Reductionism in Phonology:
Clues from Complex Systems

Graduate Seminar
Instructor: Adamantios Gafos

There is a recurrent theme in phonology and phonetics in which some authors make a claim that some
(// all) qualitative aspects of phonological form can (// should) be reduced to facts about the physics of
speech. No doubt, certain phonological facts do seem to have a clear phonetic basis. Such arguments,
assuming they are carried to their ultimate conclusion, would be attractive on the basis of theoretical
parsimony: they promise to explain the facts of phonology in terms of a few basic principles of the physical
sciences (this is what ‘reduction’ means), and hence we would end up with fewer irreducible principles
than we thought we ought to have at first sight.

The theme of the present seminar is expressed by the following question: can phonology be reduced to
‘physical principles’, and if not what is the proper way to capture the fact that much of phonology looks
phonetically-driven? This is a difficult question; no one knows the answer to it. But we can at least guess
what may be the right ways to approach it: the fact that linguists revisit the problem periodically but
address it inconclusively suggests that we need to look for clues elsewhere. And so we do in this seminar.

We begin with the assumption that language and phonology in particular is a complex system. Here,
we are not alone. Biologists have worked hard to develop ways to talk about such complex systems
of living action in terms of hierarchical levels. The higher levels are inextricably linked to the lower
levels (a property called ‘closure’), but crucially higher levels also exhibit ‘emergent properties’, that is
properties that cannot be expressed in the language of the lower level (Pattee, 1973; Kauffman, 1995).
In fact, the very reason why biologists developed theories of complex systems was precisely because of
their dissatisfaction with the reductionistic attempts of molecular biology (Pattee, 1973). The research
program of molecular biology had focused excessively at the microscopic details of the lower level of the
cell. This research strategy was extremely productive (and no one doubts that those microscopic details
need to be understood), but at the same time it neglected fundamental macroscopic concepts such as
the concept of an organism and the concept of systems of organisms (‘ecology’), with all their qualitative
aspects of form and behavior (Goodwin, 1994).

More recently, cognitive scientists have also started to develop theories of cognition that begin with
the assumption that what is to be explained is a complex system with both qualitative or higher-level
aspects and quantitative, lower-level ‘implementations’ (Port and Van Gelder, 1995). These approaches
suggest views and tools with which one may approach the similar problems we face in phonology; here
too, we have a system expressed through phonetic substance (a few moving articulators) but which at
the same time shows rather abstract qualitative properties.

The readings in this seminar consist of articles in, of course, linguistics, theoretical biology, the area
of living action systems, cognition and mathematical modeling (a sample is provided in the next page).
A typical meeting in this seminar would look like this. After one or two papers are presented, the class
engages in a discussion of their content. The goal of the discussion is to make sense of the content of
those papers, and then to harness any lessons that may be learned in the context of the overarching
issues that are the concern of this seminar. The students are expected to read or better to enjoy reading
material that is at once difficult and unfamiliar, and to think about what that material may teach us for
the questions addressed in this seminar.
Requirements

(1) Leading of discussion
As part of this requirement, you lead the discussion of a particular topic. The discussion is based on a reading assignment (a paper) that the class has read. The purpose of your presentation is to bring out the substance of the relevant papers, to elucidate points that are unclear, to relate issues in the reading to other readings you have done, to criticize, to analyze, to think.

(2) A term paper
As part of this requirement, you will explore to greater depth a topic related to your interests and you will report your results by writing a paper and presenting it in class. This paper should run about 15-20 typed pages.

Representative Sample of Readings

PRIMARY MATERIALS

- **Theory of complex systems:** Simon and Pattee articles in ‘Hierarchy Theory: The Challenge of Complex Systems’; 1 week
- **Clues from Biology:** Goodwin book chaps. 1, 4, 7, Pattee article in ‘Towards a theor. biology’ vol.; 2 weeks
- **Clues from Philosophy:** O’Connor (see papers on physicalism and identity theory); 1 week
- **Dynamic approach to Cognition:** Port & Gelder 95, Chapters 3 (by Thelen) and 12 (by Port et al.); 2 weeks
- **Dynamics and Gestures:** Browman & Goldstein, Saltzman; 1 or 2 weeks
- **Phonology of Time (3 weeks):**
 - Inter-segmental timing: Gafos 00 (ms.), Chitoran et al 00 (ms.); 2
 - Intra-segmental timing: Gick 99 (th), Silverman 97 (th), Kingston 85 (th), Steriade 94 (talk);
- **Morphology of Time:** Gafos handouts of ongoing work; 1 week

Functional approaches to phonology:

Steriade’s ‘phonetics in phonology: the case of laryngeal neutralization’, segmenthood talk and paradigm uniformity paper, Hayes ‘phonetically-driven phonology’, selected chapters from Boersma’s ‘Functional Phonology’. Also, some leftovers I can’t classify: Turvey’s ecological theory of action, and (from within the field of linguistics) Hyman, Lindblom, Ohala.

Resources on the web: Haskins Laboratories, http://haskins.yale.edu, under Tools, see Linguistic Gestural Model, and also Computational Model. New England Complex Systems Institute web site at http://necsi.org/guide/

Computational resources: GEST, installed on the departmental MacG3 computer. This is an experimental version of the Linguistic Gestural Model system (see note above). You may use the system to test your hypotheses about gestural timing relations and their acoustic consequences.

STUDENT PROJECTS

Extensions of leading ideas presented in the class will be pursued through individual, research papers. The deadline for your paper’s abstract is October 26. Some suggestions, going either by concept or by language. By concepts, we have complex segments and timing, morphology of time (templates), and phonology of time (vowel syncope and reduction processes). Languages with relevant problems: Afar, Berber and releases, English schwa epenthesis, Moroccan Arabic (syncope, reduction), Syrian Arabic (syncope, releases), Piro releases, notion of segment in Chinese dialects.
MEETINGS SCHEDULE

09/07: Introduction: the physical, the mental, some perspectives, and a concept map

Case studies *(is phonological form just spatial or spatio-temporal?)*
09/14: Case study 1: Gafos on phonology of Moroccan
09/21: Nikki on Browman & Goldstein (a,b), ? On Saltzman (a,b),
09/28: ? on Fujimura, Case study 2: Ioana on Georgian clusters

Theory
10/05: theory of complex systems (Pattee, Simon), clues from biology (Goodwin book)
10/12: cont’d (Goodwin book on organisms vs. molecules, Pattee on biological hierarchies)

Case studies
10/19: Case study 3: Gick diss. on inter-segmental timing of glides and liquids
10/26: Case study 4: Silverman diss. on inter-segmental timing

More case studies
10/26: Kingston diss, Steriade long ms.
11/02: cont’d
11/09: Hayes, Hyman *(are phonological constraints universal?)*
11/16: Boersma *(functionalism: general principles of what?)*

TBA
11/23:
11/30:
12/07:
12/13: