquial misspellings, on the contrary, are formed by
occasional slips of finger. So, users neither notice nor tend to repeat them later.

According to our data, the most productive processes which produced most
of the colloquial spelling variants were:

– Omission of ‘e’ in unstressed positions, e.g. würd, zuguckn etc. In cases when
‘e’ was part of the impersonal pronoun “es” following a verb, the remaining
‘s’ of this pronoun was usually appended to the preceding verb form, e.g.
wirds instead of wird es;

– Omission or replacement of final consonants with their voiceless equivalents,
e.g. nich instead of nicht or Tach instead of Tag ;

– Multiple repetitions of characters as a means of expressing elongation of
sounds, e.g. Hilfeeee, süüüß ;

– Omissions of ‘ei’ from indefinite articles, e.g. ne instead of eine or nem in
lieu of einem;

– Omissions of ‘he’ from the verbal prefixes herauf-, heraus-, herum- etc., e.g.
rauszukriegen, rumbasteln, ;

We developed a set of reverse transformation rules which first captured tokens
with suspicious character sequences, then checked whether the captured word
was not present in the dictionary and whether its assumed transformation was
a valid in-vocabulary term. If these conditions were satisfied, we applied the
transformation associated with this rule. We have tested our set of 11 rules on
a held-out corpus of 184,331 tweets. It turned out, however, that our dictionary
checks were insufficient though, since they did not prevent us from making such
incorrect changes like the one shown in the Example 1.

Example 1. Wulff tritt zurück, Georg Schramme wird neuer Bundespräsident

In this sentence, the last name “Schramm” was incorrectly replaced with
the word “Schramme”, since the former token was unknown to the dictionary
whereas the latter was found in vocabulary. To prevent such erroneous cor-
rections, we decided to incorporate statistical information into our system and
added the restriction to the rules producing errors, that for a given unknown
input word wi and its possible in-vocabulary suggestion w∗

i , the following in-
equality had to be satisfied:

log(P (wi−1, wi)) + log(P (wi)) + log(P (wi, wi+1)) <

log(P (wi−1, w
∗
i )) + log(P (w∗

i )) + log(P (w∗
i , wi+1))

(1)

This inequality means that the sum of log-probabilities of a preceding bigram,
current unigram and the immediately following bigram for the word to be re-
placed had to be lesser than the corresponding sum of log-probabilities for its
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possible substitution.5 We gathered both the unigram and the bigram statistics
from our held-out set of tweets and smoothed them using add-λ smoothing. This
statistical information was later also used in the evaluation phase.

A different technique was used for tackling elongations of characters. For
these, we first squeezed successive repetitions of more than three characters
in a row to a maximum of three repetitive characters. After that, all possible
combinations of consecutively squeezed repeated characters were generated. It
means that for a word like “daaaaaassss”, we first transformed it to “daaasss”
and then generated all possible variants with triple, double and single repetitions
of “a” and “s”.

From this generated set, we removed all candidates which did not appear in
the dictionary. If multiple candidates were left after that, e.g., “dass” and “das”,
these candidates were scored using the joined sum of bigram and unigram log-
probabilities as described in the inequality 1. If no word in the generated set
was found in the reference dictionary, we fell back to the method suggested by
Brody and Diakopoulos (2011) and replaced each repeated letter with a single
instance of that letter. For each such condensed form, there was a mapping to the
most frequently elongated form occurring in a training corpus from which this
dictionary was generated. If no condensed form was found, we simply returned
its squeezed form with maximum consecutive repetitions of three characters.

A much harder case for normalization represented spelling variants which
were classified as true, i.e. non-colloquial, misspellings. Such incorrect spellings
did not show any regularities except for the cases of incorrect spelling of umlauts.
The German characters ä, ö, and ü were often rewritten as sequences ae, oe, and
ue respectively. Since these character sequences also often appear in common
German words like, Mauer, Feuer, virtuell, we extracted all words having these
character sequences from a corpus of newspaper articles which were assumed to
be typed with correctly spelled umlauts. We replace the sequences ae, oe, and
ue with their respective umlauts, only if they did not appear as correctly spelled
words in the newspaper corpus.

5 Evaluation

We performed both an intrinsic and an extrinsic evaluation of the effectiveness of
our normalization procedure. As an intrinsic evaluation, we first measured how
the relative rate of OOV words in the input text changed after normalization.
It turned out that this rate decreased by 5.6 % for hunspell and by 8.9 %
for TreeTagger. This significant decrease, however, was mainly caused by our
replacement/removal of Twitter-specific terms and the addition of the artificial
replacement tokens to the applicatons’ dictionaries.

In order to separately assess the performance of our spelling correction mod-
ule, we extracted all messages from our analyzed corpus of 10,000 tweets which

5 One anonymous reviewer suggest to use a fixed threshold instead of only requiring
the probability of the replacing token to be higher than the probability of the current
token. We leave this interesting proposal for further research.
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contained at least one word that was marked as a deviant spelling in the anno-
tated data. We constructed hand-corrected gold data from this as follows: We
automatically replaced the deviant spellings with their correct variants which
we had previously specified during the annotation. However, since we did not
annotate all OOVs which occurred in the text only once but only 1,000 randomly
selected hapax legomena, we manually corrected unknown words which were not
included in our annotation. After that, extracted messages were pre-processed
by replacing Twitter-specific phenomena as described in Section 4.1. This gave
us a test set of 1,492 messages in which 1,480 misspellings were to be corrected.

For comparability, we evaluated the performance of our system by computing
the token-level precision, recall, and F-score (β = 1) of replacements. Addition-
ally, we measured the BLEU and NIST scores between the gold standard versions
and the unprocessed resp. the normalized tweets. The results of our evaluation
are shown in Table 5.

Table 5. Evaluation results for the spelling correction module

Input text BLEU NIST Precision Recall F-score

Before normalization 0.7929 12.55 – – –
After applying SDC 0.8455 12.9873 0.84 0.29 0.4317
After applying SDC + TSI 0.8638 13.1474 0.8750 0.383 0.5328
After applying SDC + TSI +
ES

0.8687 13.1971 0.875 0.4162 0.5641

After applying SDC + RSE +
ES + UR

0.8766 13.2638 0.8793 0.4584 0.6027

Finally, as a first step towards an extrinsic evaluation, we measured how the
performance of POS-tagging changed after normalization. For this, we randomly
picked 200 tweets from our analyzed data and POS-tagged them before and
after normalization using TreeTagger. After manual inspection of the results,
we could see a performance increase by 16.4 % from 71.82 % to 88.22 %.

6 Conclusions and Future Work

With this article, we hope to have provided a better insight into the nature
of ill-formed words in German Twitter messages. As was shown in Section 3,
special markup elements and casual spellings account for more than half of the
unknown words discovered in tweets. Furthermore, almost three quarters of non-
standard spellings could be regarded as colloquial spelling variants rather than
occasional slips of the finger. Such colloquial spellings also showed the tendency
to be formed by well formalized processes and to be used frequently in text.

We suggested a rule-based text normalization approach which could serve as
a baseline comparison measure for future normalization methods which may be
suggested for German tweets. As was shown in previous sections, our approach
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can effectively address some of the most frequent phenomena which contribute
to a higher rate of out-of-vocabulary words in Twitter texts, such as Twitter-
specific elements and non-standard spellings.

We are going to make our classification and test data available online under
the terms consistent with Twitter regulations. Our annotated data could, in our
opinion, significantly reduce tedious manual work for other researchers.

In the future, our method could be further refined and improved. As possible
steps for such refinement, we see on the one hand the addition of a machine-
learning classifier which could help distinguish spelling mistakes from valid un-
known words. On the other hand, a better disambiguation of suggested replace-
ment variants for misspellings could be achieved by letting a part-of-speech tag-
ger process a word grid with input tokens and their suggested replacements. At
the end of tagging, not only the most probable tag sequence but the most likely
word/tag mesh could be chosen in a single step. While these improvements are
beyond the scope of this work, we hope to have laid the groundwork for them.
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