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Terminology

• Example: stop-vowel sequence /ka/, German male speaker,
age: 24

• Voice onset time (VOT): length of the interval between
the release of an oral closure and the onset of vocal fold
vibrations

• Release burst: abrupt increase in acoustic energy caused
by release of constriction of plosive consonants (e.g., /t/, /k/,
/p/)

• Voicing: presence of vocal fold vibrations during the produc-
tion of speech sounds (e.g., voiced stops: /d/, /g/, /b/)

• voicing is typically present during production of German
vowels (glottal activity)

• plosive consonants with di�erent place of articulation (e.g.,
/t/ versus /k/) di�er in VOT values (linguistic contrast)
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Estimation system

Implicit systems

• usually statistical learning methods

• supervised learning requires a subset of previously (manually) labeled data

• often no explicit output of utilized delimiting landmarks

Explicit systems

• usually knowledge-/rule-based expert systems

• no need of previously labeled data

• explicit output of delimiting landmarks

Proposed approach

• explicit landmark detection of release burst (+b), glottal activity onset (+g) and o�set (–g)

• subsequent application of a set of rules to verify candidate landmarks
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Release burst detection (Ananthapadmanabha et al., 2014)

1) use equal loudness �ltered signal x[n]

2) consider subsets between zero crossings n1 , n2 , . . .

3) compute discrete Hilbert envelope

H [n] =
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�
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�

�
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4) for each subset compute maximum Hilbert envelope

mi ,max = arg max
ni ≤m ≤ ni+1

H [m] , Hi ,max = H [mi ,max]

5) set average of preceding vicinity [mi ,1 , mi ,2] (10ms + 1ms)

Hi ,avg =
1

mi ,2 − mi ,1 + 1

mi ,2
∑

k =mi ,1

H [k]

6) de�ne plosion index at vicinity onset

I [n = mi ,1] =
Hi ,max

Hi ,avg

, I [n > mi ,1] = 0
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Glottal activity detection (Liu, 1996)

1) use signal’s short time Fourier transform (15ms window)

X [m,ω] =
∞
∑

k =−∞
w[k − m]x[k] e−iωk

2) compute subband (150. . .500 Hz) power contour

P [m] = max
ωmin ≤ω≤ωmax

|X [m,ω]|2

3) undo short time segmentation: P [m]   P [n]

4) apply box blur kernel (20ms width)

P [n] =
2L
∑

l = 1

k[l ]P [n + l − L]

5) compute power rate-of-rise (12.5ms lookahead/-behind)

R[n] = P [n + wa] − P [n − wb]

6) detect ±peaks exceeding a certain threshold (±9 dB)

7) ensure natural peak pairing using insertions and deletions

8) no leading –peak, no trailing +peak
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Voice onset time estimation

• verify candidate landmarks of release burst (+b), voice onset
(+g) and voice o�set (–g) by means of additional rules:

1) any (±g) pair located completely in the �rst third is discarded
(consonant to vowel transition)

2) merge remaining successive (±g) pairs into a single pair
bypassing any gaps

3) choose most signi�cant plosion index in front of and closest
to that single pair

• yield �nal landmarks of release burst (+b) (step 3) and voice
onset (+g) (step 2)

• voice onset time (VOT) is the length of the interval between
those two landmarks

• additional voice o�set (–g) landmark is available (e.g., useful
for VOT normalization by syllable length)
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Results (1)

Landmark detection

Landmark 5 ms 10 ms 15 ms

burst onset (+b) 90.4 96.1 99.6
voice onset (+g) 83.0 97.1 98.6
voice o�set (–g) 46.5 72.9 85.0

Interval estimation

Interval 5 ms 10 ms 15 ms

voice onset time 73.9 94.0 98.1
vowel length 40.3 67.6 82.0
syllable length 42.2 69.3 82.5
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Results (2)

Our dataset
• registered for the purposes of experiments de-
scribed in Klein et al. (2015)

• clean acoustic speech recordings (sound booth,
16 bit mono, 44100 Hz)

• 42 native German speakers (29 female, 13 male,
aged between 18 and 44)

• 40021 isolated stop-vowel tokens (19881 /ka/,
20140 /ta/)

TIMIT (subset)

• 168 native American English speakers

• 5459 word-medial stops

• large number of consonant-vowel combinations

Author (and technique) Accuracy

Stouten and Hamme, 2009 (reassignment spectra) 76.1%
Lin and Wang, 2011 (random forests) 83.4%
Sonderegger and Keshet, 2012 (structured prediction) 87.6%
Ryant et al., 2013 (support vector machines) 91.7%
proposed approach 94.0%
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Equal loudness �lter (Replay gain)

• R. Robinson (2001). Replay Gain—A Proposed Standard. http://replaygain.hydrogenaud.io/
proposal/equal_loudness.html

Equal loudness curves

• sound pressure required for a test tone of any
frequency to sound as loud as a test tone of 1 kHz

Equal loudness �lter

• certain bene�ts over A-, B-, C-, D- and Z-
weightings (International standard IEC)

http://replaygain.hydrogenaud.io/proposal/equal_loudness.html
http://replaygain.hydrogenaud.io/proposal/equal_loudness.html
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