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Abstract 

A fundamental problem in spoken language is the duality 
between the continuous aspects of phonetic performance and 
the discrete aspects of phonological competence. We study a 
specific instance of this problem in Hungarian vowel 
harmony. We present a model where continuous phonetic 
distinctions uncovered by our experiments are linked to the 
discreteness of phonological form using the mathematics of 
nonlinear dynamics. 
 
Key words: vowel harmony; phonetics-phonology relation; 
non-linear dynamics; Hungarian. 

1 Introduction 

A primary aim in the cognitive science of language is to 
discover the computational principles underlying our ability 
to speak. A major problem is how to relate the symbolic or 
discrete aspects of our speaking competence to their 
continuous manifestation in terms of vocal tract action. The 
study of these two aspects of speech has traditionally been 
pursued under separate domains, the symbolic aspects being 
the domain of phonology and the continuous aspects being 
the domain of phonetics. 
The problem of the phonology-phonetics relation is an 

instance of a fundamental problem in cognitive science, 
namely, the problem of relating the low-dimensional, 
discrete aspects of cognition to the high-dimensional, vastly 
detailed aspects of performance. At the heart of this problem 
one meets a methodological challenge. Computation is 
embedded in a continuously varying environment. To 
understand computation we must use inferences based on 
surface, performance data that have been extracted from 
specific contexts. Abstracting away from contextual or 
environmental factors requires an understanding of how 
computation adapts to different contexts, which in turn 
assumes an understanding of computation. Kosslyn has 
aptly dubbed this “the inference problem” for cognitive 
psychology and emphasizes that surface data are a function 
of competence with added noise, and both competence as 
well as the nature of the function mapping competence onto 
surface data must be studied (Kosslyn, 1978). 
In this paper, we follow Kosslyn’s approach, focusing on 

two central questions: How is the discreteness of a 
phonological system related to the continuity of the speech 
signal? What kinds of formal tools are best in dealing with 
this duality? We think that progress on these questions is 

best achieved when the relation between continuity and 
discreteness is formalized explicitly for representative 
language-particular cases. In this paper, we propose a model 
of how low-level spatial phonetic properties of vowels 
determine the high-level phonological behavior described as 
vowel harmony. Our model employs tools made available 
by the mathematics of non-linear dynamics. Building on 
previous theoretical and experimental work, we consider if 
and how changes in appropriate control parameters result in 
qualitative changes or phase transitions from one stable 
pattern to another. The key idea is that categorical aspects of 
linguistic grammars emerge from non-linear interactions of 
lower-level continuous dynamical systems. 

2 Background Notions from Dynamics 

We begin by a general mathematical formulation for the 
simplest class of non-linear dynamical systems, namely, 
first-order, autonomous dynamical systems (Percival & 
Richards, 1982). Any such system can be described by a 
differential equation )( xfx =& , where f(x) is a nonlinear 

function of x, x is the state of the system, which can be 
thought of as the position of a particle in an abstract one-
dimensional space called the phase space, and f(x) is the 
force. For first-order systems, the force can be expressed as 
a function of the derivative of a potential V(x), 

dxxdVxfx /)()( −==& . An intuitive grasp of the dynamics 

of our state variable x can be inferred by examining 
geometric properties of f(x) or its related potential V(x). For 
example, consider the behavior of a particle placed in the 
potential of Figure 1, and assume that the position of our 
particle, its x value, corresponds to the state of the system. 
The points xk where 0)( =kxf  represent states of equilibrium 

– if our particle is placed initially at xk it remains there for 
all time. Such points are called fixed points. There are two 
types of fixed points, stable and unstable. Stable fixed 
points correspond to the minima of the potential V(x) – x1, x3 
in Figure 1. Around these points f(x) is a decreasing 
function of x, or intuitively, the arrows on the x-axis of 
Figure 1, which show the flow, point towards that point. 
Unstable fixed points correspond to the maxima of the 
potential V(x) – x2 in Figure 1. Around such points, f(x) is an 
increasing function of x, and the arrows of the flow point 
away from that point. Stable fixed points are also called 
attractors, and unstable fixed points repellers. 
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Figure 1 : Potential V(x), attractors x1, x3, and repeller x2 of a 
simple dynamical system. 

 
At a high-level of description any behavioral pattern can 

be described by a few parameters whose dynamics are 
coupled to lower-level subsystems controlling the more 
specific components. For speech, the high-level description 
is specified by the macroscopic parameters of phonology 
(e.g., place and degree of oral constriction, laryngeal state, 
etc.) and the lower levels correspond to the neuronal, 
aerodynamic and myodynamic subsystems controlling the 
speech articulators. Due to the complexity of this 
organization, noise is inevitably a part of any behavioral 
phenomenon. Following Haken (1977), we describe noise as 
a small, random perturbation force pushing the 
representative point of the system x, the position of the 
particle, back and forth randomly. Mathematically, noise 
enters the dynamics of high-level parameters as shown in 
(1), with the additional factor representing Gaussian white-
noise of strength Q. 

ξ
t

Q
dx

xdV
Noisexfx +−=+=

)(
)(&       (1) 

The presence of noise introduces stochasticity in the 
dynamics of the state variable x. Consequently, we can only 
compute the probability of finding x within a given interval 
of x values. This probability is described by the probability 
density function p(x) multiplied by the length of the interval. 
For any first-order dynamical system, there exist methods 
allowing us to compute the probability distribution function 
by finding a stationary solution to the Fokker-Planck 
equation (see Haken 1977; Freidlin & Wentzell 1984). An 
example of a probability density function corresponding to a 
bi-stable potential (two attractors present) is shown below. 

 
Figure 2 : V(x) and probability density function p(x). 

 
It can be seen that the probability of finding the system 

around the mean states of the two attractors is quite high. 
The probability to find the system at some other point 
decreases quickly as we move away from the mean states 
but it may not be zero. In short, the preferred modes of 
essential parameters, the attractors, are resistant to noise in a 
probabilistic sense. 
A key notion of non-linear dynamics is non-linearity. A 

system exhibits non-linearity when large or discontinuous 
changes can be observed in the behavior of that system as 
some control parameter varies smoothly. In a prototypical 
example of this situation from speech, Stevens (1972) has 
argued that the relation between articulatory parameters and 
their acoustic/auditory output is ‘quantal’ in the following 
sense. There are certain ranges of articulatory parameter 
variation within which the acoustic output remains 
relatively stable. In other ranges, however, small variations 
in the articulatory parameter cause large (non-linear) 
changes in the quality of the acoustic output. Put differently, 
gradual changes in some articulatory parameters lead to 
qualitatively distinct acoustic outputs. In another example 
from biological coordination, Kelso (1995) observed that 
when adults are asked to move their index fingers in an anti-
phase pattern (both fingers move to the left or the right at 
the same time), they can perform this task over a wide range 
of cycling frequencies. But as frequency is increased, 
subjects show a spontaneous shift to an in-phase pattern, 
that is, to a pattern where the fingers move toward each 
other or away from each other at the same time. In these 
examples, then, scaling of a continuous parameter results in 
qualitative changes in the behavior of a dynamical system, 
the shift from one stable mode to another. Such qualitative 
changes are commonly referred to as bifurcations by 
mathematicians or phase transitions by physicists. 
We can illustrate the fundamental property of non-

linearity with a simple mathematical example. Consider a 
force function parameterized by a so-called ‘control’ 
variable k and specified by 3),( xkxkxf −−= . We are 

interested in what happens to x – ultimately the solutions to 
our equation – as the control parameter k is varied. The 
potential corresponding to our force function 

)(4/2/),( 42 CxkxkxV ++=  is plotted in Figure 3 for various 

values of k. For 0>k , as shown in the top row of Figure 3, 
the control parameter changes but the system retains a 
qualitative sameness of form. The minimum in the valley of 
V(x) represents the stable fixed point of x. This is the 
attractor, the preferred region within the continuum of x 
where the particle ends up. But as k passes through zero, 
suddenly a qualitative change occurs. The system changes 
to a bistable regime, showing two attractors – a bifurcation. 
Within the ranges 0>k  or 0<k , variation in k does 
affect smoothly the attractor landscape (this is known as 
scaling). For example, from 4=k  to 1=k  there is a 
change in the stability of the attractor, as is evident from the 
flattening of the walls in the attractor’s basin. 
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Figure 3 : Potential as a function of a control variable k. 
 
In the next two plots, as we move from 1−=k  to 

2−=k , the stable points drift apart smoothly. But as long 
as k does not pass the critical value of 0, that is, within the 
ranges 0>k  or 0<k , the macroscopic form of the system 
remains unaltered. It is only when variation in k passes a 
critical value (here, 0=k ) that a qualitative change takes 
place. 
Next, we consider how the concepts just introduced can 

be applied to our specific problem, the relation between 
continuous and discrete dimensions of speech patterns in 
vowel harmony. 

3 Dynamics Applied to Vowel Harmony 

Vowel harmony is a systematic regularity found in many 
languages by which vowels in a word must agree in terms of 
certain phonetic properties. For example, vowels in 
Hungarian words tend to be drawn either from the set of 
vowels articulated with a frontward movement of the tongue 
body ([i í e é ö ı ü ő]) or from the set of vowels articulated 
with a backward movement of the tongue body ([u ú o ó a 
á]). In our examples, we will be using Hungarian 
orthography where the acute accent denotes length, and the 
umlaut denotes front round vowels. In terms of 
phonological features, the ‘front’ vowels [i í e é ö ı ü ő] 
share the feature [–back], and the ‘back’ vowels [u ú o ó a á] 
share the feature [+back].  
The phonological consequences of vowel harmony are 

most readily observed in suffix vowel alternations where the 
[±back] quality of the suffix vowel is determined by the 
[±back] quality of the stem vowel. For example, the Dative 
suffix alternates between a front /e/ and a back /a/ as a 
function of the stem vowel: ház-nak ‘house-Dative’ but kéz-
nek ‘hand-Dative’. Because the stem vowel determines the 
suffix form, it is called the trigger and the suffix vowel the 
target of the harmony process. 
Phonetic investigations have shown that vowels exert 

influences on neighboring vowels across intervening 
consonants (Öhman, 1966). Such ‘V-to-V coarticulation’ 
effects are observed as quantitative, phonetic patterns whose 
degree varies depending on the quality of the intervening 
consonants, stress distribution, and other factors (e.g., 

Recasens, 1999). V-to-V coarticulation effects are generally 
assumed to provide a natural phonetic basis to vowel 
harmony, a categorical version of V-to-V coarticulation 
where the suffix vowels are maximally coarticulated with 
the stem vowels (Fowler, 1983; Ohala, 1994). 
In many languages with vowel harmony, however, one 

also finds vowels that disagree with their adjacent vowels. 
These vowels appear in so-called disharmonic stems and 
have been traditionally divided into two categories. 
Transparent vowels may intervene between the trigger and 
the target vowels even when they bear the opposite value for 
the harmonizing feature. For example, the /í/ in papír 
‘paper’ is transparent because papír selects [+back] suffixes, 
e.g., papír-nak ‘paper-Dative’, in agreement with the 
[+back] value of the initial stem vowel and despite the 
intervening [–back] value of the /í/. Opaque vowels also 
show disagreement with the preceding stem vowel(s) but 
require a local agreement with the following suffix vowel. 
For example, the front rounded /ü/ in parfüm ‘perfume’ is 
opaque because it selects the [–back] version of the suffix, 
parfüm-nek ‘perfume-Dative’, and disagrees with the 
preceding [+back] stem vowel. 
Hungarian transparent vowels, then, present a challenge 

to the proposal that vowel harmony has its basis in 
continuous V-to-V coarticulation effects between 
consecutive vowels. However, the assumption that 
transparent vowels do not participate in vowel harmony is 
based on impressionistic auditory observations. There has 
been no systematic investigation of the phonetic 
characteristics of these vowels. The experiments described 
below are aimed at filling this gap in our knowledge.  

3.1. Experiments on Transparent Vowels 

In Hungarian, the transparent vowels consist of the front 
unrounded vowels {/i/, /í/, /é/, /e/}. In addition to allowing 
agreement between vowels that are not in consecutive 
syllables (e.g., papír-nak), three stable distributional 
patterns have been observed in the phonology of transparent 
vowels (e.g., Vago, 1980; Kaun 1995; Benus, 2005). First, 
stems with only transparent vowels (T stems) may trigger 
both front and back suffixes. The majority of T stems 
trigger front suffixes (cím-nek ‘address-Dative’, szél-nek 
‘wind-Dative’), but approximately sixty monosyllabic T 
stems trigger back suffixes (síp-nak ‘whistle-Dative’, cél-
nak ‘aim-Dative’). Second, stems where a back vowel 
precedes one or two transparent vowels (BT and BTT stems 
respectively) may trigger vacillation in suffixes. For 
example, Hungarian speakers accept both hotel-nek and 
hotel-nak as acceptable renderings of ‘hotel-Dative’. 
Finally, increasing the number of the transparent vowels 
that follow a back vowel decreases the likelihood of 
selecting back suffixes. For example, kabin ‘cabin’ selects 
back suffixes (kabin-nak) but aszpirin ‘aspirin’ vacillates 
(aszpirin-nak, aszpirin-nek). 
To understand the nature of transparent vowels, we 

conducted for the first time a systematic study of their 
articulatory properties using two experimental techniques. 
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The first technique, EMMA (Electro-magnetic Midsagittal 
Articulometry, Perkell et al. 1992), uses an electro-magnetic 
field to track the movements of small receivers attached to 
the articulators. 

 
 
Figure 4 : Articulator kinematics as recorded with EMMA. 
 
Figure 4 shows the horizontal (dashed) and vertical 

(solid) trajectories of receivers attached on the tongue tip 
(TT), body (TB), dorsum (TD), and the upper and lower lips 
(UL, LL) during the production of zafír-ban. To quantify 
the spatial properties of transparent vowels (such as í in 
zafír-ban), we measured the maximal horizontal 
advancement of the TB and TD receivers during the 
production of the transparent vowel (‘max’ in Figure 4). 
Our second technique uses ultrasound (Stone 1997) to 

provide 2D images of almost the complete surface of the 
tongue at its midline, during the production of transparent 
vowels. First, the frame with the most advanced tongue 
position was determined as the target frame (left, Figure 5). 
The tongue edge in this target frame was then traced using 
methods of Iskarous (in press) by determining the points of 
maximal contrast within the selected region (middle panel, 
Figure 5), and fitting multiple snakes into a curve that 
balances the distance of the points from the curve with the 
curve’s smoothness (right panel, Figure 5). 
 

 
 
Figure 5 : Static tongue surfaces captured with ultrasound, 

and extraction of tongue contours. 
 
Stimuli consisted of carefully selected pairs of words 

where transparent vowels appear in similar consonantal 
environments and are followed by either front or back 
suffixes. For example, the /i/ in Tomi-hoz ‘Tom-Diminutive-
Allative’ was compared to the /i/ in Imi-hez ‘Imre-

Diminutive-Allative’. EMMA data from three subjects and 
ultrasound data from one subject were analyzed. 
For all subjects and both methodologies, the tongue 

position during transparent vowels in stems triggering back 
suffixes was slightly, but significantly, more retracted than 
the tongue position during transparent vowels in stems 
triggering front suffixes. The significant effect of harmonic 
environment ranged between 0.4 and 2.5 mm for various 
measurements. Figure 6 shows the effect of back harmony 
(darker, dotted shapes) vs. front harmony (lighter, solid 
lines) context with the ultrasound data. 
 

 
 
Figure 6 : Effect of environment on /i/ (left) and /é/ (right). 
 
In addition, transparent vowels in T stems produced in 

isolation (with no overt suffix) were more retracted in those 
stems that select back suffixes than in the stems selecting 
front suffixes. For example, /í/ in words like síp ‘whistle’ 
was more retracted than /í/ in words like cím ‘address’; the 
former triggers back suffixes while the latter triggers front 
suffixes. 
The overarching generalization from the phonetic and 

phonological data is that fine differences in articulatory 
retraction of transparent vowels are linked to an alternation 
in the suffix form. The advanced/retracted version of a 
transparent vowel selects the front/back suffix, respectively. 
This systematic correlation between the phonetics and 
phonology of transparent vowels argues for an approach in 
which the phonetic backness of the stem-final vowel plays a 
role in determining the phonological form of the suffix. 
More broadly, we require an approach that integrates 
continuous and discrete properties of transparent vowels 
within a unified system. 

3.3. Dynamic Model of Suffix Selection 

Formally, the relation obtained between degree of retraction 
and suffix selection is nonlinear. Small changes in degree of 
retraction can cause large (nonlinear) changes in suffix 
form. In other words, we require a formal language that 
expresses this nonlinear nature of the relation between 
retraction degree and suffix selection. This is the language 
of nonlinear dynamics. 
In the proposed dynamic model, the two discrete forms of 

an alternating suffix (e.g., Dative -nak vs. -nek) are mapped 
to attractors of a single dynamical system. To model the 
dependence between the continuous parameter of retraction 
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degree R of the stem-final vowel and the discrete form of 
the suffix, we require that the choice of the suffix attractor 
be modulated by variation in R. Following the discussion in 
section 2, these ideas can be stated in the form of 
equation NoiseRxfx += ),(& . This equation expresses the 

temporal evolution of the suffix vowel constriction location, 
denoted by x, as a nonlinear function f of the current state x 
and the control parameter of retraction degree R. 
What determines f(x,R)? An appropriate dynamical 

system for the suffix alternation is required to have (at least) 
a bistable (two-attractor) potential to capture the presence of 
two stable forms of a suffix, front and back. A polynomial 
of degree less than three allows for at most one attractor 
(Arnold 2000). Hence, the simplest model for suffix choice 
can be specified by a cubic polynomial. A good candidate 
for f(x,R) is the ‘tilted’ anharmonic oscillator, whose 
dynamics are described by 3)1(),( xxRRxf −+−=  (Gafos, 

in press). Since dxRxdVRxfx /),(),( −==& , we can compute 

the potential landscape 4/2/)1(),( 42 xxRRxV +−−= , 

by integrating f(x,R). Using concepts from section 2, the 
value of the constriction location for a suffix vowel is 
interpreted by the position of a particle running downhill in 
this potential and the asymptotic behavior of x in this 
equation can be visualized by looking at the simulations 
shown Figure 7. For exposition purposes, in our simulations 
we (arbitrarily) map the back form of the suffix (–nak) to an 
attractor around 4.1−=x , and the front form (–nek) to an 
attractor around 4.1=x . The control parameter R varies 
between 0 and 2, corresponding to minimal and maximal 
retraction, respectively. 
 

 
Figure 7 : Suffix form as a function of retraction degree R. 
 
The graph in the upper left simulates suffix selection in 

stems like Tomi–, which select back suffixes. We observed 
experimentally that in such stems, the transparent vowel is 
retracted. In our model, retraction enters the dynamics via R. 
The function f(x,R) for a range of R values, 2≈R  
(significant retraction), provides a potential V(x,R) with an 
attractor close to the value of constriction location 4.1−=x  

(BACK), corresponding to the back variant of the suffix. The 
probability that a particle left in this potential ends up in the 
vicinity of the BACK attractor is very high. Because the 
position of the particle represents the [±back] form of the 
suffix, it is predicted that the suffix is back, e.g., Tomi-hoz.  

The graph in the upper right panel shows how the 
potential V(x) changes for stems whose final vowels show 
minimal or no retraction like Imi–. For minimal retraction, 
modeled as 0≈R , a qualitative change is evident in the 
shape of V(x). The BACK attractor has been replaced by a 
FRONT attractor that corresponds to the front variant of the 
suffix. A stem with minimal retraction of its final vowel is 
thus predicted to select front suffixes, e.g., Imi-hez. 
The graph in the bottom panel of Figure 7 shows the 

behavior of the system for intermediate values of the 
parameter R ( 1≈R ). In nonlinear dynamics, a change 
from one macroscopic state of the system to another implies 
an intermediate stage of fluctuation. We see that there are 
now two minima representing the presence of two stable 
states, FRONT and BACK. For intermediate values of R thus 
our model predicts that the suffix can vary between a front 
and a back version. To see this, we must consider the effects 
of noise and initial position of the particle. For example, 
consider a particle at a position around (0,0) in any of the 
potentials of the bottom panel. Due to the random kicks 
introduced by the fluctuations, the particle will end up either 
in the FRONT or BACK attractor, and thus both front and back 
suffix are possible. As discussed earlier, we do in fact find 
two sources of suffix vacillation in Hungarian: stems where 
a back vowel is followed by the low /e/ (e.g., hotel) and 
stems where a back vowel is followed by two transparent 
vowels (e.g., aszpirin). 
Figure 7 illustrates the fundamental property of non-

linearity: equal changes in the control parameter (degree of 
retraction) do not always effect proportionately equal 
changes in the essential parameter (quality of the suffix). 
For example, both 2=R , and 6.1=R  result in 
qualitatively the same potential, with the single BACK 
attractor, albeit with different stability. But as R changes 
from 6.1=R  to 2.1=R  or from 4.0=R  to 8.0=R  the 
potential changes qualitatively from a mono-stable regime 
(upper panels) to a bi-stable regime (lower panel). Hence, a 
change of R by 4.0=∆  leaves the qualitative form of the 
system unaltered within a certain region of the control 
parameter space. But within a different region of control 
parameter values, a change of the same magnitude causes a 
qualitative change in the behavior of the system. 
Our model then provides a qualitative match to the 

Hungarian data by predicting that stems with minimal 
retraction of their final vowel trigger front suffixes (e.g., Imi 
and parfüm), stems with intermediate degree of retraction 
trigger vacillation (e.g., hotel and aszpirin), and stems with 
significant retraction trigger back suffixes (e.g., Tomi and 
papír). These differences in stem-final vowel retraction 
among the different stem classes have been explicitly 
derived in a model of coarticulation between adjacent stem 
vowels (Benus 2005). For example, the differences in 

230



 

retraction degree of /i/, /e/, and /ü/ when they follow a back 
vowel are linked to quantal properties of these front vowels. 
More specifically, the low and somewhat retracted position 
of /e/’s tongue body and the lip-rounding of /ü/ allow for 
only limited retraction when these vowels coarticulate with 
a preceding back vowel. With respect to stems where a back 
vowel is followed by multiple transparent vowels, Benus 
(2005) argues that the retraction degree of the stem-final 
vowel in aszpirin is smaller than that of the stem-final 
vowel in Tomi. This is based on the fact that the transparent 
vowel in the stems like Tomi is directly preceded by a back 
vowel while the stem-final transparent vowel in stems like 
aszpirin is adjacent locally to a slightly retracted front 
vowel and only non-locally to a back vowel. 
Given the lawful relationship between retraction degree 

and suffix form, our model thus accounts for the patterns of 
suffix selection in stems like Tomi (back suffix) vs. Imi 
(front suffix). The model also makes plausible and testable 
predictions for the patterns of opacity (parfüm) and 
vacillation (hotel, aszpirin). Currently, we are designing an 
experimental paradigm to test these predictions. Overall 
then, the proposed model builds on rigorous phonetic 
methods for phonological research, provides an explicit link 
between the quantitative and qualitative aspects of the 
relevant speech patterns, and makes specific predictions 
leading to new experimental studies. 

4 Conclusion  

We presented a model that allows one to relate continuous 
phonetic distinctions to discrete phonological form using the 
mathematics of nonlinear dynamics. In Hungarian 
transparent vowels, small changes in tongue body 
constriction location are related to qualitative changes in the 
form of the suffix. This is the fundamental property of 
nonlinearity, a hallmark of complexity in natural systems in 
general and in phonetics-phonology in particular. In the 
language of nonlinear dynamics, it is possible to model the 
relation between the discreteness of phonological form and 
the continuity of phonetic substance in which that form is 
embedded. 
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