
Feature overwriting as a finite mixture process:
Evidence from comprehension data
Shravan Vasishth (vasishth@uni-potsdam.de)

Department of Linguistics, University of Potsdam, Germany, and
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Abstract

The ungrammatical sentence The key to the cabinets are on the
table is known to lead to an illusion of grammaticality. As dis-
cussed in the meta-analysis by Jäger et al., 2017, faster reading
times are observed at the verb are in the agreement-attraction
sentence above compared to the equally ungrammatical sen-
tence The key to the cabinet are on the table. One explanation
for this facilitation effect is the feature percolation account: the
plural feature on cabinets percolates up to the head noun key,
leading to the illusion. An alternative account is in terms of
cue-based retrieval account (Lewis & Vasishth, 2005), which
assumes that the non-subject noun cabinets is misretrieved due
to a partial feature-match when a dependency completion pro-
cess at the auxiliary initiates a memory access for a subject
with plural marking. We present evidence for yet another ex-
planation for the observed facilitation. Because the second
sentence has two nouns with identical number, it is possible
that these are, in some proportion of trials, more difficult to
keep distinct, leading to slower reading times at the verb in the
first sentence above; this is the feature overwriting account of
Nairne, 1990. We show that the feature overwriting proposal
can be implemented as a finite mixture process. We reanalysed
ten published data-sets, fitting hierarchical Bayesian mixture
models to these data assuming a two-mixture distribution. We
show that in nine out of the ten studies, a mixture distribu-
tion corresponding to feature overwriting furnishes a superior
fit over both the feature percolation and the cue-based retrieval
accounts.
Keywords: Feature overwriting; feature percolation; cue-
based retrieval; sentence processing; interference; reading;
Bayesian hierarchical mixture models

Introduction
It is well-known that sentences such as (1a) can lead to an
illusion of grammaticality. The sentence is ungrammatical
because of the lack of number agreement between the subject
key and the auxiliary are. Note that the second noun, cabi-
nets, and the auxiliary are agree in number, but no syntactic
agreement is possible between these two elements.

(1) a. The key to the cabinets are on the table.

b. The key to the cabinet are on the table.

Many sentence comprehension studies have shown that the
illusion has the effect that the auxiliary are is read faster in
(1a) compared to the equally ungrammatical sentence (1b)
(see Jäger, Engelmann, & Vasishth, 2017 for a review). In

contrast to (1a), in (1b) the second noun (cabinet) is singular
and does not agree with the auxilary in number.

Several explanations have been proposed for the illusion
of grammaticality in (1a) vs. (1b). We discuss two of these
here. The feature percolation account proposes that in (1a)
the plural feature on cabinets can, in some proportion of tri-
als, move or percolate up to the head noun key (see Patson
& Husband, 2016 for recent evidence for this model). The
head noun now has the plural feature, leading to an illusion
of grammaticality compared to (1b), where no such feature
percolation occurs. Another prominent explanation, due to
Wagers, Lau, and Phillips (2009), is the retrieval interference
account. Here, in ungrammatical sentences like (1a), a sin-
gular verb would be predicted; but when the plural verb are
is encountered, a cue-based retrieval process (Lewis & Va-
sishth, 2005) is triggered: The verb triggers an access (called
a retrieval) for a noun that is plural marked and is a subject. A
parallel cue-based associative memory access leads to the re-
trieval of a partially matching noun in memory (cabinets) that
agrees in number but is not the subject. This partial match
leads to a successful retrieval and an illusion of grammatical-
ity.1

As we show next, there is evidence for both these accounts:
a facilitatory effect is generally present in the published data.

The facilitatory effect in reading time in the
“illusion of grammaticality” data-sets
We first establish that a facilitatory effect is found in studies
comparing sentences like (1a) and (1b). In connection with
the meta-analysis relating to studies on cue-based retrieval
reported in Jäger et al. (2017), we had obtained the raw data
from 10 studies on sentences like (1a) and (1b). These were
reading-time studies reported in Dillon, Mishler, Sloggett,
and Phillips (2011), Lago, Shalom, Sigman, Lau, and Phillips
(2015), and Wagers et al. (2009). Except for the eyetrack-

1The cue-based retrieval account may a priori be implausible be-
cause it predicts that an incorrect dependency is built between cabi-
nets and are; building such a dependency would imply that the sen-
tence has the implausible meaning that the cabinets are on the ta-
ble. The reader should detect such an implausible meaning and this
should lead to a slowdown rather than facilitation.
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ing experiment by Dillon and colleagues, all the other studies
were self-paced reading experiments. In these data-sets, the
dependent measure was reading time in milliseconds at the
auxiliary or the region following it (most of the 10 studies
found statistically significant effects in this post-critical re-
gion).

We first reanalyzed these 10 data-sets in order to confirm
the facilitatory effect reported.2 We fit Bayesian hierarchi-
cal models to each data-set using Stan (Stan Development
Team, 2016). We fit Bayesian models because of the ease
with which statistical models can be defined flexibly to re-
flect the cognitive process of interest.

The model specification was as follows. Assume that (i)
i indexes participants, i = 1, . . . , I and j indexes items, j =
1, . . . ,J; (ii) yi j is the reading time in milliseconds for the
i-th participant reading the j-th item; and (iii) the predictor
x, which represents the experimental manipulation, is sum-
coded (±1). In our case, the condition (1a) is coded +1 and
the condition (1b) is coded −1.

Then, the data yi j (reading times in milliseconds) are de-
fined to be generated by the following process:

yi j ∼ LogNormal(β1 +β2xi j +ui +w j,σ
2
e) (1)

where ui ∼ Normal(0,σ2
u), w j ∼ Normal(0,σ2

w) and σ2
e is

the error variance. The terms ui and w j are called varying
intercepts for participants and items respectively; they rep-
resent by-subject and by-item adjustments to the fixed-effect
intercept β1. The variances σ2

u and σ2
w represent between-

participant (respectively item) variance.3 The facilitation ef-
fect is the estimate of β2 (on the log scale).

As priors, we chose the Cauchy(0,2.5) distribution for all
coefficients, and a half-Cauchy (with only positive values) for
the standard deviations. This are mildly informative priors
(Gelman et al., 2014) which express the belief that that the
most likely value of the parameter is near 0, but allows for a
wide range of non-zero values because of the fat tails of the
Cauchy.

As shown in Figure 1, the effects in each study consistently
show negative estimates of β2, which indicates a facilitation
in reading time at the auxiliary or a subsequent region. This
is consistent with both the feature percolation and retrieval
interference accounts. There is a third explanation for the
observed facilitation effect in these studies, which we turn to
next.

An alternative explanation for the facilitatory effect
Consider the ungrammatical example sentences again. These
are repeated below for convenience:

2The published studies had other experimental conditions that
we do not discuss here. The published studies also used a trimming
procedure to analyze the data, and their analysis was done on the raw
millisecond scale. Thus, our analysis has some differences from the
original analyses, but the conclusions are substantially unchanged.

3This so-called crossed participants and items varying intercepts
linear mixed model can be made more complex by adding varying
slopes for the factor X by participant and by item, but for space
reasons we do not consider these more complex models here.
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Figure 1: The parameter estimates of the hierarchical model
fitted to the 10 data-sets. The condition representing (1a) is
coded +1 and the condition representing (1b) is coded−1, so
that parameter beta 2 shows a facilitation effect if its value
is negative. Shown are the estimates of the facilitatory ef-
fect (beta 2), and the standard deviations of (i) the error
(sigma e), (ii) the by-subjects varying intercepts (sigma u),
and (iii) the by-items varying intercepts (sigma w).

(2) a. The key to the cabinets are on the table.
b. The key to the cabinet are on the table.

In example (2b), both the nouns are marked singular,
whereas in example (2a) the nouns have different number
marking. As discussed in Villata and Franck (2016), the sim-
ilarity in number of the two nouns in (2b) could be the un-
derlying cause for increased processing difficulty, compared
to (2a). The identical number marking in (2b) could lead to
increased confusability between the two nouns, leading to
longer reading times at the moment when a subject noun is
to be accessed at the auxiliary verb. The feature overwrit-
ing model of Nairne (1990) formalizes this idea. To quote
(p. 252): An individual feature of a primary memory trace
is assumed to be overwritten, with probability F, if that fea-
ture is matched in a subsequently occurring event. Interfer-
ence occurs on a feature-by-feature basis, so that, if feature b
matches feature a, the latter will be lost with probability F .

The Nairne proposal has a natural interpretation as a finite
mixture process. Specifically, feature overwriting could occur
with a higher probability in example (2b) compared to (2a).
This assumption implies that the reading times in both (2b)
and (2a) are generated from a mixture of two distributions. In
a particular trial, if no feature overwriting occurs, the reading
time would come from a Lognormal distribution with some
location and scale parameters; this situation would result in
minimal processing difficulty in carrying out a retrieval and
detecting the ungrammaticality. In other trials, when feature
overwriting does occur, the reading time would have a larger



location parameter, and possibly also a larger scale parame-
ter; this would represent the cases where additional difficulty
occurred due to feature overwriting.

An explicit assumption here is that feature overwriting
could occur in both (2b) and (2a), but the proportion would
be higher in (2b). It is also possible to assume that feature
overwriting only occurs in (2b), but due to space reasons we
do not consider this and other alternative models here.

Thus, in the mixture model implementation of the Nairne
proposal, one distribution will have a larger location param-
eter (and perhaps also the scale parameter). In the modelling
presented below, one goal is to estimate the mixing propor-
tions of these distributions. In the results section, we will
refer to the proportion of the slow reading time distributions
in (2b) as prob hi, and in (2a) prob lo. The suffixes hi and
lo here refer to whether we expect confusability to be high or
low.

To summarize, the feature percolation, cue-based retrieval,
and feature overwriting models all predict facilitation in the
ungrammatical sentences (2a) compared to (2b), but the un-
derlying generative process assumed in each model is differ-
ent. Feature percolation and feature overwriting can be seen
as finite mixture models of different types, and cue-based re-
trieval can be seen as implemented by the standard hierarchi-
cal model. Our goal here is to implement all the three propos-
als as statistical models and then compare their relative fit to
the data in order to adjudicate between them. Before we do
this, we introduce finite mixture models.

Finite mixture models
A finite mixture model assumes that the independently dis-
tributed outcome yi, i = 1, . . . ,N is drawn from one of sev-
eral distributions. Each distribution’s identity is controlled
by a Categorical distribution. For example, assume that
we have K distributions with location parameter (the mean)
µk ∈ R and scales (standard deviation) σk ∈ (0,∞), where
k = 1, . . . ,K. Assume also that we have a vector of probabili-
ties < λ1, . . . ,λK >= Λ that represent the mixing proportions.
The parameters λk are non-negative values and they sum to 1.

Thus, if the K distributions are mixed in proportion Λ,
where λk ≥ 0 and ∑

K
k=1 λk = 1, for each outcome yi there is a

latent variable zi ∈ {1, . . . ,K}with a Categorical distribution4

parameterized by λ : zi ∼ Categorical(λ). The variable yi
is then distributed as follows:

yi ∼ Normal(µzi ,σ
2
zi
) (2)

Assuming that each of the K mixture distributions f (·) has
a vector of parameters θk associated with it, the mixture den-
sity can be written in the following manner:

p(yi | θ,Λ) = λ1 · f (yi | θ1)+ · · ·+λK · f (yi | θK) (3)

4The Categorical distribution can be seen here as the Bernoulli
distribution in the case where K=2. In this paper, we focus only on
the K=2 case.

A random variable Y with the above density can then be
written in abbreviated form as follows (Frühwirth-Schnatter,
2006).

Y ∼ λ1 f (y | θ1)+ · · ·+λK f (y | θK) (4)

In this paper, we consider a mixture of LogNormals with
K = 2; we choose LogNormals to model reading times be-
cause reading times must be greater than 0 and follow a Log-
Normal distribution. We will write the models as follows:

Y ∼λ1 ·LogNormal(µ1 +δ,σ2
1)+(1−λ1) ·LogNormal(µ1,σ

2
2)

where σ
2
1 = σ

2
2 or σ

2
1 6= σ

2
2

(5)

The parameter δ marks the shift in the mean in the first mix-
ture distribution relative to the second mixture distribution.
Note that the scale parameters (σ1,σ2) can be either identical
(homogeneous variances) in both distributions, or different
(heterogeneous variances). We will consider both types of
models here.

The above models assume that the data are independent.
When we have repeated measures data, the independence as-
sumption is no longer valid. In order to address this issue, fi-
nite mixture models can be made hierarchical by adding vary-
ing intercepts for subjects (indexed by i) and items (indexed
by j):

yi j ∼λ1 ·LogNormal(µ1 +δ+ui +w j,σ
2
1)+

(1−λ1) ·LogNormal(µ1 +ui +w j,σ
2
2)

(6)

where ui ∼ Normal(0,σ2
u) and w j ∼ Normal(0,σ2

w). Thus,
the mixture model with K = 2 will have the following param-
eters: four variance components, σ2

1,σ
2
2,σ

2
u, and σ2

w; two co-
efficients µ1 and δ; and two probabilities λ1 and λ2 =(1−λ1).

An evaluation of the Nairne feature overwriting
proposal

Method

Implementing the Nairne proposal We fit the homoge-
neous and heterogeneous variance hierarchical mixture mod-
els to the 10 reading time data-sets that compared reading
times at the auxiliary or the following region for sentences
like (2a) and (2b).

The data were assumed to be generated from a two-mixture
Lognormal distribution with either a homogeneous variance
in both mixture distributions, or heterogeneous variances.
Thus, for the high confusability condition (2b), we consid-
ered two models:



Homogeneous variance feature overwriting model

yi j ∼prob hi ·LogNormal(β+δ+ui +w j,σ
2
e)+

(1−prob hi) ·LogNormal(β+ui +w j,σ
2
e)

where:

ui ∼ Normal(0,σ2
u),wk ∼ Normal(0,σ2

w)

(7)

Heterogeneous variance feature overwriting model

yi j ∼prob hi ·LogNormal(β+δ+ui +w j,σ
2
e′)+

(1−prob hi) ·LogNormal(β+ui +w j,σ
2
e)

where:

ui ∼ Normal(0,σ2
u),wk ∼ Normal(0,σ2

w)

(8)

In both models, yi j is the reading time in milliseconds from
subject i and item j. The probability prob hi represents the
mixing probability of the distribution that generates the slow
reading times corresponding to trials where feature overwrit-
ing occurred (2b). Although not shown, another mixture dis-
tribution is defined for example (2a); here, prob lo repre-
sents the mixing probability of the distribution that generates
the slower reading times corresponding to the trials where
feature overwriting occurred.

The homogeneous variance model assumes that both mix-
ture distributions have the same standard deviation σe. The
heterogeneous mixture model assumes that the mixture dis-
tribution that leads to the slower reading times is assumed to
have both a different mean (β+ δ) and a different standard
deviation (σe′ ) than the other distribution. Alternative mod-
els can be fit which relax these assumptions, but due to space
constraints we consider only these two models.

We had the following priors for the parameters:

prob hi∼Beta(1,1)
β,δ ∼Cauchy(0,2.5)

σe,σe′ ,σu,σw ∼Cauchy(0,2.5)
constraint: σe,σe′ ,σu,σw > 0

(9)

The priors for the variance components (the standard de-
viations σe, σe′ , σu, σw) and the coefficients representing the
means of the Lognormal distributions (β,δ) are mildly infor-
mative priors, as in the standard hierarchical model above.
These Cauchy priors assume that values of the parameters
near 0 are the most likely ones, but extreme values are possi-
ble. The Beta(1,1) prior for the mixing probabilities expresses
a large prior uncertainty, and express the assumption that the
probability is equally likely to be any value between 0 and 1.

Baseline models As baselines, we fit a model correspond-
ing to the retrieval interference account (the standard hierar-
chical model shown in equation 1 and summarized in Fig-
ure 1), and the feature percolation proposal. The latter also

assumes a mixture distribution, but only for the condition
corresponding to example (2a). Recall that the claim is that
in ungrammatical sentences, in some proportion of trials the
plural feature on the distractor cabinets moves up to the head
noun. In (2b), no such mixture process should occur because
percolation never occurs; hence a standard hierarchical Log-
Normal distribution can be assumed here. We therefore de-
fined the following generative process for (2a):

Feature percolation model

yi j ∼prob perc ·LogNormal(β+ γ+ui +w j,σ
2
e)+

(1−prob perc) ·LogNormal(β+ui +w j,σ
2
e)

where:

ui ∼ Normal(0,σ2
u),wk ∼ Normal(0,σ2

w),γ < 0

(10)

Note that in the specification above the parameter γ, which
represents the change in the location parameter, is constrained
in the model to be negative; this is because the assumption in
the feature percolation proposal is that percolation leads to
faster reading time.

For sentences like (2b), in which no percolation is assumed
to occur, we simply assumed a LogNormal generative pro-
cess:

yi j ∼ LogNormal(β+ui +w j,σ
2
e) (11)

Model comparison Having fitted the homogeneous and
heterogeneous variance models, as well as the baseline mod-
els (the cue-based retrieval and feature percolation models),
we need a method for comparing the quality of fit of the mix-
ture models relative to the standard hierarchical models. We
use an approximation of the leave-one-out cross-validation
(LOO), as discussed in Vehtari, Gelman, and Gabry (2016).
We find this approach attractive because it focuses on the pre-
dictive performance of the model. LOO compares the ex-
pected predictive performance of alternative models by sub-
setting the data into a training set (for estimating parameters)
by excluding one observation. The difference between the
predicted and observed held-out value can then be used to
quantify model quality by successively holding out each ob-
servation. The sum of the expected log pointwise predictive
density, êl pd, can be used as a measure of predictive ac-
curacy, and the difference between the êl pd’s of competing
models can be computed, including the standard deviation of
the sampling distribution of the difference in êl pd. When
comparing a model M1 with another model M2, if M2 has a
higher êl pd, then it has a better predictive performance com-
pared to M1. The model comparisons are transitive; if a third
model M3 has a higher êl pd than M2, then it has a better per-
formance than M1 as well. Vehtari and colleagues have devel-
oped an efficient computation of LOO using Pareto-smoothed
importance sampling (PSIS-LOO), This is what we use here.
For details of PSIS-LOO, see Vehtari et al. (2016).



(a) Standard HLM vs. (b) Percolation vs. (c) Homogeneous variance vs.
Homogeneous variance Homogeneous variance Heterogeneous variance

mixture model mixture model mixture model
Study elpd diff SE elpd diff SE elpd diff SE

1 -0.29 1.67 29.55 6.97 0.57 1.09
2 56.98 13.57 76.34 14.26 15.20 6.07
3 97.62 16.10 112.40 17.43 57.12 11.11
4 71.29 14.08 84.78 14.12 19.66 8.77
5 112.74 18.17 120.45 18.56 63.28 18.12
6 66.84 12.59 85.97 13.88 43.58 12.18
7 72.45 13.76 80.93 14.72 80.92 14.41
8 88.50 14.60 90.22 14.77 40.17 11.87
9 78.35 14.21 108.10 16.04 26.21 7.76
10 90.08 14.14 105.23 15.02 33.59 11.95

Table 1: Comparison of the 10 sets of hierarchical models using PSIS-LOO. Shown are the differences in êl pd between
(a) the standard hierarchical model and the homogeneous variance mixture model; (b) the feature percolation model and the
homogeneous variance mixture model; and (c) the homogeneous vs. heterogeneous variance mixture model. Also shown are
standard errors for each comparison. If the difference in êl pd is positive, this is evidence in favour of the second model. The
pairwise model comparisons are transitive. These comparisons show that the heterogeneous variance mixture model has the
best predictive performance.
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Figure 2: Parameter estimates for the heterogeneous variance hierarchical mixture models.



Results
Table 1 shows model comparisons between the standard hi-
erarchical model, corresponding to the retrieval interference
account, and the homogeneous variance model. The table
shows that apart from study 1, the homogeneous variance
feature overwriting model is clearly superior to the retrieval
interference model because it has higher êl pd values. Ta-
ble 1 also shows that the homogeneous variance feature over-
writing model furnishes a better fit than the feature percola-
tion model. Finally, the table shows that, except for study 1,
the heterogeneous variance model is superior to the homoge-
neous variance model.

Since the model comparisons are transitive, we can con-
clude that, among the models compared, the heterogeneous
variance feature overwriting model characterises the data
best. We therefore focus on the parameter estimates of the
heterogeneous variance model below. The estimates from
the models for the 10 data-sets are shown in Figure 2. In
this model, two noteworthy points are the following: (i) The
variance of the high confusability distribution (sigmap e; this
corresponds to σe′ in the models defined earlier) is relatively
large compared to the other variance components; (ii) The
difference in probabilities of the two mixture distributions,
diffprob, is generally greater than 0 across all the studies;
however, the uncertainty in the estimate of the probability in
study 1 is very high. These two observations suggest that
there is more variability in the reading time when the fea-
ture overwriting occurs, and that there some evidence that the
proportion of trials with feature overwriting is higher in the
condition with two singular nouns, consistent with the Nairne
proposal.

In summary, overall there is good motivation to assume that
in the condition with two singular nouns (example 2b), a pro-
portion of trials comes from a distribution with a larger mean
and larger standard deviation, and this proportion is higher
than in the condition with one singular and one plural noun
(example 2b).

Discussion
We implemented as a statistical model the proposal that nouns
with similar feature marking (here, number) may be more
confusable due to feature overwriting in some proportion
of trials, which in turn leads to occasional increase in dif-
ficulty in accessing the correct noun when a dependency is
to be completed between the subject and the verb. By fit-
ting Bayesian hierarchical two-mixture models, we showed
that 9 out of the 10 data-sets showed evidence for this in-
creased confusability in one condition over the other. The
feature overwriting account for the ungrammatical sentences
(2a, 2b) appears to be superior to both the retrieval interfer-
ence and feature percolation accounts.

The three accounts make the same predictions for ungram-
matical sentences—a facilitation effect. The modelling pre-
sented here allows us to quantitatively compare the relative
fit of these proposals for these otherwise indistinguishable

accounts. An interesting future direction is to evaluate the
predictions of these models for grammatical sentences such
as those considered in Franck, Colonna, and Rizzi (2015);
Villata and Franck (2016). We plan to address this in future
work.
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