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1 Introduction

Extrinsic timing of speech gestures has been proposed to correct for disparities
between theoretically predicted and experimentally observed velocity profiles.
Extrinsic timing makes the dynamics of the gesture nonautonomous. This is
theoretically undesirable. We argue that, despite making the dynamics more
complex, the kinematic predictions of the nonautonomous extension are sur-
prisingly weak both qualitatively and quantitatively. We propose a revised
nonlinear dynamical system which restores the autonomy of the gesture. This
dynamical system gives both formal expression and empirical justification to
Carol Fowler’s vision of intrinsic timing at the level of a single gestural event.

Sections 2 and 3 distinguish autonomous from nonautonomous and nonlinear
from linear theories of the speech gesture. We then propose that the gesture is
a nonlinear autonomous dynamical system. Sections 4 and 5 qualitatively and
quantitatively evaluate the proposed dynamical system. Section 6 shows that,
in an isochronous speech task (e.g., ‘bapabapa. . . ’) where the dynamical system
is driven by a periodic external force, solutions become aperiodic.

2 Autonomous versus nonautonomous

Theoretical work suggests that the gesture has intrinsic timing [7]. This means
that the gesture intrinsically has both spatial and temporal extent and that the
gesture does not merely inherit temporal extent from an external system. In
contrast, an extrinsic timing theory of the gesture would mean that the gesture
intrinsically has only spatial extent and that the gesture inherits temporal extent
from an executive time-keeper. This section introduces the autonomous versus
nonautonomous distinction as it has been applied to gestures and defines terms
to be used in forthcoming sections.

Autonomous dynamical systems have the form of Equation 1.

ẋ = f(x) (1)
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The evolution of x as a function of time, x(t), also known as a trajectory of x, is
completely determined by the equation above. Specifically, this equation states
that at any time instant t the rate of change of x, ẋ = dx/dt, is a function of
x, f(x), but not also of t. We can fully describe the behavior of the system by
considering just three cases. If f(x) is positive, then x will increase. If f(x) is
negative, then x will decrease. Finally, if f(x) is zero, x stays the same (this
x is called a fixed point of the dynamics). Thus, f(x) points in the direction
of change for x and specifies the magnitude of the change. Therefore, f(x) is
known as a force field of the dynamical system. The force field of an autonomous
dynamical system is stationary (i.e., does not vary over time). As a consequence
of stationarity, no two trajectories cross [5]. The coordinates of the state in
the phase space fully determine the evolution of the system The no crossing
consequence of autonomy plays a crucial role in the qualitative understanding
of dynamical systems.

Nonautonomous dynamical systems have the form of Equation 2.

ẋ = f(x, t) (2)

This means that the evolution of the system from a given point in the state space
depends not only on the coordinates of that point, but also on the time at which
that point was reached. The force field of a nonautonomous dynamical system
is nonstationary (i.e., varies over time). As a consequence of nonstationarity,
trajectories of the system can cross in the phase space and multiple trajectories
can pass through each point.

A gesture is a dynamical system which controls a functionally relevant vari-
able x (e.g., a tract variable [27, 2], or a task variable more generally [26]). This
dynamical system makes x move in the potential

V (x) = kx2/2, (3)

where k is the stiffness of the gesture and x is displacement from the target
of the gesture (Figure 1). The dynamical law for x moving in the potential
of Equation 3 is given in Equation 4. This is the well-known equation of the
damped linear spring. It is an autonomous dynamical system which can be
made1 to have the form of Equation 1. When b = 2

√
mk, the spring is critically

damped and x approaches zero and does not oscillate about zero ([8], p. 396).

mẍ+ bẋ+∇(kx2/2) = 0. (4)

Equation 4 derives from Newton’s law, mẍ = F , where the force F is the
sum of two forces: a restoring force F1 = −kx (Hooke’s law, see Figure 2), which
is a function of the distance x from equilibrium, and a damping force F2 = −bẋ,
which is a function of velocity ẋ. The former force represents elasticity. The

1The second-order Equation 4 can be rewritten as a system of two first-order equations by
introducing a new state variable y and setting ẋ = y, along with some rearrangement of terms
in the original second-order equation. The dynamical system has become two-dimensional
with state space coordinates x and y
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farther the displacement away from equilibrium, the greater the restoring force.
The latter represents viscocity. In viscous behavior, the force depends (only)
on velocity, not on displacement (cf. [15], pp. 82-83). Both F1 and F2 are
independent of time and are linear.

x

V (x)

Figure 1: Harmonic potential

x

F1

x

−kx

Figure 2: Hooke’s law

Speech involves ensembles of gestures organized in time and thus a mecha-
nism which activates and deactivates gestures is needed. Any such mechanism is
implicated in the notion of inter-gestural timing. One such mechanism switches
the force field of a gesture on and off as

mẍ+ a(t)
(
bẋ︸︷︷︸
−F2

+∇(kx2/2)︸ ︷︷ ︸
−F1

)
= 0, (5)

where a(t) is the step function

a(t) =

{
1 t ∈ [ta, tb]

0 otherwise
(6)

which activates the gesture over some time interval [27]. Figure 3 graphs acti-
vation over time, and Figure 4 graphs a particular solution to Equation 5 given
this step pattern of activation.

Turning gestures on and off as shown above appears to make Equation 4
nonautonomous as Equation 5, which can be made to have the form of Equa-
tion 2. Nevertheless, Equation 5 is equivalent to the following piecewise au-
tonomous system.

mẍ =

{
−bẋ− kx for t ∈ [ta, tb]

0 otherwise
(7)

Over the interval [ta, tb] we observe the intrinsic dynamics of the gesture which
arises from the damped movement of x in the potential V (x). The intrinsic
gestural dynamics is an autonomous dynamical system. During the interval of
nonzero activation, no coefficient in the dynamical law above depends on time
(i.e., k, b are constant).

Equation 5 with step activation fails to predict a property of speech move-
ments, namely that near symmetry is typical of speech velocity profiles (i.e.,
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Figure 3: Step activa-
tion
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Figure 4: Solution to
Equation 5 with the
step pattern of activa-
tion

t

ẋ 0.20

ta tb

Figure 5: Proportional
time to peak velocity for
step activation

velocity graphed as a function of time). [20] report proportional times to peak
velocity (i.e., time to peak velocity divided by duration; 0.50 is symmetric) in
the range of 0.36 to 0.43 for tongue dorsum lowering at fast and slow speech
rates in discrete and repetitive tongue dorsum movement tasks. Nearly symmet-
rical velocity profiles have also been reported for the speech movements of jaw
lowering [20], tongue dorsum movement in vowels [17], glottal abduction [17],
and labial constriction [3]. In contrast to these reports, Equation 5 with step ac-
tivation predicts proportional time to peak velocity of 0.20 (see Figure 5). The
reported deviations from 0.20 indicate that we need a correction to Equation 5
with step activation.

One correction for short proportional time to peak velocity is to make gestu-
ral activation continuous. In the context of a model of the speech gesture, this
was anticipated in [24] and a formal implementation was proposed in [13, 3, 4].
Whereas step activation makes the gesture autonomous during its interval of ac-
tivation, these proposals make the gesture nonautonomous during this interval.
For instance, Equation 8 defines activation as a continuous function of time [13].

a(t) =



0, if t < ta

sin
(

2π(t−ta)
4(tb−ta)

)
if ta ≤ t < tb

1, if tb ≤ t < tc

sin
(

2π(t−td)
4(tc−td)

)
if tc ≤ t < td

0, if t ≥ td

(8)

Figure 6 graphs this particular continuous activation function over time. The
graph displays a quarter sine rise over the interval [ta, tb) and a quarter sine fall
over the interval [tc, td). Figure 7 graphs a particular solution to Equation 5
given the continuous pattern of activation.

Continuous activation makes the solution to Equation 5 take on a range of
proportional times to peak velocity for varying tb and tc in Equation 8 (i.e.,
for varying activation frequency). Examples are the solid velocity profiles of
Figure 8. These are corrections to Equation 5 with step activation, which has
proportional time to peak velocity of 0.20 (see the dashed velocity profile of
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Figure 8: Change in
proportional time to
peak velocity for step
activation (dashed) and
different continuous
patterns of activation
(solid)

Figure 8).
Continuous activation corrects for short proportional time to peak velocity,

but it makes the gesture a nonautonomous dynamical system which involves
an executive time-keeper. Whereas the nonlinear system with step activation
admits a piecewise autonomous definition as Equation 7, the linear system with
continuous activation does not admit a piecewise autonomous definition. Sec-
tion 3 proposes a different correction for short proportional time to peak veloc-
ity which keeps the gesture autonomous and uses step activation. The intrinsic
gestural dynamics reflects only the autonomous, damped movement of x in the
potential V (x).

3 Nonlinear versus linear

Equation 5 with step activation is the simplest dynamical system for the discrete
goal-directed movement task. The two forces of this system are the restoring
force F1 = −kx and the damping force F2 = −bẋ. Both of these are linear.
Hence, two types of nonlinearity extend the linear system: nonlinear damp-
ing and nonlinear restoring force. The former, despite keeping with damping,
introduces oscillations even without external periodic forcing. This property
is undesirable for the discrete goal-directed movement task. In the latter ex-
tension, a departure from the space of linear models is expressed in the most
general way by considering different forms of the potential function V (x) as
shown below.

mẍ+ bẋ+∇V (x) = 0 (9)

Any potential other than the potential of the harmonic oscillator V (x) =
kx2/2 is known as anharmonic ([10], p. 108). This section argues that the
gesture has an anharmonic potential. Specifically, we propose that a negative
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quadratic term introduces a correction to the harmonic potential of Equation 3.
This corrects for the short proportional time to peak velocity of Equation 5 with
step activation.

mẍ+ bẋ+∇(kx2/2− dx4/4) = 0 (10)

Figure 9 graphs the force

F (x) = −∇V (x) = −kx+ dx3 (11)

as a function of displacement. In the neighborhood of the stable fixed point
x = 0, the linear term attracts x to x = 0. For small displacement, the cubic
deviation is negligible and thus the restoring force F is approximately linear.
As displacement increases, the nonlinear term opposes the linear restoring force,
and F bows back toward the x-axis. Increasing the degree of the force polyno-
mial to higher than cubic (higher than quadratic in the potential) contributes
quantitative, not qualitative, distinctions within the space of expanded models.
The key departure from the linear model is that the restoring force is weak-
ened for relatively large displacements by the addition of these higher degree
terms. Higher degree corrections are inessential in qualitative terms. On the
other hand, a quadratic term in the force would give us F = −kx+ cx2 which is
qualitatively incorrect. While the point x = k/c is a maximum of the potential
V (x) = kx2/2 − cx3/3, the point x = −k/c is not a maximum, and thus V (x)
is asymmetric about the stable fixed point x = 0.

The qualitative distinction at hand can also be described in terms of potential
differences. The slope of the anharmonic potential

V (x) = kx2/2− dx4/4 (12)

has absolute value less than the slope of the harmonic potential for all x 6= 0 in
the basin of attraction (i.e., for 0 < |x| <

√
k/d). See Figure 10. This means

that acceleration arising from displacement is less in the anharmonic potential
than in the harmonic potential.

The following sections evaluate the predictions of the nonlinear dynamical
system of Equation 10 against those of the linear dynamical system of Equa-
tion 4.

4 Qualitative evaluation

A qualitative indication that the nonlinear system is on the right track comes
from its predictions for characteristic relations among kinematic variables. Specif-
ically, the nonlinear system predicts (i) that proportional time to peak velocity is
nearly symmetric, (ii) that amplitude and peak velocity covary nonlinearly, and
(iii) that the ratio of peak velocity to amplitude varies inversely with movement
duration (i.e., the shorter the duration, the greater the ratio of peak velocity
to amplitude). In contrast, the linear system makes the first prediction but not
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Figure 9: Stiffness function
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Figure 10: Harmonic potential
(dashed) and anharmonic potential
(solid)

the second and third predictions, if corrected with a continuous activation func-
tion, and makes none of the predictions otherwise. Evidence for these kinematic
relationships comes from observation of oral and laryngeal speech gestures, sug-
gesting shared principles of self-organization.

Figure 11 compares representative proportional times to peak velocity of the
nonlinear Equation 10 with that of the linear Equation 5 with step activation.
When d = 0, corresponding to the harmonic potential of the linear system,
proportional time to peak velocity is 0.20. When d > 0, corresponding to the
anharmonic potential of the nonlinear system, proportional time to peak velocity
increases. The proportional times to peak velocity of 0.36 and 0.50 are plotted
as representative examples. This is consistent with the findings surveyed in
Section 2.

t

ẋ 0.20

0.36
0.52

Figure 11: Change in proportional
time to peak velocity for step ac-
tivation with d = 0 (dashed), d =
0.7 k/m (dotted), and d = 0.95 k/m
(solid)
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Figure 12: Peak velocity against
amplitude in harmonic potential
(d = 0) and increasingly anhar-
monic potentials (d increasing)

Figure 12 plots peak velocity as a function of displacement. When d = 0,
corresponding to the harmonic potential of the linear system, the plot is a line.
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When d > 0, corresponding to the anharmonic potential of the nonlinear system,
peak velocity undergoes soft saturation at large displacement. The predictions
of both the linear and nonlinear systems are consistent with the finding that
peak velocity and movement amplitude correlate positively for tongue dorsum
raising and lowering ([22], p. 644; [21], pp. 629-630; [17], p. 467) and vocal
fold adduction and abduction ([17], p. 462, p. 467). Crucially, however, only
the prediction of the nonlinear system is consistent with a quadratic trend in
the nonlinear regression of peak velocity against movement amplitude ([22], p.
644).

Figures 13 and 14 plot amplitude-normalized peak velocity against gesture
settling time (i.e., the time from movement onset to target achievement) for tra-
jectories of the linear system with continuous activation and of the nonlinear sys-
tem, respectively. As settling time increases, amplitude-normalized peak veloc-
ity decays quadratically for the nonlinear system but not for the linear system.
This nonlinear relation between amplitude-normalized peak velocity and settling
time is outside the scope of the linear system, with or without continuous activa-
tion. Thus, the prediction of the nonlinear system is consistent with the finding
that although peak velocity, movement amplitude, and gesture settling time vary
depending on initial conditions, the relation among them is invariant [22, 17].
This relation is described by an equation of constraint in the sense of [8] (p.
401). This equation is (peak velocity)/(amplitude) = c/(settling time), where c
is a constant of proportionality. A consequence of intrinsic timing is that this
equation of constraint is not the result of external forcing. Rather, the equation
of constraint is a consequence of the anharmonic potential of the intrinsic ges-
tural dynamics. This equation of constraint characterizes the kinematics of the
tongue dorsum [22, 17] and the glottis [17]. In contrast, the linear system does
not entail this equation of constraint, with or without continuous activation.2

In sum, nonautonomy in the intrinsic gestural dynamics via continuous ac-
tivation corrects for short proportional time to peak velocity but fails to predict
characteristic relations among kinematic variables. Autonomy and nonlinearity
achieve both.

5 Quantitative evaluation

We compare the nonlinear Equation 10 with anharmonic potential against the
linear Equation 5 with harmonic potential using a dataset taken from the X-ray
Microbeam Speech Production Database [30]. The X-ray Microbeam Speech
Production Database consists of 57 subjects carrying out 118 speech or speech-
related tasks. We analyze Task 16, a citation task with target items [a'ka] and
[a'ga]. Forty-three of the 57 total subjects performed Task 16. The tongue
dorsum (T4) pellet of two subjects was mistracked by the X-ray microbeam
system over the interval from the release of [k] to the achievement of the oral

2[22, 17] note that the equation of constraint is a consequence of an undamped harmonic
oscillator. However, the speech gesture needs damping terms to have discrete goal-directed
movements as its solutions.
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Figure 13: Amplitude-normalized
peak velocity against movement
time. Dots correspond to different
movement amplitudes in the har-
monic potential (d = 0)
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Figure 14: Amplitude-normalized
peak velocity against movement
time. Dots correspond to different
movement amplitudes in the anhar-
monic potential (d > 0)

[a'ka] 11, 12, 13, 14, 15, 16, 18, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 33,
34, 35, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 51, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62

[a'ga] 12, 14, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 39, 40, 44, 45, 46, 48, 49, 51, 53, 55, 56, 57, 58, 59,
60, 61, 62

Table 1: Subjects which produced each target item

target of [a] and the same happened for four subjects in [a'ga] target items
(see [30] Section 6.7.1 for probable causes of mistracking). Table 1 lists the
numbers of the subjects whose data is available for each of the two target items.
We use the T4 pellet in the 80 resulting X-ray microbeam recordings from 43
different speakers to compare the observed tongue dorsum lowering kinematics
with predictions of the linear and nonlinear dynamical systems.

Pellet positions are expressed in a two-dimensional cranial coordinate system
(see [30] Section 6.3). The origin of the coordinate system is the caudal-most
edge of the central maxillary incisors. The anteroposterior axis is the intersec-
tion of the midsaggital and maxillary occlusal planes. The superior-inferior axis
is normal to the maxillary occlusal plane and passes through the origin.

The gestural dynamics has one degree of freedom. This means that the
dimension of the movement traces must be reduced from two to one. A non-
arbitrary way of reducing the two-dimensional movement trace γ(t), t ∈ I onto
one dimension is to project it onto the principal component u of movement
during the interval I = [ta, tb], where ta and tb are the times at which d

dtγ(t)
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Figure 15: Angle of principal com-
ponent of movement relative to the
line formed by the intersection of
the midsaggital and maxillary oc-
clusal planes
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Figure 16: Displacement along the
principal component of movement

falls below and rises above, respectively, 0.2 min ( d
dt γ(t)), t ∈ I. The minimum

is used because the superior-inferior coordinate of the T4 pellet is negative-
going. The histogram of Figure 15 shows that the principal components u
are nearly parallel to the superior-inferior axis (90◦) for most target items.
Figure 16 graphs the 80 observations of projuγ(t), centered on the time of onset
of movement toward the vowel target.

We estimate the velocity profile d
dt projuγ(t) by fitting sixth order smoothing

splines to projuγ(t), differentiating analytically, and evaluating the derivative
at the time points associated with the pellet positions in γ(t) (see [30] Section
6.2 for the interpolation and resampling procedure).

We use the simplex search method of [14] as implemented in MATLAB to
optimize the parameters of the linear and nonlinear systems. The objective
function which we optimized is

f(θ) =
∑
t∈I

((
d

dt
projuγ̂(t)− d

dt
projuγ(t)

)/
|I|
)2

, (13)

where θ = k for the linear system and θ = (k, d)ᵀ for the nonlinear system;
d
dt projuγ(t) is the observed velocity profile; d

dt projuγ̂(t) is the velocity profile of
the differential equation solved for parameters θ, with target x0 = projuγ(tb)−
projuγ(ta), and with initial conditions (x, ẋ) = (projuγ(ta), d

dt projuγ(ta)); I is
the discrete grid of time points in I which is associated with the pellet positions
in the given observed movement trace γ(t); and |I| is the cardinality of I. By
definition, if the ODE solver cannot solve the differential equation for parameters
θ, then f(θ) =∞.

Figure 17 has the sample distribution of log f for the linear system and
Figure 18 has the sample distribution of log f for the nonlinear system. The
logarithmic scale is used for visualization. Comparison shows that the nonlinear

10



−5 0 5
0

5

10

15

20

25

log error

fr
eq

ue
nc

y

Figure 17: Histogram of log objec-
tive function value for the linear sys-
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Figure 18: Histogram of log objec-
tive function value for the nonlinear
system

0 50 100 150
−30

−25

−20

−15

−10

−5

0

5

ve
lo

ci
ty

 (
cm

/s
ec

)

time (msec)
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0 50 100 150
−30

−25

−20

−15

−10

−5

0

5

time (msec)

 

 

observed
linear solution
nonlinear solution

Figure 21: Maximum er-
ror

system fits the observed velocity profiles better in the sense that the nonlinear
system had smaller objective function evaluations.

Figures 19, 20, and 21 graph the solutions to optimized linear and nonlin-
ear systems against the observed velocity profiles. Figures 19, 20, and 21 are
associated with the minimum, median, and maximum values of f for the nonlin-
ear system over the 80 observations. The observed velocity profiles have mean
proportional time to peak velocity of 0.44 (SD = 0.05), a measure which the
solutions to the nonlinear — but not the linear — system match.

6 Model of an isochronous speech task

In general, characterizing a dynamical system as autonomous or nonautonomous
depends entirely on the frame of reference [27]. This is particularly so in the
case of uni-directional coupling. A system A of m equations which couples uni-
directionally to another system B of n equations is equally well described as
an autonomous system of m+ n equations or as a nonautonomous system of n
equations. The former approach involves solving the uni-directionally coupled
system of m + n equations, while the latter approach involves solving the m
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equations of system A, writing the uni-directional coupling of system A to sys-
tem B as a function of time, and then solving the n equations of system B with
the coupling term given as a function of time [1]. We follow the latter approach
in the below case of uni-directional coupling.

This section sets up a model of an isochronous speech task using the proposed
intrinsic gestural dynamics of Equation 10. We base the model on electromag-
netic articulography (EMA) recordings from three adult native English speak-
ers ap, jb, lk of the Harvard-Haskins database of Regularly-Timed Speech [23].
Each subject has four recordings of the consonsont-vowel [ba] alternating with
each of [ba], [pa], and [ma]. The disyllable repeats eight times in each recording
(e.g., ‘ba-ma-ba-ma-ba-ma-ba-ma-ba-ma-ba-ma-ba-ma-ba-ma’). The instruc-
tions were to produce syllables as evenly spaced in time as possible. Thus, a
hypothetical gestural score for lip aperture has alternating lip aperture constric-
tion and release gestures and is periodic in time with period 2p (Figure 22).

t

a

0 p 2p

constriction release

Figure 22: 2p-periodic gestural score for the isochronous speech task

The isochrony constraint couples uni-directionally to this dynamical sys-
tem. The model neglects the influence of the vocal tract on the parts of the
central nervous system involved in the isochrony task and retains only the uni-
directional coupling of those parts of the central nervous system to the vocal
tract. This makes the task constraint a periodic external force sin(ωt) on the
lip aperture task variable x. This force drives the damped task variable in the
potential V (x) of Equation 12. The resulting equation of motion is

mẍ+ bẋ+∇(kx2/2− dx4/4) = Γ sinωt, (14)

where ω <
√
k/m because the periodic external force is slower than the natural

frequency of the intrinsic gestural dynamics.
This is a nonautonomous system.3 Hence, its phase space is now the three-

dimensional space (x, ẋ, t). This system is chaotic for Γ large enough that
x visits the anharmonic part of the potential V (x) of Equation 12 (i.e., the
edge of the basin of attraction) [11]. Figure 23 plots the chaotic attractor in
the projection of the three-dimensional phase space onto the (x, ẋ) plane. In
the three-dimensional space, the trajectories do not cross. The addition of the
t axis in the phase space endows the system with the no crossing property.
However, in the two-dimensional projection, the trajectories can and do cross

3This nonautonomous second-order equation can be rewritten as a system of three first-
order autonomous equations by setting ẋ = y and declaring t as one of the variables by the
equation ṫ = 1.
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as shown in Figure 23. Amplitude and peak velocity vary from cycle to cycle
and make the solutions aperiodic. The Hooke diagram (acceleration graphed
against displacement) of Figure 24 shows N-shaped curves. The Hooke diagram
of the harmonic oscillator is a straight line; see Figure 2, remembering all along
that force is mass multiplied by acceleration. The N-shapes in Figure 24 indicate
anharmonicity [16].

-2

x

2

-2

ẋ2

Figure 23: Phase portrait

-2

x

2

-1

ẍ1

Figure 24: Hooke diagram

These predictions of Equation 14 are consistent respectively with the phase
portraits and Hooke diagrams of Figures 25 and 26 derived from the recordings
of the Harvard-Haskins database of Regularly-Timed Speech [23]. In particular,
the quasi-ellipsoidal phase portraits resemble the phase portrait projection of
Figure 23 and the N-shaped Hooke diagrams resemble the Hooke diagrams of
Figure 24.

This section has emphasized that intrinsic gestural timing does not exclude
the gesture coupling to other coordinative structures. In fact, some theories
of inter-gestural coordination involve the uni-directional coupling of planning
oscillators to gestures [25, 19, 18]. Planning oscillators determine when speech
gestures start and stop controlling task variables, but task variables do not in-
fluence planning oscillators. Of course, gestures can exert mutual influence on
each other, as indicated by the compensation of one gesture to the perturba-
tion of another [12]. Furthermore, systems external to the gesture determine
variability in the duration and coordination of gestures [28]. Models of such
systems are bi-directionally coupled autonomous dynamical systems.

7 Conclusion

We follow [7, 8] in connecting autonomous dynamical systems with the theory
of intrinsic timing and self-organization in coordinative structures [29, 9, 6].
This connection is the theoretical basis for the proposal of this paper. The
proposal is that the gesture is a nonlinear autonomous dynamical system with an
anharmonic monostable potential. The damped motion of a task variable in this
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potential agrees qualitatively and quantitatively with the observed kinematics
of speech gestures.
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Figure 25: Lip aperture (horizontal axis) and its velocity (vertical axis) for
subjects AP (rows 1-3), JB (rows 4-6), and LK (7-9) producing four trials each
of ‘papa’, ‘bapa’, and ‘mapa’
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Figure 26: Lip aperture (horizontal axis) and its acceleration (vertical axis) for
subjects AP (rows 1-3), JB (rows 4-6), and LK (7-9) producing four trials each
of ‘papa’, ‘bapa’, and ‘mapa’
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