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A B S T R A C T

It is well-known in statistics (e.g., Gelman & Carlin, 2014) that treating a result as publishable just because the p-
value is less than 0.05 leads to overoptimistic expectations of replicability. These effects get published, leading to
an overconfident belief in replicability. We demonstrate the adverse consequences of this statistical significance
filter by conducting seven direct replication attempts (268 participants in total) of a recent paper (Levy & Keller,
2013). We show that the published claims are so noisy that even non-significant results are fully compatible with
them. We also demonstrate the contrast between such small-sample studies and a larger-sample study; the latter
generally yields a less noisy estimate but also a smaller effect magnitude, which looks less compelling but is more
realistic. We reiterate several suggestions from the methodology literature for improving current practices.

Introduction

Imagine that a reading study shows a difference between two means
that has an estimate of 77ms, with standard error 30, that is, with =p 0.01.
Now suppose instead that the same study had shown an estimate of 40ms,
also with a standard error of 30; this time =p 0.18. The usual reporting of
these two types of results—either as significant and therefore “reliable” and
publishable, or not significant and therefore either not publishable, or seen
as showing that the null hypothesis is true—is misleading because it implies
an inappropriate level of certainty in rejecting or accepting the null. Indeed,
it has been argued that this routine attribution of certainty to noisy data is a
major contributor to the current replication crisis in psychology and other
sciences (Amrhein, Korner-Nievergelt, & Roth, 2017; Open Science
Collaboration, 2015). For recent examples from psycholinguistics of re-
plication difficulties, see Nieuwland et al. (2018) and Kochari and Flecken
(2018). The issue is not just the high frequency of failed replications, but
also that these failed replications arise in an environment where routine
success (defined as <p 0.05) is expected. We will refer to this <p 0.05
decision criterion for publication-worthiness as the statistical significance
filter. We will demonstrate through direct replication attempts one well-
known adverse consequence of the statistical significance filter (Gelman,
2018; Lane & Dunlap, 1978), that it leads to findings that are positively
biased. We want to stress that none of the statistical points made in this
paper are new (for similar arguments, see Button et al., 2013; Dumas-Mallet,
Button, Boraud, Gonon, & Munafò, 2017; Frank et al., 2017; Goodman,

1992; Hedges, 1984; Ioannidis, 2008, among others). However, we feel it is
necessary to demonstrate through direct replication attempts why sig-
nificance yields no useful information when statistical power is low. The fact
that underpowered studies continue to be treated as informative suggests
that such a demonstration is needed.

We assume here that the reader is familiar with the null hypothesis
significance testing (NHST) procedure as it is used in psychology today.
NHST can work well when power is relatively high. But when power is low,
published studies that show statistical significance will have exaggerated
estimates (see Appendix A for a formal argument). The effect of low power
is demonstrated in Fig. 1 using simulated data: for a low-power scenario, the
estimates from repeated samples fluctuate wildly around the true value, and
can also have the wrong sign. Whenever an effect is significant, it is ne-
cessarily an overestimate. Gelman and Carlin (2014) refer to these over-
estimates as Type M(agnitude) errors (when the sign of the effect is in-
correct, Gelman and Carlin call this Type S(ign) error). These overestimates
occur because the standard error is relatively large in low-power situations;
the wider the sampling distribution of the mean, the greater the probability
of obtaining extreme values. By contrast, when power is high, the estimates
under repeated sampling tend to be close to the true value because the
standard error is relatively small.

Fig. 1 illustrates another important point: when power is high, the
estimates have much narrower 95% confidence intervals. We will ex-
press this by saying that high-powered studies have higher precision
than low-powered studies. We borrow the term precision from Bayesian
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statistics, where it has a specific meaning: the inverse of the variance.
Here, we are using the term precision to stand for the uncertainty about
our estimate of interest (the sample mean, or a difference in sample
means). This uncertainty is expressed in frequentist statistics in terms of
the standard error of the sample mean. The standard error decreases as
a function of the square root of the sample size; hence, if power is in-
creased by increasing sample size, standard error will decrease.

Many researchers, such as Cohen (1962), and Gelman and Carlin
(2014), have pointed out that a prospective power analysis should be
conducted before we run a study; after all, why would one want to
spend money and time running an experiment where the probability of
detecting an effect is 30% or less? In medical statistics, prospective
power analyses are quite common; not so in psycholinguistics. Suppose
that we were to follow this practice from medical statistics and conduct
a prospective power analysis based on the effect sizes reported in the
literature. Gelman and Carlin (2014), and many others before them,
have pointed out that this can lead to an interesting problem. Whenever
an effect in an underpowered study comes out significant, it is ne-
cessarily an overestimate. In fields where power tends to be low, these
overestimates will fill the literature. If we base the power analysis on

the published literature, we would conclude that the effects are large. A
formal power analysis based on such exaggerated estimates is bound to
yield an overestimate of power, and we can incorrectly convince our-
selves that we have an appropriately powered study.

In psycholinguistics, usually we do no power analyses at all. We just
rely on the informal observation that most of the previously published
results had a significant effect. From this we conclude that the effect
must be “reliable,” and therefore replicable.

Although the above observations about power and replications are
well-known in statistics and psychology (see the discussion in
Chambers, 2017; Wasserstein & Lazar, 2016), they are not widely ap-
preciated in psycholinguistics. Our goal in this paper is to demonstra-
te—not via simulation but through actual replication attempts of a
published empirical result—that relying exclusively on statistical sig-
nificance to decide whether or not a result is newsworthy leads to
misleading conclusions.

We show through a case study that small-sample experiments can
easily deliver statistically significant results that overestimate the true
effect and are non-replicable. For this case study, we chose a paper by
Levy and Keller (2013) that investigated expectation and locality effects
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Fig. 1. A demonstration of Type M error using simulated data. We assume that the data are generated from a normal distribution with mean 15ms and standard
deviation 100ms. The true mean is shown in each plot as a solid horizontal line. When power is low, under repeated sampling, whenever the estimates of an effect
come out significant, the values are overestimates and can even have the wrong sign. When power is high, significant and non-significant effects will be tightly
clustered near the true mean.
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in sentence comprehension. We selected this particular paper because
there are no a priori reasons to doubt the results in the paper, as they are
theoretically well-founded and have plenty of independent empirical
support.

Anticipating our conclusions, we suggest that researchers and
journals should avoid focusing exclusively on statistical significance to
evaluate the validity and reliability of studies. Validity should be es-
tablished by running as high-precision a study as possible (we explain
this later in the paper); and reliability should be established through
direct replication using pre-registration.

Case study: the effects of expectation vs. memory retrieval in
sentence processing

Background

Levy and Keller (2013) published two eyetracking studies in the
Journal of Memory and Language in which they tested the predictions of
two well-established theoretical proposals in sentence processing re-
search: the expectation-based account (Hale, 2001; Levy, 2008) and the
memory-based retrieval accounts (Gibson, 1998, 2000; Lewis &
Vasishth, 2005).

The expectation-based account, as developed by Levy (2008), pre-
dicts that intervening material between, for example, a subject and its
verb, facilitates processing at the verb. To illustrate this point, consider
the discussion by Levy (2008) of the following sentences from an eye-
tracking (reading) study conducted by Konieczny and Döring (2003).

Konieczny and Döring found that regression path durations at the
verb verkaufte in (1a) were shorter than in (1b) (555 vs. 793ms). Levy’s
explanation for this facilitation is that the dative noun phrase (NP) in
(1a) sharpens the expectation for the verb to a greater degree than in
(1b): in the former, nominative, accusative, and dative NPs narrow the
range of possible upcoming verb phrases more than in the latter, where
only nominative and accusative NPs have been seen. Levy formalizes
this idea in terms of surprisal (Hale, 2001), which essentially states that
the conditional probability of the verb phrase appearing given the
preceding context determines processing difficulty: the more pre-
dictable the verb phrase, the easier it is to process. Using a probabilistic
context-free grammar of German, Levy shows that syntactic surprisal is
lower in (1a) than (1b) (23.51 vs. 23.91 bits); this suggests that sur-
prisal may be a good explanation for the facilitation effect seen in
Konieczny and Döring (2003).1

A competing class of theories of sentence processing difficulty makes the
incorrect prediction for the reading time pattern observed at the verb in the
Konieczny and Döring study. For example, the Dependency Locality Theory
or DLT (Gibson, 2000) assumes that processing difficulty (and therefore
reading time) at a verb is a linear function of the distance between the verb

and its arguments; distance here is measured in terms of the number of new
discourse referents intervening between co-dependents. Under such an ac-
count, no difference is predicted between the two sentences above, because
the same number of new discourse referents intervenes between the subject
and verb in (1a) and (1b). A closely related account is a computational
model of cue-based retrieval (Engelmann, Jäger, & Vasishth, 2018; Lewis &
Vasishth, 2005; Nicenboim & Vasishth, 2018). The Lewis & Vasishth 2005
(LV05) model assumes that completing argument-verb dependencies is af-
fected by similarity-based interference arising from distractor nouns in
memory (a related model is by Van Dyke & McElree, 2006). Like the DLT,
the LV05 model predicts that interposing nouns between the argument(s)
and verb in grammatical sentences will increase processing difficulty at the
verb. For the Konieczny and Döring data, this model also predicts no dif-
ference in processing difficulty between the two conditions (1a) and (1b).
We will treat the DLT and the cue-based retrieval theories as specific in-
stantiations of the memory-based account.

Levy and Keller (hereafter, LK) built on the work of Konieczny and
Döring by developing a novel experimental design that cleverly pits the
expectation-based and memory-based accounts against each other. LK’s
studies are described next, as they form the basis for our replication at-
tempts.

The experiment design by Levy and Keller (2013)

As shown in Table 1, in their sentences for their Experiment 1, a
dative NP and a prepositional adjunct either appeared in a subordinate
clause or a main clause. The critical region in this experiment was the

verb versteckt; the post-critical region was defined as the two words
following the matrix verb (und somit, ‘and thus,’ in the example shown
in Table 1).

Their Experiment 2 had a design similar to Experiment 1, with one
difference: syntactic complexity was increased by embedding the main
clause of Experiment 1 within a relative clause (see Table 2). Here, the
critical region was the head verb of the relative clause and the auxiliary
(versteckt hat, ‘hidden had’, in Table 2) and the post-critical region was
the noun phrase (here, die Sache, ‘the affair’). Note that the two ex-
periments take advantage of the head-final property of German: the
verb always appears clause-finally in these constructions. Since all the
arguments precede the verb, it is easy to investigate the effect of verb
predictability conditional on having seen all the arguments.

Predictions for the LK study

LK lay out the predictions of the expectation-based account as fol-
lows (Levy & Keller, 2013):

…[condition (a)] (neither dative nor adjunct in the main clause)
should be hardest to process, while [condition (d)] should be easiest
(both dative and adjunct in the main clause). [Conditions (b) and
(c)] should be in between (one phrase in the main clause). (p. 202)

The reasoning behind these predictions is that interposing material
sharpens the expectation for a participial verb. For a graphical

(1) a. Die Einsicht, dass [NOM der Freund] [DAT dem Kunden] [ACC

The insight, that the friend the client
das Auto aus Plastik] verkaufte,…
the car from plastic sold,…
‘The insight that the friend sold the client the plastic car…’

b. Die Einsicht, dass [NOM [der Freund] [GEN dem Kunden]]
The insight, that the friend of the client
[ACC das Auto aus Plastik] verkaufte,…

the car from plastic sold,…
‘The insight that the friend of the client sold the plastic car. . .’

1 A reviewer, Roger Levy, points out that these values are almost certainly
overestimates of “true” comprehender surprisal for these cases, because the
probabilistic context free grammar used for the calculations encodes much less
information than human comprehenders would deploy.
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Table 1
Example sentences for LK’s Experiment 1 (simplified). The abbreviations mean the following: ADJ: adjunct; DAT: dative; PP:
prepositional phrase; NP: noun phrase. The gray boxes highlight the position of the PP adjunct and the dative NP as well as
the position of the critical region (versteckt, ‘hidden’) in the sentences.

‘After the teacher imposed detention classes, Hans Gerstner hid the football from the naughty son of the industrious janitor as
additional payback for the multiple wrongdoings, and thus corrected the affair.’

Table 2
Example sentences for LK’s Experiment 2 (simplified). The abbreviations mean the following: ADJ: adjunct; DAT: dative; PP: preposi-
tional phrase; NP: noun phrase. The gray boxes highlight the position of the PP adjunct and the dative NP as well as the position of the
critical region (versteckt hat, ‘hidden had’) in the sentences.

‘After the teacher imposed detention classes, the classmate who hid the football from the naughty son of the industrious janitor as
additional payback for the multiple wrongdoings corrected the affair.’
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summary of the predictions, see Fig. 2, left panel; this figure is a re-
production of LK’s Fig. 1. As mentioned above, Levy (2008) and others
refer to such predicted speedups as expectation effects.2

The memory-based account makes different predictions. Because
intervening discourse referents between the subject and the verb should
generally lead to greater processing difficulty, placing the dative NP or
the adjunct in the main clause should lead to a slowdown at the verb,
and placing both the dative NP and the adjunct in the main clause
should lead to an even greater slowdown at the verb. This means that
reading time at the critical verb in condition (b) should be slower than
(a), and condition (d) should be slower than (c); in fact, (d) should show
the greatest slowdown in reading time, because it is associated with the
highest processing cost (see Fig. 2, right panel). Gibson (2000) and
others often refer to these slowdowns as locality effects.

One nice property of the LK design is that the verb position is always
constant across conditions being compared: the intervening phrases
(dative NP and adjunct) always appear in the sentence, either inter-
vening between the subject and verb or at the beginning of the sen-
tence. This resolves a potentially serious confound in such studies;
many of the previous studies (Grodner & Gibson, 2005; Konieczny,
2000; Vasishth & Lewis, 2006) had the verb further downstream in the
sentence whenever an additional intervener was present. This posi-
tional confound makes comparisons across conditions difficult to in-
terpret: if a verb appears later in the sentence, this alone may lead to
slowdowns or speedups compared to a baseline condition (for discus-
sion, see Ferreira & Henderson, 1993).

A re-analysis of the LK data

The two studies by LK had 28 participants and 24 items each. In their
paper, statistical summaries and analyses for the critical and post-critical
regions were prepared using the lme4 package (Bates, Maechler, Bolker, &
Walker, 2015) in R (R Core Team, 2018). They released their data to us,
which allowed us to carry out the same analyses as they did, but within a

Bayesian framework (Gelman et al., 2014) using the probabilistic pro-
gramming language Stan (Carpenter et al., 2016). Below, we explain our
reasons for using the Bayesian data-analytic approach. Briefly, our main
interest here is in quantifying uncertainty about the parameter estimates of
interest. We elaborate on this point next.

Motivation for using Bayesian data analysis. In the Bayesian fra-
mework, all the parameters in the model, which can be represented as a
vector θ, are assumed to have some prior distribution of plausible values,
p θ( ). Given the prior, and a likelihood function for the data p data θ( | ),
Bayes’ rule is used to compute the posterior distribution of the parameters:
p θ data( | ). Bayes’ rule states that the posterior is proportional to the prior
multiplied by the likelihood: ∝p θ data p θ p data θ( | ) ( ) ( | ). Thus, the appli-
cation of Bayes’ rule furnishes a posterior distribution representing plausible
values of a parameter given the data and model (the model subsumes the
likelihood function and the priors). Technically, this cannot be done with
the frequentist approach, where each parameter is assumed to be an un-
known point value. Such a point value may represent an invariant number
in some fields (e.g., in physics, the speed of light in a vacuum), but is a
fictional construct in areas like psychology and psycholinguistics. For ex-
ample, there exists no single number representing the increase in reading
time in object vs. subject relatives in English. The Bayesian approach allows
us to focus on the uncertainty of the estimates of interest. A further, al-
though more peripheral, advantage is that we can always fit so-called
“maximal” models with full covariance matrices for by-participant and by-
item variance components (Barr, Levy, Scheepers, & Tily, 2013; Schielzeth
& Forstmeier, 2009). Such maximal models often fail to converge in lme4
for small data sets and yield unrealistic estimates of the variance compo-
nents (see Vasishth, Nicenboim, Beckman, Li, & Kong, in press, for an ex-
ample). Fitting a maximal model has the advantage that we can make the
most conservative possible claim about the parameters given the data and
model. The reason that Bayesian methods allow us to fit essentially arbi-
trarily complex random effects variance components is the involvement of
prior information in the model. We discuss priors next.

Prior specification in Bayesian models. In the Bayesian approach, it is
common to use so-called mildly and weakly informative priors that have a
regularizing effect on the posteriors.3 A weakly informative prior allows a
wide range of plausible values; regularizing means that we downweight
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Fig. 2. Predictions for the Levy and Keller Experiments 1 and 2: The left panel shows the speedup predicted by the expectation account. The right panel shows the
slowdown predicted by memory-based accounts. This figure is based on Fig. 1 of Levy and Keller (2013).

2 LK showed in a corpus analysis (summarized in their Table 1 Levy & Keller,
2013, p. 204) that if the dative NP or both the dative NP and the adjunct phrase
appeared in the main clause, the main clause verb phrase (the verb phrase that
the verb versteckt, ‘hidden’, heads) had lower surprisal values. Thus, according
to the corpus analysis, conditions (a) and (c) would be predicted to be read
slower than conditions (b) and (d). In the present paper, we follow the pre-
dictions laid out in LK’s Fig. 1.

3 Ideally, one should use a “community of priors” to conduct an analysis, so
that all opinions on a topic are taken into account. This approach is used
sometimes in areas like medicine (Spiegelhalter, Abrams, & Myles, 2004).
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extreme parameter values that are a priori unlikely to occur. A simple ex-
ample is a prior on correlations or correlation matrices; Stan allows us to
define a so-called LKJ prior (Lewandowski, Kurowicka, & Joe, 2009) on
even large correlation matrices such that the prior downweights −1 and
+1 as possible values. This is illustrated in Fig. 3. When the nu (ν) para-
meter in the built-in Stan function for an LKJ prior is less than 1, inter-
mediate values are downweighted; such a situation is the opposite of what
we mean here by regularizing priors. When ν is higher than 1, extreme
values are downweighted. Regularizing priors are also defined for all other
parameters in the model. For detailed tutorials specifically intended for
psycholinguistics, see Vasishth et al. (in press), Nicenboim and Vasishth
(2016), Sorensen, Hohenstein, and Vasishth (2016). More general in-
troductory book-length treatments suitable for psychologists and psycho-
linguists are Kruschke (2015) and McElreath (2016). An advanced treat-
ment is in Gelman et al. (2014).

Throughout this paper, we will summarize the posterior distribu-
tions with their mean and the 95% credible interval.4 This equal-tailed
interval demarcates the range over which we are 95% certain (given the
data and the model) that the true parameter lies. The credible interval
therefore allows us to do something that a frequentist confidence in-
terval cannot: quantify our uncertainty about the parameter of interest.
The frequentist confidence interval cannot quantify uncertainty about
the estimate of interest for two reasons. First, in the NHST way of
thinking, a parameter in the frequentist paradigm is an unknown point

value. Once one assumes that a parameter can only have a fixed but
unknown point value, the parameter cannot have a probability dis-
tribution associated with it. All estimation in the frequentist paradigm
is done with reference to the sampling distribution of the estimator, ̂μ ,
which is a function that gives us the sample mean for a particular data
set. The estimate of the standard error of the sample mean (SE) is a
function of the estimated standard deviation ̂σ and the sample size

̂=n SE σ n: / , is quantifying the uncertainty of the distribution of the
sample mean returned by the estimator ̂μ under hypothetical repeated
sampling. Given a data set consisting of a vector of data points x, the
sample mean x serves as an estimate of the unknown point value μ. The
confidence interval is then computed as ± ×x SE2 . Thus, a particular
95% confidence interval from a single data set either contains the true,
unknown μ or it doesn’t. Second, the meaning of the confidence interval
is so convoluted that it is difficult to understand or communicate: if one
were to—counterfactually—repeat the same experiment multiple times
and compute a 95% confidence interval each time, then 95% of those
hypothetical confidence intervals would contain the true parameter μ.
No probability statement can be made from any single confidence in-
terval anyway. For further discussion of confidence intervals, see
Hoekstra, Morey, Rouder, and Wagenmakers (2014), Kruschke (2015).
In typical psycholinguistic experiments, the confidence interval and the
Bayesian credible interval will look very similar (for examples, see
Bates, Kliegl, Vasishth, & Baayen, 2015); in some cases, the Bayesian
interval may be slightly wider than the confidence interval. As a con-
sequence of this rough equivalence, the confidence interval is often
interpreted as if it were a Bayesian credible interval, even though this is
technically incorrect. In the past, due to limitations of software for
carrying out Bayesian analyses, the confidence interval was much easier
to compute than the Bayesian credible interval, so equating Bayesian
and frequentist intervals was arguably a reasonable approximation.
However, today, packages like brms (Bürkner, 2017, 2018) make
Bayesian linear mixed models relatively easy to fit, and so it is now
quite straightforward to compute Bayesian credible intervals.
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Fig. 3. Example showing two different prior distributions using LKJ priors on a correlation parameter ρ. When the ν (nu) parameter in the LKJ function is 2, this
downweights extreme values such as ± 1. The LKJ(2) prior can be used to define priors for arbitrarily large correlation matrices, not just for a single correlation
parameter.

4 Kruschke (2015) uses highest posterior density intervals. As Kruschke
(2015, p. 87) puts it: “the HDI summarizes the distribution by specifying an
interval that spans most of the distribution, say 95% of it, such that every point
inside the interval has higher credibility than any point outside the interval.”
This interval is identical to the credible interval when the posterior distribution
is symmetric about its mean. When the posterior is asymmetric, the HPDI and
the credible interval will have a large overlap, but the lower and upper end-
points will differ.
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Statistical methodology. As in the original study, we investigated
the main effects of dative position (Dative) and adjunct position
(Adjunct) and their interaction, using the same contrast coding that LK
employed. Their contrast coding is shown in Table 3. A positive coef-
ficient for the main effect of Dative or Adjunct means that a speedup in
reading time is seen when the dative NP (respectively, the adjunct)
appears within the main clause (Expt 1) or relative clause (Expt 2), i.e.,
when it is interposed between the grammatical subject and the verb.

The reading times were log-transformed and a hierarchical (linear
mixed) model was fit with full covariance matrices for participants and
for items (the “maximal” model recommended by Barr et al., 2013). All
the code and data are available from https://osf.io/eyphj/. Because a
reviewer requested it, all models were also refit using raw reading times
with lme4. The results do not change depending on whether one log-
transforms or not. In all the Stan models, regularizing, weakly in-
formative priors (Gelman et al., 2014) were used for all parameters and
hyperparameters. For all parameters (except the parameters of the
correlation matrix for the random effects), the prior distribution was
defined as the standard normal distribution, Normal (0, 1); for variance
components these were truncated at 0 (because standard deviations
cannot be less than 0). The posteriors are not dependent on these spe-
cific priors; other choices (such as a Cauchy prior) lead to similar
posterior distributions. For the correlation parameters in the variance-
covariance matrix of the random effects, we defined regularizing LKJ
priors on the correlation matrix (Stan Development Team, 2016). For
each model, we ran four chains with 2000 iterations each. The first half
of these were warm-up samples and were discarded. Convergence was
checked by visually inspecting the chains and via the R-hat convergence
diagnostic (Gelman et al., 2014).

The posterior distributions for the main effects and interaction on
the log scale were back-transformed to posterior distributions in milli-
seconds. This was done as follows. Suppose that the fixed effects part of
the model is defined as:

= + + + ×rt β β Dative β Adjunct β Dative Adjunctlog( ) 0 1 2 3 (1)

with the effects coded as ± 0.5. Then, we can obtain the posterior
distribution of the difference in means between the two levels of Dative
by computing: + × − − ×exp β β exp β β( 0.5) ( 0.5)0 1 0 1 . This computation is
done within Stan, taking as input each of the posterior samples of

= …β β β, ,0 3, and returning as output the posterior distribution of the
difference in means on the raw ms scale. This transformation of the
posterior distributions from the log scale to the ms scale allows us to
compute credible intervals on the raw scale as well. Analogous calcu-
lations were done for the other factors.

Question-response accuracy in the LK data. Half of the 24 items
were followed by comprehension questions that had yes/no responses.
Accuracy on the target items was 69% in Experiment 1 and 65% in
Experiment 2 (personal communication from Frank Keller).

Reading time results in the LK data. It is standard in eyetracking
reading research to argue for an effect if just any of several dependent
measures examined show an effect. For example, Konieczny and Döring

(2003) found their effect only in regression path durations. In the LK
studies, which take as a starting point the Konieczny and Döring design,
regression path duration showed no effect at all; instead, other measures
showed statistically significant effects. We avoid this approach and instead
try to reproduce the effect in one dependent measure that LK would
consider representative of their claims. The LK paper presents a graphical
summary of their effects using total reading times for the two experiments;
see LK’s Figs. 3 and 4 (Levy & Keller, 2013, pp. 209, 214). Because the
graphical summary using total reading times was considered by LK to be a
representative summary of their overall claims, below we only report the
analyses involving total reading times.5

Limiting the dependent measure to total reading times (in both our
reanalyses of LK’s original studies, and in the analyses of our replication
attempts) had a second motivation: Analyzing multiple dependent
measures greatly increases Type I error probability (von der Malsburg &
Angele, 2017). For example, LK analyzed eight dependent measures in
two regions of interest. Thus, for each experiment, 16 models were fit,
so for each of the three predictors (the effect of Dat(ive), Adj(unct), and
their interaction, DatxAdj) a total of 32 statistical tests were conducted
for both experiments combined. Assuming that a p-value less than 0.05
is a statistically significant outcome, Dative showed six significant ef-
fects, Adjunct showed one significant effect, and the interaction showed
eight significant effects. Because of the inflated probability of in-
correctly rejecting the null when multiple dependent measures are
analyzed, it is vitally important to correct Type I error probability, e.g.,
via the Bonferroni correction, to compensate for the inflated false po-
sitive rate (von der Malsburg & Angele, 2017).

Our estimates of total reading times match LK’s published results
quite closely (see their Tables 6 and 9, pp. 208, 213). Note that LK’s
estimates for the interaction term are twice as large as ours; this is only
because they multiplied together their main effects, coded ± 0.5, to
obtain their interactions, resulting in the interaction in their analyses
being coded as ± 0.25. Some estimates (e.g., the effect of Dative in
Experiment 1) differ slightly between LK’s analysis and ours, because
we analyze on log-transformed data and back-transform to raw reading
times, whereas LK analyzed raw reading times.

Our re-analysis of the LK Experiments 1 and 2 is summarized in
Fig. 4. Recall that the critical region is the main clause verb in Ex-
periment 1, and the relative clause verb in Experiment 2. The post-
critical region consisted of the two words following the verb. As shown
in Fig. 4, an analysis of total reading times suggests the following:

1. In Experiment 1, at the critical region, the mean of the posterior for the
effect of Dative is 80ms, with a 95% credible interval [16,153]. The
positive coefficient has the interpretation that interposing the dative
NP between the subject and the verb leads to facilitation, as predicted
by the expectation-based account. LK explain this result as follows:

“[The main effect of Dative] can be explained by assuming that
the presence the [sic] additional preverbal material allows the
processor to predict the upcoming verb, which leads to a facil-
itation effect.” (p. 214)

2. In Experiment 2, at the post-critical region, the estimate of the in-
teraction between Dative and Adjunct is 82ms [19,146]. LK’s in-
terpretation is that having both the dative NP and adjunct inter-
posed between the subject-verb dependency leads to a slowdown.
LK explain this outcome in terms of locality effects emerging under
high memory load, i.e., when the subject-verb dependency is em-
bedded inside the relative clause (Levy & Keller, 2013):

“[The interaction] suggests the presence of a locality effect, i.e.,
the additional material that needs to be integrated at the verb,

Table 3
The contrast coding used by Levy and Keller (2013) for main effects of Dat(ive),
Adj(unct), and their interaction for the two experiments. The structures used in
the four conditions are shown schematically; note that the verb was always in
the same position because the interveners (Dat and Adj) either intervened be-
tween the subject and the verb, or appeared before the subject. In Experiment 1,
the subject-verb dependency was in the main clause, and in Experiment 2, it
was within a relative clause.

Condition Dat Adj Dat×Adj

a …[Subj … … Verb] 0.5 0.5 0.5
b …[Subj … ADJ… Verb] 0.5 −0.5 −0.5
c…[Subj… DAT … Verb] −0.5 0.5 −0.5
d…[Subj… DAT ADJ… Verb] −0.5 −0.5 0.5

5We attempted to obtain the Konieczny and Döring estimates for total
reading time in order to compare them with the LK estimates, but were un-
successful.
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leading to a distance-based cost. This effect was only present in
Experiment 2, which tested relative clauses, rather than main
clauses as in Experiment 1. This suggests that locality effects can
override expectation effects under conditions of high memory
load, as we hypothesized would be most likely to occur in a
relative clause.” (p. 214)

We were interested in replicating these effects because they are con-
sistent with a large body of evidence for both expectation and memory-
based accounts of sentence processing. There is compelling evidence con-
sistent with the expectation-based account proposed by Levy (2008) (some
examples are the work of Demberg & Keller, 2008; Kwon, Lee, Gordon,
Kluender, & Polinsky, 2010; Linzen & Jaeger, 2016). Similarly, many studies
show evidence for memory-based effects; see, for example, Grodner and
Gibson (2005), Van Dyke and Lewis (2003), Van Dyke and McElree (2006),
Van Dyke and McElree (2011). Given the literature, it makes sense that we
see effects of memory retrieval only under high processing load induced by
encountering a relative clause: all demonstrations of locality effects in the
literature (e.g., Bartek, Lewis, Vasishth, & Smith, 2011; Grodner & Gibson,

2005; Hsiao & Gibson, 2003) have involved embedded clauses such as those
of LK’s Experiment 2. Thus, the LK claim that memory load modulates
whether expectation effects are observed is compelling given theory and
existing data.

Although the claimed effects are compelling given the prior litera-
ture, one striking aspect of the LK estimates is their large uncertainty.
The evidence for the first conclusion above comes from an estimate
with mean 80ms, but the 95% credible interval ranges from 16 to
153ms; and the evidence for the second conclusion comes from an
estimate with mean 82ms, with a credible interval ranging from 19 to
146ms. These wide uncertainties imply that values as small as, for
example, 20ms are also plausible.

There is good reason to believe that reading time effects relating to
memory-based retrieval may be closer to 20ms than 80ms. Nicenboim,
Vasishth, Engelmann, and Suckow (2018) carried out a self-paced
reading study investigating number interference in German with 184
participants. They estimated the magnitude of the memory retrieval
effect in number interference to be 9ms with 95% credible interval [0,
18]. A meta-analysis by Jäger, Engelmann, and Vasishth (2017) has also
shown that similarity-based interference effects as reported by Van
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Dyke and colleagues have a 95% probability of lying between 2 and
28ms, with posterior mean 13ms. Similarly, recently published esti-
mates of facilitation in reading time (total reading time) due to memory
misretrieval are approximately −20ms, with credible intervals ranging
approximately from −1 to −40ms (Cunnings & Sturt, 2018). If
memory retrieval effects generally have a small magnitude in reading
studies, and if a sample size of 28 participants and 24 items leads to low
power, LK’s estimates may well be exaggerated. Their estimates have
very large standard errors, a characteristic of low-powered studies. For
example, assume that the true effect in the LK studies is 30 and 50ms.
In this scenario, power for 28 participants and 24 items would be about
13–41% (see Appendix B for full details). Because of Type M error, with
28 participants it would be essentially impossible to obtain statistically
significant results that are also accurate estimates of the effect.

But how can we determine whether the effects in the LK studies are
the result of Type M error? If the LK results were not due to a Type M
error and LK’s effect sizes were in fact as large as LK’s estimates, con-
ducting a replication with 28 participants should have sufficient power
to detect them reliably and we should be able to reproduce the effect
consistently. However, if the LK results were due to Type M error
leading to an overestimate of the true effect, we should fail to detect the
effect in the majority of cases. Thus, it will be very informative to ac-
tually conduct direct replication attempts of the LK experiments using
the same sample size that was used in the original study.

We began by trying to replicate the two significant effects found by LK:
the main effect of Dative in Experiment 1 (critical region), and the inter-
action between Dative and Adjunct in Experiment 2 (post-critical region).
We did this by conducting four experiments: two self-paced reading (SPR)
studies of the two LK studies, and two eyetracking (ET) studies. We chose
these two methods because they are the two standard behavioral ap-
proaches for studying cognitive processing costs in reading, and the pre-
vious research on expectation-based effects and memory effects has largely
relied on either self-paced reading or eyetracking.

Two definitions of replication success. Before we discuss the re-
plication attempts, it is necessary to define what counts as a successful
replication. A successful replication can mean that a statistically sig-
nificant result in the original study is also found to be significant in the
replication attempt. Alternatively, a successful replication could have
the interpretation that the estimated mean from a replication attempt
falls within the 95% credible interval of the original estimate. We will
consider both possible ways to interpret a replication attempt.

Experiments 1–4

We conducted two self-paced reading and two eyetracking studies;
the correspondence to the original LK experiments is as shown in
Table 4.

Participants. For each of the two self-paced reading experiments
and the two eyetracking studies, we used the same numbers of parti-
cipants and items as LK (28 and 24, respectively). Thus, the total
number of participants in these four studies was 112. Participants were
native German undergraduate students from the University of Potsdam
who were permitted to take part in only one of the replication studies.
All had normal or corrected-to-normal vision, and received 7 Euros or
course credit for their participation.

Experimental design and materials. We followed the ×2 2 fully-
crossed within-participants factorial design of the original study. The
factors were Dative (in main or subordinate clause) and Adjunct (in main
or subordinate clause). We used the same 24 experimental items as LK
from their Experiment 1 and 2, and 48 filler items. The yes/no compre-
hension questions that followed the items targeted various dependencies;
these were also identical to the questions employed in the LK experiments.
For the example in Table 1, the question for condition (a) was ‘Did the
teacher impose something on the naughty son?’ (‘Hat der Lehrer dem un-
gezogenen Sohn etwas verhängt?’) and the question for condition (b) was
‘Did the teacher impose detention classes?’ (‘Hat der Lehrer den Stra-
funterricht verhängt?’). For a list of all experimental and filler items with
their respective comprehension question, see https://osf.io/eyphj/.

Procedure: self-paced reading studies. Experimental items were
presented word-by-word in a centered self-paced reading experiment
using Linger.6 As in the original studies, half the items were followed by
yes/no questions. Due to the length of the sentences, non-critical re-
gions were presented phrase-by-phrase. The experiment began after
four practice trials. Participants were required to press the space bar on
a keyboard to move on to each subsequent word or phrase; in trials with
comprehension questions, they recorded a response via a button press.
The experimental procedure lasted approximately 35min. For the
purposes of future direct replication, all materials and relevant software
settings can be obtained from https://osf.io/eyphj/.

Procedure: Eyetracking studies. The experimental procedure was
identical in all of our eyetracking experiments. Participants’ eye
movements (right eye monocular tracking) were recorded with an
EyeLink 1000 eye-tracker (SR Research7) with a desktop-mounted
camera system at a sampling rate of 1000 Hz. The participant’s head
was stabilized using a chin/forehead rest. Stimuli were presented on a
22-inch monitor with a ×1680 1050 screen resolution. The eye-to-
screen distance measured approximately 66 cm. For the experimental
presentation, SR Research Experiment Builder software was used. Sti-
muli were presented in a monospaced font (Courier new) with font size
24 and were arranged on the presentation screen such that the critical
region always appeared in the same position (fourth word on the fourth
and final line). Each session began with the calibration of the eyetracker
and four practice trials preceding the experimental materials. Re-cali-
brations were carried out when necessary. In 50% of the trials, a
comprehension question had to be answered by pressing a button on a
gamepad. The entire procedure lasted approximately 40min.

Differences between the LK studies and ours. Our procedure and
participants differed from the one used by LK in the following way. The
original LK experiments were run with an SR Research Eyelink II eye-
tracker with a head-mounted camera system at a sampling rate of
500 Hz using Eyetrack software8 for the experimental presentation.

In LK’s Experiment 1, the materials were presented in a non-
monospaced font (Times New Roman, font size 20), whereas in their
Experiment 2 the materials were presented in a monospaced font
(Lucida Console, font size 14). The position on the screen of the critical
verb differed in their two experiments: In LK’s Experiment 1, the critical
verb appeared in the middle of either the third or fourth line of the
presented text, whereas in their Experiment 2 the critical verb was al-
ways the fourth word of the fourth line.

In the eyetracking experiments, the critical and post-critical regions
were the same as in the LK studies; in the self-paced reading studies, due to
an oversight, the post-critical region consisted of only one word (in the LK
studies, the post-critical region consisted of two words). Finally, in two
experimental items, a non-critical part of the sentence was changed; one
due to a plausibility issue and another due to a repetition of an NP within
one sentence. One comprehension question following one of the

Table 4
The correspondence between our experiments and those of Levy and Keller
(2013).

Our experiment Original experiment Participants Items

Expt 1 (SPR) LK Expt 1 28 24
Expt 2 (ET) LK Expt 1 28 24
Expt 3 (SPR) LK Expt 2 28 24
Expt 4 (ET) LK Expt 2 28 24

6 See https://tedlab.mit.edu/~dr/Linger/.
7 http://www.sr-research.com/eyelink1000.html.
8 https://blogs.umass.edu/eyelab/software/.
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experimental items was replaced due to an ambiguity in the question. For
details on these changes, see the supplementary materials.

LK had 44 filler items in each of their Experiments 1 and 2, but not
all were identical across the experiments. We combined their fillers
from their two experiments to assemble 48 filler items, which were then
held constant across all the experiments we conducted.

Finally, the population of participants differed significantly between
the original LK studies and ours. Our participants were native speakers
of German who were undergraduates at the University of Potsdam,
whereas LK’s participants were native speakers of German living in
Edinburgh (Levy & Keller, 2013, p. 204).

Results of Experiment 1–4

Question-response accuracies. The question-response accuracies for
Experiments 1 and 2 were 66% and 64%, respectively, and for Experiments
3 and 4 they were 61% and 60%, respectively. These are comparable to LK’s
69% and 65% in their Experiments 1 and 2, respectively.

Reading time results. Fig. 4 summarizes the results of our four ex-
periments. As mentioned earlier, we only report the analyses of total
reading time data.9

Recall that a successful replication can either mean that a significant
effect found in an original study is found to be significant in a re-
plication attempt; or it can mean that the estimated means from the
replication attempt fall within the 95% credible interval of the original
estimates. If statistical significance is taken as a criterion for successful
replication, we failed to replicate the two key effects in the LK studies:
the main effect of Dative in Experiment 1 (critical region), and the in-
teraction of Dative and Adjunct in Experiment 2 (post-critical region). If
a frequentist p-value were to be computed for these effects, none would
come out even close to significant in any of the four attempts. The
means and 95% credible intervals for the critical comparisons in each
experiment are as follows:

• Expt 1 (SPR replication of LK Expt 1): Effect of Dative in critical
region −10ms [−45,28].

• Expt 2 (Eyetracking replication of LK Expt 1): Effect of Dative in
critical region 18ms [−19,54].

• Expt 3 (SPR replication of LK Expt 2): Interaction of Dative and
Adjunct in post-critical region −16ms [−47,15].

• Expt 4 (Eyetracking replication of LK Expt 2): Interaction of Dative
and Adjunct in post-critical region 28ms [−19,79].

However, the replication attempts can also be seen as a near-complete
success: all the total reading times estimates from the eyetracking studies
(and 9 of the 12 of the estimates computed in the self-paced reading ex-
periments) fall within the 95% credible intervals of the original studies.

The crucial point here is that the original estimates are so noisy that,
despite the fact that some of the effects in the original paper were
statistically significant, the wide credible intervals are consistent with
the effect being near 0ms. When the estimates are noisy, the p-value
furnishes little information about reliability (i.e., that the effect is true)
or replicability (i.e., that the significant effect can be reproduced if the
study is repeated). Of course, even when estimates are not noisy, the
only way to establish replicability is to actually replicate the effect.

In these first four small-sample replication attempts above, we
aimed to show that the original estimates are noisy and therefore un-
informative, despite being statistically significant. Next, we turned our

attention to one of the conclusions that LK drew from their study (Levy
& Keller, 2013):

“[The interaction] suggests the presence of a locality effect, i.e., the
additional material that needs to be integrated at the verb, leading
to a distance-based cost. This effect was only present in Experiment 2,
which tested relative clauses, rather than main clauses as in Experiment
1.” (p. 214)

The emphasis is ours. Here, LK are pointing to the fact that the inter-
action between Dative and Adjunct was found in Experiment 2 but not in
Experiment 1. We will refer to this difference between the two experiments
as the Load-Distance interaction. Our goal here is to show how the estimates
of the effect change under a larger-sample replication attempt.

Investigating the Load-Distance interaction

LK describe the Load-Distance interaction in their General
Discussion in the following manner:

“[Experiment 1 showed] that the presence of a dative noun phrase led
to decreased reading time at the corresponding verb, compared to a
condition in which there is no preceding dative noun phrase.
“Experiment 2 showed an interaction of adjunct position and dative
position, with the verb more difficult to process when both the ad-
junct and the dative phrase were present than when only one was
present.
“[O]urs is the first demonstration to our knowledge that both ex-
pectation and locality effects can occur in the same structure in the
same language, and that the two effects interact with each other.”

This claimed interaction between expectation and locality across the
two experiments can be investigated in several different ways. One way
to interpret the interaction is in terms of the contrast in reading time
patterns in their Experiment 1 vs. 2. LK’s Figs. 3 and 4 (Levy & Keller,
2013, pp. 209, 214), which summarize total reading times at the critical
region, clearly show that Experiment 1 exhibits a speedup in (d) vs. (c),
whereas Experiment 2 exhibits a slowdown in these conditions (see our
Tables 1 and 2 for the items). Although visual inspection of the figures
does suggest a cross-over interaction between Load and Distance, as
Nieuwenhuis, Forstmann, and Wagenmakers (2011) have pointed out,
the interaction must be formally tested. Such an interaction would
allow us to conclude, as LK did, that “…both expectation and locality
effects can occur in the same structure in the same language, and that the
two effects interact with each other”. LK did investigate the expectation-
locality interaction in their Experiment 2, but the claim to be in-
vestigated involves the patterns seen across their Experiments 1 and 2,
and this was not checked. We evaluate this claimed interaction next.

Re-analysis of conditions (c) and (d) of LK’s Experiments 1 and 2.
We investigated the interaction statistically by combining the original LK
data from conditions (c) and (d) of each experiment; see Table 5 for the
design. This analysis tested for the main effects of Load, Distance, and their
interaction. As shown in Table 6, a positive coefficient for Load would
imply that processing a verb within a relative clause is more difficult than
in a main clause; note that this effect is not interesting because the verb
phrase (versteckt hat) in conditions (c) and (d) of Experiment 2 is longer
than the verb phrase (versteckt) in conditions (c) and (d) of Experiment 1.
More interesting is the effect of Distance. A positive coefficient for Dis-
tance would imply that increasing subject-verb distance by interposing an
adjunct (which contains a new discourse referent) in addition to a dative
NP will lead to longer reading times at the verb; this is as predicted by
memory-based accounts such as the Dependency Locality Theory (Gibson,
2000). A negative sign would support the expectation-based account of
Levy (2008), as discussed earlier. Finally, a negative coefficient for the
Load-Distance interaction would confirm the cross-over interaction seen
visually in Figs. 3 and 4 of LK’s paper: interposing a dative NP and an
adjunct vs. a dative NP alone should lead to a slowdown only in the re-
lative clause conditions.

9 In our data, we also analyzed all the dependent measures (critical and post-
critical regions) in which LK found statistical significance in their data. These
were first-pass and re-reading times in Experiment 1, and re-reading times, the
proportion of first-pass regressions, and skipping proportions in Experiment 2
(in the critical or post-critical region). None of these dependent measures came
out statistically significant in our data.
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Results: the Load-Distance interaction in the LK data. As shown
in Fig. 5, in the LK data the estimates for the interaction in the critical
region are −52ms [−110,9]; and in the post-critical region, −40ms
[−92,10]. Here again, even though the interaction has the predicted
sign, we have very noisy estimates; the credible intervals have a width
of about 100ms. If a significance test were to be conducted, the in-
teraction would not come out significant. However, significance is not
interesting for us. We wanted to know whether we can obtain estimates
for the Load-Distance interaction in our replication attempts that have
the same sign as the original LK experiments, and whether our esti-
mates are plausible given the wide credible intervals in the LK data.

Experiments 5, 6: replication attempts of the Load-Distance interaction

We carried out two attempts to reproduce the Load-Distance inter-
action. As discussed above, we designed the experiment to pit Load and
Distance against each other by taking conditions (c) and (d) of the
original LK Experiment 1 (which we will refer to as the low memory
load conditions) and conditions (c) and (d) of Experiment 2 (high
memory load conditions). We conducted a self-paced reading study and
an eyetracking study, each with the same sample size as the original

experiments (28 participants, 24 items). The procedure was as de-
scribed for the preceding studies.

As shown in Fig. 5, both replication attempts showed that the es-
timate for Load in the critical region had a positive sign:

• Expt 5 (SPR): 76 ms [42,111]

• Expt 6 (ET, total reading times) 152ms [104,200].

These effects suggest that increasing load (the relative clause con-
ditions (c) and (d) in Table 5) leads to increased processing difficulty.
However, recall that the effect of Load is not interesting because the
verb length differs in the two sets of conditions. Differently put, the
Load effect could at least partly be due to the word length effect.
Therefore, we disregard the Load effect, even though theoretically the
sign of the effect makes sense under the LK account.

The estimate for Distance is close to 0ms: 3ms [−30,39] in Expt 5;
and 1ms [−38,39] in Expt 6. Finally, the interaction between Load and
Distance is not far from 0ms; 5ms [−30,43] in Expt 5, and −14ms
[−48,20] in Expt 6.

An interesting question arises here. If we were to run the experiment
with a larger sample size, would we perhaps detect the Load-Distance
interaction? After all, the interaction claimed by LK is very well-moti-
vated both theoretically and empirically. We turn to this larger-sample
study next.

Experiment 7 (Eyetracking): a larger-sample replication attempt of the Load-
Distance interaction

Before we discuss the results of Experiment 7, we first explain how
we decided on the participant sample size. We used an approach that
Kruschke (2015) refers to as the region of practical equivalence (ROPE).
Below, we also discuss how the ROPE approach can be used to make
decisions about the research question.

Table 5
Example sentences (simplified) for investigating the Load-Distance interaction by combining the conditions (c) and (d) of LK’s Experiment 1
and of Experiment 2. The abbreviations mean the following: ADJ: adjunct; DAT: dative; PP: prepositional phrase; NP: noun phrase. The gray
boxes highlight the position of the PP adjunct and the dative NP as well as the position of the critical region (versteckt (hat), ‘hidden (had)’)
in the sentences.

‘After the teacher imposed detention classes, Hans Gerstner/the classmate (who) hid the football from the naughty son of the industrious
janitor as additional payback for the multiple wrongdoings corrected the affair.’

Table 6
The contrast coding used for main effects of Load, Dist(ance), and their inter-
action in the two experiments by Levy and Keller (2013). The first two condi-
tions here are conditions (c) and (d) of Experiment 1, and the last two condi-
tions are conditions (c) and (d) of Experiment 2.

Condition Load Dist Load×Dist

E1 c …[MCSubj … DAT … Verb] −0.5 −0.5 −0.5
E1 d …[MCSubj … DAT ADJ… Verb] −0.5 0.5 0.5
E2 c …[RC Subj … DAT … Verb] 0.5 −0.5 0.5
E2 d …[RCSubj … DAT ADJ… Verb] 0.5 0.5 −0.5
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Determining sample size using a Bayesian approach. The
Bayesian framework allows us to incrementally determine how many
participants we should run in order to make a decision about our re-
search question. One way to do this is to define what constitutes “no
effect” as a region rather than a point value. This approach was de-
veloped in the context of clinical trials, where it is essential to stop the
trial if the treatment is turning out to harm the patients, or when it is
immediately clear that the treatment is superior to the control
(Armitage, 1989; Berry, Carlin, Lee, & Müller, 2010; Cornfield, 1966;
Freedman, Lowe, & Macaskill, 1984; Spiegelhalter et al., 2004;
Spiegelhalter, Freedman, & Parmar, 1994). Kruschke (2015) re-in-
troduced this idea into psychology, but it has not yet been widely
adopted. This approach serves both as a stopping rule, and for deciding
whether one has evidence for one’s theory. We will use Kruschke’s
terminology here.

As mentioned above, the starting point is to define what counts as
“no effect.” Instead of the frequentist approach of asserting a point null
value, we can define a region of practical equivalence that counts as a null
region. For example, in LK Experiment 1, we start by asserting that in
total reading times, what we count as “no effect” is a range of possible

values: −20 to 20ms. This range can be seen as representing a 95%
credible interval over a distribution (say a normal distribution with
mean 0) of plausible values. Note that if we were investigating first-pass
reading times, the range would be much smaller, because effects in first-
pass reading time will be smaller in magnitude.

How did we decide on the width of 40ms for the region of practical
equivalence? This decision is subjective but not arbitrary. It is based on
estimates derived from what is already known and well-established em-
pirically.10 For clear grammaticality violations that the reader is im-
mediately consciously aware of, total reading time effects (at the word
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Fig. 5. Load and Distance effects at the critical and post-critical regions. Shown are the mean and 95% credible intervals from conditions (c) and (d) of the two
original LK Experiments 1 and 2; and from our three replication attempts (Expts. 5–7). SPR stands for self-paced reading, and ET stands for eyetracking.

10 This estimation approach is sometimes called Fermi-zation (Tetlock &
Gardner, 2016). The name comes from Fermi’s skill in obtaining rough but
accurate estimates for physical phenomena; an example is the 1945 nuclear
detonation conducted as part of the Manhattan project (the Trinity test). Fermi
obtained remarkably accurate estimates of the blast’s force before the data were
available. The essential point here is to use the information available to arrive
at reasonable estimates; this is not very different from the elicitation of expert
opinion in Bayesian data analysis of clinical data (Morris, Oakley, & Crowe,
2014; O’Hagan et al., 2006).
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where the ungrammaticality is detected) can show effect magnitudes of
approximately 100–150ms. For example, the data in Dillon, Mishler,
Sloggett, and Phillips (2013) (their Experiment 1) showed a 41ms [23, 58]
effect of ungrammaticality (n=40) in first-pass reading time (FPRT), and a
100ms [69, 134] effect in total reading time (TRT). In a large-sample
(n=181) replication attempt of Dillon et al.’s Experiment 1 (Jäger,
Mertzen, Van Dyke, & Vasishth, unpublished manuscript), we found an
effect of 55ms [45, 65] in FPRT, and an effect of 121ms [100, 141] in TRT.
We consistently find this magnitude of effect or smaller effects when the
sentence is ungrammatical; for example, Wagers, Lau, and Phillips (2009)
and Lago, Shalom, Sigman, Lau, and Phillips (2015) also showed the effect
of (un)grammaticality in SPR with estimates similar to those found by
Dillon and colleagues. Sometimes we see even larger effects for un-
grammaticality; for example, an eyetracking study by Paape, Hemforth, and
Vasishth (2018) found that total reading times at the moment that an un-
grammaticality was registered in French was 176ms, with 95% credible
intervals 84 and 264ms. Now, if we consider more subtle experimental
manipulations in sentence processing, the effects in total reading time are
likely to be in a lower range than effects of grammaticality. As an example,
we mentioned earlier that a meta-analysis showed that the similarity-based
interference effects found by Van Dyke and colleagues have a posterior
mean of about 13ms, with 95% credible intervals [2, 28]ms. Since these
estimates were based on SPR data and first-pass reading times (FPRT), it is
reasonable to assume that in total reading times (TRT) the effect of inter-
ference would be larger; from experience with eyetracking data, we can say
that the effect is approximately twice as large, i.e., 30ms (TRTs are a sum of
FPRT and re-reading times, so they are bound to be larger than FPRT).
Given these assumptions, for TRT we fixed ± 20 ms around 0ms as
counting as effectively a null effect for the LK studies.

Our estimates of the region of practical equivalence (ROPE) are based
on an empirical argument, but are of course open to challenge. We cannot
provide a one-size-fits-all recommendation for deciding on a null region for
specific phenomena, but we believe that for the present question, our esti-
mates are reasonable. For subtle phenomena for which no data exist, some
initial experiments could be used to establish a ROPE, and/or quantitative
predictions from a computational process model could be used as a guide
(an example is discussed in Engelmann et al., 2018).

Once we have decided on a null region, the goal should be to collect
data until the 95% credible interval of the parameter of interest is at
most as wide as the null region; in the above example, it should be at
most 40ms wide. This is how we established our stopping rule in our
pre-registration of the larger-sample study (which is available from:
https://osf.io/eyphj/). Note that, unlike the frequentist power analysis,
we do not fix a sample size in advance, but rather run the experiment
until a certain precision is reached: until the 95% credible interval of
the posterior distribution has width 40ms or less.

For interpreting the results, the ROPE method can be used as

follows. As shown in Fig. 6 (adapted from Spiegelhalter et al., 2004, p.
184), once the data with the pre-determined precision have been col-
lected, there are five possible scenarios. For illustration purposes, we
assume that a positive sign on a parameter validates some theory X, and
a negative sign validates a competing theory Y. A concrete example of
such opposing predictions is the expectation vs. locality question dis-
cussed by LK in their paper.

The five outcome scenarios are as follows:

• A, B: data’s credible interval falls clearly outside the null region.
Decision: reject the null region, and conclude that theory X or Y is
validated (depending on the sign).

• C, D: data’s credible interval overlaps with the null region. Decision:
if the sign is positive, reject theory Y; if the sign is negative, reject
theory X.

• E: data’s credible interval falls within the null region. Decision:
conclude that the data are consistent with “no effect.” Note that we
do not say here that the decision is that we have “proved” that the
null is true, but merely that the data are consistent with the posited
ROPE. Only direct replications can establish whether an estimate
and its 95% credible interval consistently falls within the ROPE.

Incidentally, the ROPE method can also be used for affirming a theory’s
predictions, if the theory makes quantitative predictions. A stringent test of
a theory’s predictions would be that the posterior’s credible interval falls
within the range predicted by theory; weaker evidence for a theory would
involve overlap with the predicted range of values; and a rejection of a
theory would involve a credible interval from data that falls completely
outside a predicted range of values. In the General Discussion, we give an
example of how ROPE can be used for model evaluation.

An obvious objection to the ROPE approach is its subjectivity. One
can empirically justify a region of practical equivalence, but different
researchers could define different regions of equivalence. But this is no
worse than the way NHST is used; subjective decisions are routinely
taken in NHST and there are no fixed standards for these (Chambers,
2017). Another obvious objection is that the ROPE approach can be
misused. For example, one could first run the study and compute the
standard error and then retroactively define the null region as four
times the estimated standard error. However, we are assuming here that
the definition of the null region will be decided on before the experi-
ment is conducted—this is the same in NHST, where a prospective
power calculation must be done before conducting the study.

Finally, this null region approach does not solve the problem of
demonstrating replicability; whatever the outcome of an experiment,
one would still need to replicate the effect. The only way to establish
replicability is to actually conduct pre-registered direct replications. We
discuss pre-registration and replication in the general discussion.

We now turn to Experiment 7, in which we investigated the Load-
Distance interaction with a larger sample.

Results of Experiment 7. The estimates are summarized in Fig. 5.
This time, the estimate of Load at the critical region is 151ms
[121,185]; the effect of Distance is 22ms [2,42]; and the Load-Distance
interaction is −8ms [−26,11].11

Discussion. In Experiment 7, the positive coefficient for Distance sug-
gests that increasing subject-verb distance by interposing an adjunct in
addition to a dative NP led to slower reading times at the verb. A follow-up
analysis using nested contrast coding shows that in the critical region, the
Distance effect in the low-load conditions is 14ms [−14,43]; and in the

Fig. 6. The five possible outcomes when using the null region or “region of
practical equivalence” method for decision-making (Kruschke, 2015). Outcome
A supports a theory X that predicts a positive sign on the parameter; B supports
a theory Y that predicts a negative sign. Outcome C rejects theory X, and D
rejects Y; and the estimate E is consistent with the null region. The width of the
null region here is 40ms, but would depend on the dependent measure, and the
measurement precision achievable by the measurement instrument.

11 At first glance, it may be surprising that in the post-critical region, the 95%
credible interval for the effect of Load in Experiment 7 is as wide as that of
Experiment 6, which had 28 participants. One might expect that a larger-
sample study always yields a narrower credible interval. But this need not
necessarily be true in a particular sample; the credible interval is dependent on
the estimates of the variance components, which will vary from study to study.
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high-load conditions, it is 29ms [2,55]. The larger distance effect in the
high-load conditions is compatible with the LK argument in their paper that
locality effects outweigh expectation effects when memory load is high.
However, the expectation account incorrectly predicts a negative coefficient
in the low-load conditions. One possible explanation for the smaller distance
effect in low-load conditions could be that expectation and locality act in
opposite directions. Such an explanation is compatible with the LK proposal,
and is consistent with the data. However, note that when we use the region
of practical equivalence approach, both the two nested contrasts and the
main effect of Distance are not conclusive because the 95% credible interval
of the respective estimates overlap with the ROPE of ± 20 ms centered
around 0ms.

It is worth considering how our estimates from this 100-participant
study would differ from a study that has only 28 participants. This can be
demonstrated by repeatedly sampling 28 participants pseudo-randomly
from this larger-sample data set, and then fitting a maximal linear mixed
model using Stan. We carried out this repeated sampling 100 times. The
mean and 95% credible intervals for the effect of Distance are shown in
Fig. 7, along with the mean and credible interval from the 100-participant
study. The wide credible intervals and the fluctuation around the larger
sample’s estimated mean illustrates the problem that arises with low-pre-
cision studies: wide uncertainty of the estimate and fluctuation of means
under repeated sampling. Because of this fluctuation, those estimates that
happen to come out significant in a frequentist test will, due to Type M
error, necessarily be overestimates relative to the reference point of the
mean and credible intervals estimated from the full data set. For a similar
demonstration investigating similarity-based interference using a larger data

set, see Nicenboim et al. (2018).
In conclusion, in this 100-participant study we don’t see any grounds for

claiming an interaction between Load and Distance. The most that we can
conclude is that the data are consistent with memory-based accounts such as
the Dependency Locality Theory (Gibson, 2000), which predict increased
processing difficulty when subject-verb distance is increased. However, this
Distance effect yields estimates that are also consistent with our posited null
region; so the evidence for the Distance effect cannot be considered con-
vincing.

General discussion

Experiment 1–6 showed that the statistically significant (or nearly-sig-
nificant) effects found in Levy and Keller (2013) are noisy enough that a
broad range of possible outcomes—including no effect—can be seen as
consistent with the original studies’ estimates. The noisiness of the estimates
in the original LK study, expressed in the wide credible intervals, implies
low power, which can—and in this case did—lead to exaggerated effects in
the original studies. Had we carried out statistical significance tests on these
replication attempts, we would have found that the original results would
not be replicable, if by replicable we mean that significance should be found
consistently.

Regarding the absence of locality and expectation effects in our
experiments, our point here is not that the effects found by LK are not
true. One cannot definitively conclude much from the original studies
and our replication attempts. Rather, our aim is to draw attention to the
point that we cannot learn much from a low-precision experiment,
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Fig. 7. A demonstration of the fluctuation in the estimates for the effect of Distance when we choose 28 participants pseudo-randomly from the 100-participant
experiment. The solid horizontal line is the estimated mean from the 100-participant data set, and the broken lines show the corresponding 95% credible intervals.
The points show the means and 95% credible intervals when randomly sampling from the 100-participant data set.
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regardless of whether or not statistically significant effects are found.
Experiment 7 showed that a larger-sample study generally delivers

narrower credible intervals than the 28-participant studies. It also de-
livers a smaller estimate of the posterior mean for the Load-Distance
interaction compared to the original study; the larger-sample estimate
is probably more realistic. Experiment 7 suggests that the key claim of a
Load-Distance interaction in LK’s original experiments may be con-
sistent with no effect. One interesting suggestion from this 100-parti-
cipant study is that the locality effect that is predicted by account such
as the Dependency Locality Theory (Gibson, 2000) may have some
weak support. Since this is, to our knowledge, the first time that any
evidence for locality has been seen in German, clearly further in-
vestigation is needed. Locality effects have been reported for other
head-final languages such as Hindi (Husain, Vasishth, & Srinivasan,
2015), and Persian (Safavi, Husain, & Vasishth, 2016); but it remains to
be seen whether these and other head-final languages consistently show
locality. An important line of research would be to attempt to replicate
the published results for head-final languages like German, Hindi, and
Persian, and to investigate other head-final languages like Japanese and
Korean. If the LK experiment design is followed up on in future work, it
would be advisable to choose simpler sentences than the ones LK used;
comprehension accuracy needs to be better than in the studies dis-
cussed in the present paper.

A legitimate concern at this point is that most of the effects investigated
in our seven experiments showed results consistent with no effect. Could it
be that there is something fundamentally wrong with our experimental
methodology? In order to address this worry, we checked whether we could
recover well-known word length and frequency effects from the filler items
in the four eyetracking experiments. The details are discussed in Appendix
D, but briefly, all four experiments show the expected effects. Thus, the
methodology does not seem to have any fundamental problems. Of course,
with null results one cannot be certain that no effect is present, especially
when power is low. In future work, other labs should attempt to replicate
LK’s and our reported estimates of effects.

We return now to the point that the significant effects in LK’s
experiments are too noisy to interpret using statistical significance.
Noisiness is not a property that is unique to the LK study considered
here. Reading studies on other well-established effects also have
issues similar to those discussed here. One example is the difference
in reading times at the head noun of subject vs. object relative
clauses in Chinese. A meta-analysis of 12 studies (Vasishth, Chen,
Li, & Guo, 2013) showed that the estimates of the effect (from self-
paced reading and eyetracking) across different studies fluctuate
quite a lot, from −123 to 100 ms, with confidence intervals ranging
in width from 80 to 320 ms (also see Vasishth, 2015). A more recent
example is so-called number agreement attraction. Here, un-
grammatical sentences like the following are investigated: The key
to the cabinet/cabinets are on the table. For theoretical reasons that
don’t concern us here (see Engelmann et al., 2018), faster reading
times are expected at the auxiliary when the preceding noun agrees
in number with the auxiliary’s number marking (i.e., the auxiliary
verb in cabinets are is read faster than in cabinet are). One theory,
the Lewis and Vasishth (2005) cue-based retrieval model, predicts
that the mean expected facilitation is around −26 ms for most
parameter configurations; if the model parameters are varied over a
narrow range, the predicted facilitation varies from approximately
−10 to −57 ms.12 Several studies have been published showing

statistically significant facilitation effects, as predicted by theory.
Because of the repeated significant effects found, this facilitation
effect is considered very reliable in psycholinguistics. We re-ana-
lyzed the data (self-paced reading; in one study, total reading time
from eyetracking) from 10 published experiments, 8 out of 10 re-
ported a significant effect. We fit Bayesian linear mixed models with
full variance-covariances matrices for all random effects, and the
same regularizing, weakly informative priors that we used in the LK
data. Unlike the original studies, we did not delete extreme values;
rather, we modeled the reading-time data as being generated from a
log-normal distribution and back-transformed the estimates to
milliseconds (see Appendix C for details). We find that the un-
certainty of the estimates in the data is quite high: The ten studies’
mean estimates range from −40 to −4 ms, with credible intervals
ranging in width from 30 to 89 ms. These empirical estimates (along
with their 95% credible intervals) are all consistent with the model
predictions (−10 to −57 ms), in the sense that the credible inter-
vals from these 10 studies overlap with the theoretically predicted
range. But these data are not strongly consistent with the Lewis and
Vasishth model predictions. If these estimates had been more pre-
cise (i.e., had much narrower credible intervals) and their 95%
credible intervals had fallen within the predicted range, this would
have been a stronger validation of the model’s predictions. With
such wide credible intervals in the data, a broad range of outcomes
is compatible with the data, including effectively no facilitatory
effect at all. Thus, even in the relatively clear agreement attraction
case, in future work higher precision replication attempts need to
be carried out to determine better estimates of the facilitation ef-
fect.

A central problem is that underpowered studies can yield a
statistically significant result due to Type M error, and these sig-
nificant results will be overestimates. Given that significant results
are favored by journals and reviewers, effects reported in the lit-
erature are guaranteed to be overestimates when power is low. They
will also be seen as very convincing because of their large magni-
tude. A large effect like 200 ms with a large standard error of 80 ms,
leading to a t-value of 2.5, seems more convincing than a small
effect of 9 ms with a small standard error of 4.5 ms and a t-value of
2. In fact, with a null region defined under the region of practical
equivalence approach, both results could be consistent with there
being “no effect.” However, the smaller estimate with narrower
credible intervals may reflect reality better. Thus, when power is
low, using significance to decide whether to publish a result leads to
a proliferation of exaggerated estimates in the literature. There is in
principle no harm in publishing low-powered studies in top jour-
nals, as long as strong claims are avoided. This is what statisticians
mean when they suggest that researchers “accept uncertainty and
embrace variation” (McShane et al., 2017). Currently, in psycho-
linguistics and other areas, we are taught to have the expectation
that every experiment be a “win.” Under this prior belief in routine
success, even null results from low-powered studies start to look
informative.

It is of course possible to publish more informative studies by simply
running higher-power experiments. But how can we decide what con-
stitutes a higher-powered study? Frequentist statistics has several pro-
posals for sequential testing (e.g., Frick, 1998), which avoid running
unnecessarily large numbers of participants. A Bayesian approach that
we used in this paper is to define a region of practical equivalence for

12 Engelmann et al. (2018) provide a detailed investigation of the range of
predictions that the model makes for the facilitatory interference discussed here.
They varied the latency factor F, the noise parameter ANS, the maximum associa-
tive strength MAS, the mismatch penalty MP, and the retrieval threshold θ, and
computed model predictions for the range of parameter combinations given by

∈ … ∈ ∈ ∈ ∈ − − …F ANS MAS MP θ{0.01, 0.02, ,0.6}, {0.1, 0.2, 0.3}, {1, 2, 3, 4}, {0, 1, 2}, { 2, 1.5, ,0}.
In order to derive approximate upper and lower bounds of model predictions, we

(footnote continued)
take the median together with the first and third quartiles of Engelmann et al.’s
simulated facilitatory interference effects (6000 iterations for each parameter
combination), with the difference that we only used parameter configurations
with a latency factor of 0.05 to 0.6. The calculations can be reproduced using the
Shiny app: https://engelmann.shinyapps.io/inter-act/.
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total reading time (specifically, ± 20 ms around 0ms) and to run the
experiment until the desired precision was reached. Our choice of a
95% credible interval width of 40ms was only for illustration purposes;
depending on the resources available, one could aim for even higher
precision. For example, 184 participants in the Nicenboim et al. (2018)
self-paced reading study had a 95% credible interval of 20ms. Note that
the goal here should not be to find a credible interval that does not
include an effect of 0ms; that would be identical to applying the sta-
tistical significance filter and is exactly the practice that we criticize in
this paper.13 Rather, the goal is to achieve a particular precision level
for the estimate, and to use the region of practical equivalence for in-
terpreting the results, possibly alongside the p-value.

Once we have fixed the region of practical equivalence, we effec-
tively also fix the precision (the 95% credible interval) that is theore-
tically meaningful to us. Now we can run the experiment until we reach
this desired level of precision. This has at least two advantages over a
conventional power analysis. First, in the Bayesian framework, there is
no need to define a stopping criterion in advance of running our ex-
periment. In psycholinguistics, running more participants until a de-
sired outcome (statistical significance with a particular sign of the ef-
fect) is reached is a fairly common practice. But within the frequentist
paradigm, this stopping criterion will inflate Type I error (e.g., Pocock,
2013). In the Bayesian framework, there is no concept of hypothetical
replications; the data at hand are not interpreted in the light of the
properties of data from imagined repeated sampling. The Bayesian
framework rather obeys the likelihood principle, which states that all
the information from the data is contained in the likelihood function
(Gelman et al., 2014; Lee, 2012). We can therefore check the precision
of our estimates while running the experiment, and stop the experiment
when the desired precision is reached (as opposed to the desired effect
becoming significant).

A second advantage of using precision as a guide to data collection
is that we can shift the focus to what really matters: quantifying our
uncertainty about the estimate of interest. A conventional power ana-
lysis assumes a good guess about the magnitude of the true effect, and
this guess is often based on previously published data. As we have
shown here, when the sample sizes are small and there is a bias to only
publish statistically significant effects, effect magnitudes will be over-
estimated by a large amount. Using these estimates leads to a large
underestimation of the sample size needed for high-powered replica-
tions. In a precision-based analysis, the focus is on the amount of un-
certainty in the estimate that we are willing to tolerate. The magnitude
of the estimate, together with its uncertainty, are much more important
theoretically than just counting the number of significant vs. not sig-
nificant results in the literature. Such a vote-counting approach is
commonly adopted to summarize the literature in narrative reviews,
and to decide whether an effect is “present” vs. “absent.” The voting-
based approach would be fine if there were no publication bias at all
and if power were sufficiently high in published studies. For an example
of a voting-based approach to deciding whether an effect is present or
absent, see Phillips, Wagers, and Lau (2011). There, when discussing
whether reflexives show similarity-based interference effects, the au-
thors conclude: “Thus, most evidence suggests that the processing of
simple argument reflexives in English is insensitive to structurally in-
appropriate antecedents, indicating that the parser engages a retrieval
process that selectively targets the subject of the current clause.” If
power in the studies that Phillips and colleagues base their conclusions
on is low, then many null results are to be expected. It is well-known in
statistical theory that null results from low-powered studies should be
treated as inconclusive rather than proving that the null hypothesis is
true; unfortunately, this detail is not widely appreciated. In sum, simple
vote-counting would be highly misleading when power is low and

publication bias exists.
Many researchers have pointed out that we should aim for higher-

precision estimates and focus on estimation rather than only focusing
on statistical significance (e.g., Claridge-Chang & Assam, 2016;
Greenland et al., 2016). Focusing on estimation will allow for better-
quality meta-analyses and better quantitative model comparisons of
competing computational models. The first comprehensive quantitative
evaluation of the computational memory-retrieval model of Lewis and
Vasishth (2005) involved comparing model predictions to estimates
from 77 published results on retrieval processes (Engelmann et al.,
2018). This evaluation was only possible because the estimates (and
their uncertainty) were available from a meta-analysis (Jäger et al.,
2017). The meta-analysis provided estimates based on all relevant
reading-time studies which were then compared with the model pre-
dictions. Although the meta-analytic estimates are likely to be biased
(due to publication bias and Type M error in individual studies), they
are more precise than the estimates from individual studies because the
meta-analysis aggregates data from multiple studies after weighting
them by their precision: the meta-analysis allows us to take into account
accumulated knowledge in a quantitative manner. However, the results
of the quantitative evaluation by Engelmann et al. (2018) would have
been more informative if the estimates from the published individual
studies had had higher precision.

In addition to fixing precision in advance, a second suggestion
(Chambers, 2017) is that we should attempt to conduct direct, pre-re-
gistered replications of experiments, because there is no guarantee that
a result reflects reality just because it is statistically significant. Every
major claim should be either accompanied by a pre-registered direct
replication, or even better, other researchers from competing labs
should be encouraged to replicate the original result. Direct replications
are necessary even for higher-precision studies, because population
differences, lab practices, etc., can easily bias an individual result.

As Chambers (2017) explains, pre-registration involves defining in ad-
vance the analysis that is planned and depositing this in an embargoed
repository like OSF (osf.io) or aspredicted.org. OSF time-stamps the pre-
registration, which serves as a transparent way to demonstrate that the
analysis plan was defined before the data were collected. Pre-registering will
also minimize problems like p-hacking, HARKing (hypothesizing after the
results are known), and the garden-of-forking paths problem (Forstmeier,
Wagenmakers, & Parker, 2017; Gelman & Loken, 2016; Simmons, Nelson, &
Simonsohn, 2011) that have plagued psychology and other areas. With pre-
registration, the researcher is still free to explore their data, but pre-regis-
tration is a valuable tool that clearly separates the prior analysis plan from
the exploratory part (De Groot, 1956/2014). Currently, due to the un-
reasonable pressure to publish fast and to report novel results in top jour-
nals, crucial data-analysis decisions are often made after examining the
data. For example, the same researcher will often include or exclude data on
different criteria, so that it eventually passes the statistical significance filter.
Sometimes, excluding or including a few data points can make the differ-
ence between significance and non-significance (Vasishth et al., 2013).
Another example is region-of-interest selection in reading studies: re-
searchers often change the region of interest from study to study or even
within a study, driven exclusively by the search for significance (an example
is discussed in Vasishth & Nicenboim, 2016). Another common approach is
to run the study, check for significance, then either run more participants if
significance is desired but not reached, or stop collecting data if a null result
is desired. These decisions are often not reported in the published paper.
Pre-registration would remove these degrees of freedom and thereby ensure
a clear separation between confirmatory and exploratory analyses (De
Groot, 1956/2014).14

13 Doing hypothesis testing with Bayes factors would lead to similar pro-
blems unless one can specify a fully generative model (Gelman et al., 2014).

14 A common objection we hear is that anyone could defeat the purpose of
pre-registration by first collecting the data and then depositing a fake pre-re-
gistration. However, this would just be scientific fraud; pre-registration is not
designed to solve that problem.
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Our third suggestion is that data and code be released mandatorily
along with the published paper. Some authors are happy to share their
data and code, but in many other cases the crucial information—the
data itself—are not available. For example, Nieuwland et al. (2018)
tried but failed to obtain the data for the published result (DeLong,
Urbach, & Kutas, 2005) that they attempted to replicate. Many re-
searchers have generously released their data to us in connection with
the present and other replication attempts. But attempts to obtain data
from published studies are often unsuccessful. Wicherts, Borsboom,
Kats, and Molenaar (2006) report an attempt to obtain data from 141
articles from major psychology journals, which had a total of 249 ex-
periments. Of these, 73% of the data were not released. Wicherts and
colleagues report that this is approximately the same non-response rate
as in 1962. The continued absence of reproducible code and data ser-
iously harms cumulative progress in science; evidence synthesis (meta-
analysis) needs accurate estimates from published papers. Our experi-
ence with meta-analysis (Jäger et al., 2017; Nicenboim, Roettger, &
Vasishth, 2018) shows that published summaries are usually far from
adequate because they often don’t contain the minimal information (the
estimated mean of the parameter of interest and the standard error)
needed to conduct the meta-analysis. Sometimes the published analysis
is incorrect and as a result the published statistics are unusable (some
examples are discussed in Nicenboim et al., 2018). Obtaining and re-
analyzing the original data (using the originally used code) is the most
reliable way to obtain accurate estimates for evidence synthesis.

Leading journals could trigger a positive change by requiring data
and code release for all articles, and introducing a special article type
(e.g., a pre-registered Replication Report) for direct replication at-
tempts. Currently, direct replications are not considered to be novel
enough to be worth publishing, and novelty of results is given dis-
proportionate weight. However, replication is an important tool for
establishing reliability. This is something that a p-value, especially a p-
value computed from an underpowered study, cannot ever deliver.
Increasing precision and conducting direct replications are vital for any
empirically rigorous science.

There is clearly a downside to focusing on higher precision and
direct replications. Perhaps the biggest one is that carrying out ex-
periments towards the aim of increasing precision would take much
longer. For example, the experiments in the present paper were started
on 26 November 2015, and ended on 29 September 2017, a period of
nearly two years. This means that at least in smaller universities, where
recruiting participants is not easy, internet experiments may serve as a
partial solution (but this comes with other disadvantages). Another
obvious side-effect is that the speed with which we can publish papers
will go down. Clearly, expectations regarding publication rate need to
change. In closing, a contribution of the present paper is to demonstrate
through direct replication attempts the fact (well-known in some sci-
entific communities) that published results—even results published in
top journals—may not be all that newsworthy because they may be
consistent with effectively no effect and may not be replicable in the
sense that significant effects may not be found to be significant under
replication. Too often, published empirical results are treated as a novel
contribution simply because of the application of the statistical sig-
nificance filter. How many published claims in psycholinguistics actu-
ally reflect reality remains to be seen. Big effects involving, e.g.,
grammaticality violations or strong garden paths, are likely to be re-
plicable, but more subtle effects may not be. For example, the recent
failure to find significant effects in anticipatory processing by
Nieuwland et al. (2018) and Kochari and Flecken (2018) suggests that
replicability problems arising from the statistical significance filter
could run deep in psycholinguistics. Of course, the issues are not limited
to psycholinguistics and extend to all other scientific disciplines that

use this decision criterion to decide whether or not to publish results.
The reliability of published results may improve if we finally start to
follow the best practices that have been advocated again and again by
statisticians but which have been largely ignored by psychology and
other areas: aim at higher precision, conduct direct, pre-registered re-
plications, and release data and code. These changes will contribute
towards improving the reliability of published results.

Conclusion

In sentence processing, many results, such as the classical garden-
path findings (Frazier & Rayner, 1982), have large and robust effects.
These are very likely to be easily replicable. But the low-hanging fruit
has long been picked. Subtle manipulations require designs and sample
sizes that deliver accurate estimates.

History has shown that any suggestions to improve power and to
replicate results have generally not been adopted in psychology (see
discussion in Lane & Dunlap, 1978). We nevertheless reiterate some
proposals that many others have made in the past (e.g., Amrhein,
Trafimow, & Greenland, 2018; Bakan, 1966; Chambers, 2017; McShane
et al., 2017). Researchers should (i) move their focus away from sta-
tistical significance and attend instead to increasing the precision of
their estimates (e.g., by increasing sample size, or improving the quality
of measurements, or designing stronger manipulations); (ii) carry out
direct (not just conceptual) replications in order to demonstrate the
existence of an effect; (iii) pre-register their designs and planned ana-
lyses and deposit them in venues like osf.io and aspredicted.org; and
(iv) release their data and code upon publication. Journals can en-
courage these practices by favoring pre-registered analyses, introducing
a short-article type featuring direct replications, and mandating open
data and code release upon publication. Some of the leading journals
already require data and code release upon publication, and in some
cases during the review process. This needs to become the default.
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Appendix A. How the statistical significance filter leads to inflated estimates of power

Assume for simplicity the case that we carry out a one-sided statistical test where the null hypothesis is that the true mean is =μ 00 and the
alternative is that >μ 0.15 Given some continuous data …x x, , n1 (such as reading times), we can compute the t-statistic and derive the p-value from
it. For a large sample size n, a normal approximation allows us to use the z-statistic, =

−Z X μ
σ n/X

0 , to compute the p-value. Here, X is the mean
estimated from the data, σX the standard deviation, and n the sample size.

One informal definition of the p-value is the following: “A p-value is the probability under a specified statistical model that a statistical
summary of the data (e.g., the sample mean difference between two compared groups) would be equal to or more extreme than its observed
value.” (Wasserstein & Lazar, 2016). The p-value is itself a random variable P with the probability density function (Hung, O’Neill, Bauer, &
Kohne, 1997):

=
−

< <g p
ϕ Z δ

ϕ Z
p( )

( )
( )

, 0 1δ
p

p (2)

where

• ϕ (·) is the pdf of the standard normal distribution, Normal(0,1).

• Zp, a random variable, is the (1− p)th percentile of the standard normal distribution.

• =
−δ μ μ

σ n/X
0 is the true point value expressed as a z-score. Here, μ is the true (unknown) point value of the parameter of interest.

Hung et al. (1997) further observe that the cumulative distribution function (cdf) of P is:

∫= = − − < <G p g x dx Z δ p( ) ( ) 1 Φ( ), 0 1δ
p

δ p0 (3)

where Φ(·) is the cdf of the standard normal.
Once we have observed a particular z-statistic zp, the cdf G p( )δ allows us to estimate power based on the z-statistic (Hoenig & Heisey, 2001). To

estimate the p-value in the case where the null hypothesis is in fact true, let the true value be =μ 0. It follows that =δ 0. Then:

= −p z1 Φ( )p (4)

To estimate power from the observed zp, set δ to be the observed statistic zp, and let the critical z-score be zα, where α is the Type I error (typically
0.05). The power is therefore:

= − −G α z z( ) 1 Φ( )z α pp (5)

In other words, power estimated from the observed statistic is a monotonically increasing function of the observed z-statistic: the larger
the statistic, the higher the power estimate based on this statistic (Fig. A1). Together with the common practice that only statistically
significant results get published, and especially results with a large z-statistic, this leads to overestimates of power. As mentioned above, one

doesn’t need to actually estimate power in order to fall prey to the illusion; merely scanning the statistically significant z-scores gives an
impression of consistency and invites the inference that the effect is replicable and robust. The word “reliable” is frequently used in psy-
chology, presumably with the meaning that the result is replicable and reflects reality.

A direct consequence of Eq. (5) is that overestimates of the z-statistic will lead to overestimates of power. For example, if we have 36 data points,
the true effect is 0.1 on some scale, and standard deviation is 1, then statistical power is 15%.16
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Fig. A1. The relationship between power and the unknown z-score of the true effect. Larger z-scores are easier to publish due to the statistical significance filter, and
these studies therefore give a mistaken impression of higher power.

15 The presentation below generalizes to the two-sided test.
16 This can be confirmed by running the following command using R (R Core Team, 2018): power.t.test(delta = 0.1, sd = 1, n = 36, alter-

native = “one.sided”, type = “one.sample”, strict = TRUE).
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If we now re-run the same study, collecting 36 data points each time, and impose the condition that only statistically significant results with Type
I error probability (α) 0.05 are published, then only observed z-scores larger than 1.64 (for a one-sided test) would be published and the power
estimate based on these z-scores must have a lower bound of

= − − =G α( ) 1 Φ(1.64 1.64) 0.5Zα (6)

Thus, in a scenario where the real power is 15%, and only z-scores greater than or equal to zα are published, the power estimate based on the z-score
will be inflated by at least a factor of 0.5/0.15=3.33.

Now, lower p-values are widely regarded as more “reliable” than p-values near the Type I error probability of 0.05.17 This incorrect belief
among researchers has the effect that studies with lower p-values are more likely to be reported and published, with the consequence that the
inflation in power will tend to be even higher than the lower bound discussed here.

Appendix B. Prospective power analysis for repeated measures designs

We show here how power can be computed for data that are analyzed using linear mixed models, with crossed random effects for participants and
items. Consider the LK Experiment 1 data; we can estimate all effects and variance components from this ×2 2 design by fitting a “maximal” linear
mixed model and then estimating prospective power for a future study using a range of plausible effects. In other words, this is not intended to be a
post hoc power analysis; that would provide no new information beyond the p-value (Hoenig & Heisey, 2001).

When we do such a prospective power analysis, for an effect of 30–50ms, which is close to the estimates from our meta-analysis of memory

retrieval effects (Jäger et al., 2017), power is around 13–14%; see Table B.1. If the true effect were as large as 80ms (this is the estimate we obtained
in the LK Experiment 1 for the effect of Dative), a sample size of 28 participants and 24 items would lead to approximately 75% power. If the true
effect is even smaller than 30ms, obtaining power greater than 80% would require hundreds of participants and more items.

How exactly did we compute these power estimates? For a repeated measures design, one convenient way is to use fake-data simulation. As an
illustration, we consider how we would compute prospective power for a future replication of the LK13 Experiment 1.

1. Fit a “maximal” linear mixed model to existing data. As an example, we fit the model to the LK Experiment 1 data below.
2. Extract all variance component estimates and fixed effects estimates (hereafter, the parameter estimates) from the fitted model. For the fixed

effect of interest, choose a range of effect magnitudes that are considered realistic (this is discussed below in detail).
3. Using the parameter estimates from the step above, and the assumed effect magnitude, repeatedly generate 100 fake data sets with a particular

number of participants and items, and compute the proportion of times that the relevant predictor is “significant” at the specified α value (here,
0.05). This is the estimated prospective power for a future study.

4. For sample size calculations with the goal of achieving 80% power, given a range of effect magnitudes, increase the number of participants and/
or items until you have 80% power.

We illustrate this procedure next. In order to generate fake data from a ×2 2 repeated measures design with a Latin square design, we first define
a function, gen_fake_lnorm2x2; see Listing C1. This function generates log-normally distributed data because the dependent variable is reading
time data, and this is often assumed to be generated from a log-normal distribution. We start by setting the number of participants and items to those
used in the LK experiments (28 participants, 24 items).

Then, we fit a linear mixed model to the Levy and Keller Experiment 1 data (log-transformed) to obtain estimates of all the variance components
and fixed effects. These estimates will then be used for the power analysis. See Listing C2 for the parameter estimates from the LK Experiment 1 data.

Next, we set the parameters for the fake-data simulation using the above model’s results. See Listing C3.
Finally, we simulate data 100 times, for a range of effect magnitudes (30, 50, and 80ms), 28 participants and 24 items, and estimate power for

each effect magnitude. See Listing C4.

Table B.1
Estimates of prospective power for different effect mag-
nitudes for Levy and Keller’s Experiment 1. These esti-
mates of power use estimates of variance components
computed from the Levy and Keller data.

Effect (ms) Power (percentage)

30 13
50 41
80 75

17 Treating lower p-values as furnishing more evidence against the null hypothesis reflects a misunderstanding about the meaning of the p-value; given a con-
tinuous dependent measure, when the null hypothesis that =μ 0 is true, under repeated sampling the p-value has a uniform distribution. This has the consequence
that, when the null is true, a p-value near 0 is no more surprising than a p-value near 0.05.
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Listing C1. Function for generating log-normally distributed fake data.
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Listing C2. Output of the linear mixed model fit to Levy and Keller’s Experiment 1 data.

Listing C3. Fix parameters for fake-data simulation based on the linear mixed model fit of LK Experiment 1.
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Appendix C. Estimates from 12 reading studies on facilitation effects, and model predictions

Fig. C1 shows the 95% credible intervals for ten agreement attraction studies that were part of the meta-analysis in Jäger et al. (2017);
and two recently published studies on semantic plausibility effects (Cunnings & Sturt, 2018). The number agreement studies (one was an
eyetracking study and the rest were self-paced reading) investigated ungrammatical sentences such as The key to the cabinet/cabinets are on
the table. The reading time was either recorded at the critical (the auxiliary are) or post-critical region. Theory (Engelmann et al., 2018)
predicts a facilitation effect at the auxiliary or the following region when the noun preceding the auxiliary is cabinets vs. cabinet. The two
semantic plausibility studies investigated by Cunnings and Sturt (2018) involved implausible sentences like Sue remembered the letter that the
butler with the cup/tie accidently shattered today in the dining room. These are implausible because letters can’t shatter. Here, theory predicts a
facilitation effect at shattered due to misretrieval of the non-subject cup (vs. tie) (details are discussed in Engelmann et al., 2018). In the
number agreement experiments, study 1 is the ungrammatical agreement data from Experiment 1 of Dillon et al. (2013); studies 2–5 are the
experiments reported in Lago et al. (2015), and 6–10 are from Wagers et al. (2009). Studies 11 and 12 are from Cunnings and Sturt (2018).
The estimates shown in the figure were computed by fitting a linear mixed model (with full covariance matrices for random effects) in Stan
using log-transformed reading times, and then by back-transforming the estimate of the facilitation effect to milliseconds. Our estimates may
be slightly different from the original published estimates in some cases because we did not remove any data. The ten studies’ mean estimates
range from −40 to −4, with credible intervals ranging in width from 30 to 89 ms. Again, our interest here is not in whether effects were
significant or not significant—only one of these 10 studies would show a significant effect if a p-value were to be computed. Rather, what’s
remarkable here is the wide variation in the estimates of the mean effect, and the large uncertainty in many of the estimates expressed by the
95% credible intervals.

Listing C4. Simulate data and compute power for different effect sizes.
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Appendix D. Word length and frequency effects in the eyetracking data

Because we found almost no effects in the eyetracking studies, a legitimate concern is that there may have been a systemic problem in the
data-collection. We therefore checked whether the well-known word length and word frequency effects on reading time (Kliegl, Nuthmann,
& Engbert, 2006) can be seen in all the four eyetracking data sets. If word length and frequency effects cannot be found, then there would be
something fundamentally wrong with the data. We extracted type-frequencies (occurrences of a type per million tokens) of all words oc-
curring in a filler item from the dlexDB database (Heister et al., 2011), which is based on the reference corpus underlying the Digital
Dictionary of the German Language (DWDS) (Klein & Geyken, 2016). We only investigated first-pass reading time. Linear mixed models were
fit using lme4 with centered log frequency and centered word length as predictors, with all variance components but without intercept-slope
correlations for random effects. The results are shown in Table D.1; there are clear effects of word length and frequency, in the expected
directions. Thus, our data do have the basic characteristics of eyetracking data. Obviously, we cannot entirely rule out that there may be
important systematic differences between the original studies and ours that could explain why only effects in the original work passed the
statistical significance filter. But this is a limitation of any replication attempt.
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