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1 Introduction

This guide describes how to handle data structures containing data from electromagnetic
articulography (EMA) in MATLAB. We are presupposing basic MATLAB working ex-
perience. However, all necessary information to work with EMA data in MATLAB are
included. We will make reference to programming concepts like data types, which we
consider important for working with data. However, since we do not elaborate on data
type concepts (we merely tell the reader what these types are and carry on with our
narrow interests in this guide), we remind the reader of the MathWorks homepage for
further information. There is of course a wealth of introductions to MATLAB, such as
Attaway (2012), Gilant (2011), and Rosenbaum (2012), if the reader feels unable to follow
the MATLAB coding herein. Quarteroni et al. (2010) is recommended for readers with
interests beyond the scope of the present guide.

In this guide, we focus on data sets that are provided by experiments carried out
with the EMA method. While reading this guide, apply the provided commands in your
MATLAB console or from a script to an available binary .mat EMA data file. Type
the commands rather than copy-paste them. Solve the included tasks to understand the
structure of EMA data files and how to extract relevant information.

EMA data files have a .mat extension and contain acoustic and articulatory infor-
mation. These files are data structures which are called structure arrays – a particular
data type in MATLAB. A structure array is a collection of information of different types
(e.g., strings, also known as character arrays, or numbers like integers or floating-point
numeric data) and different lengths all yoked together in one object (here, usually a stim-
ulus elicited from a participant in our experiments). Inside such data structures there
are fields each containing a subset of the data (the movement in time of one sensor or
another or the acoustic waveform). We will make this more concrete in what follows.
In contrast to cell arrays, a structure array has one name for many data subsets (here,
different trajectories and the audio waveform).
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2 Data structure

If the relevant EMA data file that you are going to work with is contained in your current
working directory, the load function can be used to get the file into the MATLAB working
environment. The name of the data file with .mat extension must be given to the function
as argument. Note that the name must be a string in single quotes. If the file is located
somewhere else, the entire path or a relative path (relative to the current directory) to
that file must be given as an argument. The structure array is assigned to the variable
file using the equal sign. file now contains a 1×1 structure array with only one
element. We will see in a bit that an 1×7 structure array is embedded in this element and
can be accessed for processing.1 The double arrows >> indicate a command to be given
to MATLAB by you, the user. The lines without these arrows indicated a MATLAB-
generated echo. Do not copy >> when copying the code in the MATLAB command
window.

>> file = load(‘cascade_09_0823.mat’)

file =

cascade_09_0823: [1x7 struct]

If you think it is annoying to type long file names to load data, the names of the files
in your directory can be accessed using dir as in the code below. This command returns
the names of and information about the files in a directory. The asterisks ∗ is used as
a wild card assigning only the files that end in .mat as specified in the string below to
the variable list. The .mat files in your current working directory will be listed in an
n×1 structure array with n being the number of files in the current directory and the first
field of the returned structure array being the file name. The other fields are not relevant
here. Fields in a structure array can be accessed using a dot . after the name of the
structure array and before the field name that must be accessed shown in the line after.
Curly brackets {} return all information listed in the name field being the names of the
.mat files in your current working directory.

1Unfortunately, the single quotes used in the commands throughout this guide are not the same char-
acters as those corresponding to what MATLAB considers to be a quote, due to the LATEX compilation.
Thus, if you were to copy and paste the commands used in this report into the MATLAB console, you will
see Error: The input character is not valid in MATLAB statements or expressions. Change
the quotes in the copied command by entering single quotes from your keyboard.
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>> list = dir(‘*.mat’)

list =

4x1 struct array with fields:
name
date
bytes
isdir
datenum

>> {list.name}

ans =

Columns 1 through 2

’cascade_09_0823.mat’ ’cascade_10_0865.mat’

Columns 3 through 4

’clean_01_0048.mat’ ’clean_02_0152.mat’

As we did above, the first file listed in list.name can be loaded with the load function.
To load this file, the structure array list’s field name is indexed by 1 for the first file like
shown below. Again, the data are encapsulated in a 1×1 structure array with one field
named after the file (without extension).

>> file = load(list(1).name)

file =

cascade_09_0823: [1x7 struct]

This was an alternative way to load a file into MATLAB. Now we are back from where
we started before – an EMA file has been loaded. This alternative way to load data is
more flexible for loading multiple files and avoids annoying typing of long file names.
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file is a variable which we set equal to whatever MATLAB data structure corresponds
to the file cascade 09 0823.mat. Each variable in MATLAB (and any programming
environment) is of a specific Class (or Type). The type of this variable is what MATLAB
refers to as a struct array. You can see the type above in the [1x7 struct] part or
you can ask MATLAB to give you the type using the whos command below. Note, that
it is often important to keep track of the data type.

>> whos file
Name Size Bytes Class Attributes

file 1x1 591104 struct

We do not know what and how information is stored in file. To find that out, we
need to know the fields of the structure (because in MATLAB structure arrays are data
structures that store information in separate fields). To get to know what these fields are,
we apply the function fieldnames to file which returns a cell array of strings containing
the structure field names associated with some structure. The help function gives the
basic information about the function of interest.

>> help fieldnames

FIELDNAMES Get structure field names.
NAMES = FIELDNAMES(S) returns a cell array of strings containing
the structure field names associated with the structure s.

>> names = fieldnames(file)

names =

’cascade_09_0823’

It just happens that our structure array assigned to file actually has just one field
and the name of the field is the name of the file itself. That is not always the case. It
could be that the structure array has more than one field (e.g., date, ‘date data were
collected’, rate, ‘sampling rate’ and so on for list above. Since now we know the field
name of our structure array, we can ask to see its content by using the function getfield
below with the structure array file as its first argument, and the name of the file as its
second argument.
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>> help getfield

GETFIELD Get structure field contents.
F = GETFIELD(S,’field’) returns the contents of the specified
field.

>> data = getfield(file, names{1})

data =

1x7 struct array with fields:
SIGNAL
SRATE
NAME

We have learned above that the function fieldnames gives us a cell array of strings,
and for cell arrays one needs to use curly brackets {} to access any specific entry in the
cell array and since we want to access the first entry here we need to write names{1} to
retrieve the first file.

data contains a 1×7 structure array with the fields SIGNAL, SRATE, and NAME. This
may differ from your output, since EMA data files contain different kinds of information.
Each of the seven entries of the structure array contains one field for the audio signal and
six fields for movement trajectories. To see which signals are available, the field NAME can
be accessed as shown above for the files in list. Here, the field NAME is accessed in the
structure array data. The values of the field NAME are returned as strings and assigned to
the variable trajectories (which is a cell array of strings).

>> trajectories = {data.NAME}

ans =

Columns 1 through 6

’audio’ ’TBPOS’ ’TMPOS’ ’TTPOS’ ’LLPOS’ ’ULPOS’

Column 7
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’JAWPOS’

Exercise 1: The field SRATE contains information about the sampling rate used during
the data recording. As we have done with the file names and signal names before, check
which sampling rate has been used for audio and for the individual trajectories by changing
the previous command (i.e., instead of looking for the NAME field, ask for the SRATE field).2

2Note that field names are in capital letters.

7



3 Elementary signal processing

3.1 Spatial signals

The field SIGNAL contains the signal that is discretized as sequence of values called sam-
ples, each spanning a small time slice as determined by the sampling rate. SIGNAL contains
positional values for the x- and y-dimension of the tongue kinematics for 2D data files and
additionally the z-dimension for 3D data files. Structure array information of single sig-
nals can be accessed using the column number from above, which is the corresponding
field name. The names of each signal have been assigned to the variable trajectories.
The following code shows how to find the index of the desired signal using strmatch.
This function takes the name of the signal (here, TBPOS which stores the position of the
tongue back sensor) as first argument and the vector with the signal names trajectories
as second argument. This will provide an index saved in idx (here, 2) that can be used
as an index for data corresponding to the signal name TBPOS.

>> idx = strmatch(’TBPOS’, trajectories, ’exact’)

idx =

2

>> data(idx)

ans =

SIGNAL: [928x2 double]
SRATE: 400
NAME: ’TBPOS’

NAME is the trajectory’s name, SRATE is the sampling rate (here, 400 Hz) used to
record TBPOS. SIGNAL is a 928×2 matrix with 928 rows and 2 columns. The column
number represents the x and y positional signals of the sensor glued on the tongue body
and the row number corresponds to one row for each recorded sample (i.e., 928 samples
for this file). The command below returns the signal of the x- and y-dimension for the
first 5 values of TBPOS using indexing 1:5, i.e. row 1 to 5 and all (i.e., both) columns using
colon :. Indexing in MATLAB and many other environments takes first the row index
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and then the column index. The left column shows the x-values and the right column
the y-values. Again, every row or pair of values below corresponds to one sample of the
position of the sensor in 2D. The SIGNAL values of TBPOS are saved in a vector matrix
signal tbp.

>> data(2).SIGNAL(1:5,:)

ans =

42.4871 -5.1379
42.4776 -5.1641
42.4686 -5.1885
42.4603 -5.2097
42.4531 -5.2264

>> signal_tbp = data(2).SIGNAL;

Exercise 2: Repeat the same for the tongue tip trajectory (i.e., TTPOS). Use strmatch
for TTPOS instead of TBPOS and index data. Then, find the positional values x and
y of the 266th sample in the TTPOS trajectory. You can access positional values using
data(n).SIGNAL(r,c) by replacing n with the field number of the trajectory name, r
with the row number which is the sample index, and c with the column (i.e., 1 for x-
values, 2 for y-values and for 3D data, 3 for z-values).

Speech signals (audio or kinematics) are stored as sequences of samples. These samples
are taken at regular time intervals, whose regularity is expressed by a certain sampling
rate or frequency. Frequency is the number of cycles of a periodic process (here, the
sampling process) in one second, i.e. how many times the process repeats itself in one
second. Frequency is expressed in units of Hz, with 1 Hz corresponding to one cycle per
second. One property of a speech signal is its duration which is often expressed in real-
time units such as seconds or milliseconds (msec). To convert from samples to duration,
we need to know the frequency at which our signal was sampled. Equation (1) is the well-
known expression for the relation between frequency f (in Hz) and period T (in seconds)
of a repeating process. Hence, to find the duration t of a sampled signal in seconds we
divide the number of samples n by the sampling rate f as in equation (1′). Conversely,
if we know the duration or time stamp t in our signal and we would like to compute the
number of samples n corresponding to that duration or time stamp, we do so by taking
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the product of duration t and the sampling frequency f as shown in equation (1′′). We
will give MATLAB code for equations (1′) and (1′′) below, when we need to compute the
time stamp corresponding to some sample number or the sample number corresponding
to some time stamp.

f = 1/T (1)

t = n/f (1′)

n = t∗f (1′′)

Let us apply these notions to finding the duration in msecs of one of our signals
TBPOS with the following code. The total number of rows (samples) stored in the field
SIGNAL can be found using the length function. We subtract 1 from that and divide the
term by the signal’s sampling rate SRATE (see equation (1′)). Finally, we multiply this
expression by 1000 to convert from seconds to msecs. The reason for the subtraction by
1 is conventional: The first sample should correspond to 0 msecs. More explicitly, the
sampling rate for TBPOS is 400 Hz (try data(2).SRATE). This means that a sample is
taken every 0.0025 seconds (try 1/data(2).SRATE) or every 2.5 msecs. If length returns
1 as the number of samples in our data file, the formula below would give 0 msec; for 2
samples, the formula would return 2.5 msec; for 3, 5 msec; for 4, 7.5 msec and so on.3

>> dur = 1000*(length(data(2).SIGNAL)-1)/data(2).SRATE

dur =

2.3175e+03

We now visualize individual sensor positional signals. The TBPOS signal can be plotted
by entering the command below. (:,2) selects all rows of the second column which is the
position of the signal in y-dimension. Again, data(2) refers to TBPOS. Figure 1 shows the
y-signal of TBPOS plotted against sample number. The plot shows the excursion of the
tongue back sensor in the y-dimension over the course of time, which is here represented
in terms of samples.

>> plot(data(2).SIGNAL(:,2))

3Note: In the formula output, MATLAB gives us 2.3175e+03 in scientific notation, that is, 2.3175
multiplied by a power-of-10 scale factor, here multiply by 1000, i.e., 2317.5 msec.
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Figure 1: Signal of TBPOS in y-diminsion.

Exercise 3: Create the plot in Figure 1 using the
vector matrix signal tbp from above. Also, plot
the signal for the x-dimension of TTPOS by changing
the relevant indices in the plot command for Figure
1. Remember, data.NAME gives the trajectory names
for the index of TTPOS.

As we saw above, the audio information is con-
tained in the first field of the structure array. Apply-
ing the soundsc function below to the signal infor-
mation of audio as the first argument and the corresponding sampling rate as the second
argument the sound of the file can be played. soundsc scales the values of the audio signal
to the range from −1.0 to 1.0, and sends the data to the speaker at the given sample rate
25600 Hz (try, data(1).SRATE). The positional values of the mono waveform are the sig-
nal of the field audio with only one dimension which is shown in Figure 2 using the plot
command below. Note here that SIGNAL, SRATE, and NAME are fields contained in every
sensor, thus for audio and all trajectories, but they differ in e.g. number of dimensions.

>> soundsc(data(1).SIGNAL, data(1).SRATE)
>> plot(data(1).SIGNAL)
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Figure 2: Mono waveform of the audio array
over samples.

The x-axis in Figure 2 displays samples. This
is less intuitive, therefore the x-axis should be trans-
formed to msec. The linspace command like shown
below can be used taking three arguments. This
function produces a linearly spaced vector with re-
spect to every single row value of the signal involved
between 0 as defined below and the length of the sig-
nal stored in signal len as the last argument. The
signal length signal len divided over the sampling
rate for duration shown in equation (1′) as second
argument defines how to linearly space the values. The output is saved in signal sec
which is multiplied by 1000 for msec in the plot. Defining the duration of audio signal
as the first argument plots the duration on the x-axis and the spatial signal as second
argument on the y-axis. The xlabel function adds a label Time (msec) to the x-axis.
The returned plot is shown in Figure 3.

>> signal_len = length(data(1).SIGNAL);
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>> signal_sec = linspace(0, signal_len / data(1).SRATE, signal_len);
>> plot(signal_sec*1000, data(1).SIGNAL)
>> xlabel(’Time (msec)’)
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Figure 3: Mono waveform of the audio array
plotted over time (msec).

If the audio signal must be saved as a .wav file
outside of the .mat file, the function audiowrite
can be applied to the signal shown in the following
command.4 A string must be specified as output
name of the .wav file. Further arguments are the
signal of the audio data array, and the corresponding
sampling rate. In this way, the binary .mat structure
can be converted to an audio file.

>> audiowrite(‘test.wav’, data(1).SIGNAL, data(1).SRATE);

Exercise 4: MATLAB might give you a warning here, that can be circumvented by
normalizing the amplitude of the signal to 1 like shown in the code below. The normalized
audio signal is assigned to audio signal. Normalize the audio signal before saving it to
a .wav file circumventing the warning from before. You will basically have to apply the
function audiowrite to audio signal. If you were successful, no warning should appear
in the console if previously seen.

>> audio_signal = data(1).SIGNAL/max(abs(data(1).SIGNAL));

The signals embedded in the structure array are synchronous. The samples (i.e., each
row) have instances in all trajectories, thus, the positional values of the nth sample have
representations in TBPOS, TTPOS and all other trajectories, and in audio. The trajectories
contain information about the position of the tongue and lip at a particular time (i.e.,
sample). Therefore, given a particular sample, say 552, the positional values (x, y) for
different trajectories can be extracted. For instance, the positional values for the 552
sample in the TBPOS, TMPOS (i.e., tongue mid posture), and ULPOS (i.e., upper lip posture)
can be extracted using the respective field numbers 2, 3, and 6 to index the structure
array data. Row 552 has been indexed for the 552nd sample and all columns : to return
both the x- and y-value.

4Your current MATLAB version might not yet use audiowrite. Use wavwrite instead which works
equivalently.
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>> data(2).SIGNAL(552,:)

ans =

39.0359 -13.8055

>> data(3).SIGNAL(552,:)

ans =

24.5798 -10.5309

>> data(6).SIGNAL(552,:)

ans =

-8.7424 3.4116

Exercise 5: Extract the positional values (x, y) for the 432nd sample of JAWPOS (i.e.,
jaw posture), LLPOS (i.e., lower lip posture), and audio. You saw above how to get to
the index of the signal fields.

3.2 Local extrema

Imagine you are given a time stamp in milliseconds (e.g., 650 msec) in the vowel /a/
and you are supposed to find the time stamp corresponding to the largest deflection in
y-dimension in the region around that time stamp (a local maximum). For the vowel
/a/ it is reasonable to concentrate on the TBPOS trajectory. First, we must convert the
given time stamp into the corresponding sample index shown in the code below. We start
by assigning the relevant time stamp to a variable msecs, extract the sampling rate of
TBPOS by accessing the field SRATE and assign it to sRate, and calculate the corresponding
sample index samps of the given time stamp which is the product of the duration and
the sampling rate as in equation (1′′) in Section 3.1, divided by 1000 for seconds. The
function floor truncates any decimal digits of the resulting value to the closest integer
(sample numbers can only be integers) and then we add 1 analogue to the explanation in
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Section 3.1. The output sample index corresponds to a value on the x-axis in Figure 1.5

>> msecs = 650; sRate = data(2).SRATE; samps = floor(msecs*sRate/1000)+1

samps =

261
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Figure 4: Region of TBPOS around 650 msec.

Exercise 6: Calculate the sample index of TBPOS
that corresponds to a time stamp at 1200 msec.
Also, calculate the sample index for audio. Note
that we saw that the sample index of a given value
in msecs depends on the sampling rate (see equation
(1′′) in Section 3.1). The sampling rate may differ
for audio and for other signals.

Let us get back to the problem from above. We
are given a time stamp at 650 msec that we converted
to 261 samples. In order to get an impression of the region around this value, we can plot
an arbitrary region around 261 for the y-dimension in TBPOS as shown in the following
code. The rows from 250 to 270 for the second column (y-values) have been indexed.
The resulting plot in Figure 4 shows the tongue movement in y-dimension for the TBPOS
around 650 msec.

>> plot(data(2).SIGNAL(250:270,2))
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Figure 5: Region of TBPOS after 650 msec.

Figure 4 shows that the chosen range around the
sample number corresponding to the time stamp in-
cludes a local maximum. Note that there is no guar-
antee that this will always be the case. For exam-
ple, in Figure 5 we plotted the trajectory of samples
above the given time stamp with index from row
261 until 270. If a maximum is calculated for the
latter region, a value at the left boundary will be re-
turned. This may not correspond to what you would

5Note, MATLAB is case sensitive, which means it will not confuse the field name SRATE of the structure
array data and the vector sRate, since the first is capitalized and the latter is not.
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intuitively call a maximum. The range of samples chosen for Figure 5 is monotonically de-
creasing in their y-values, and so the “real” maximum probably occurred at some sample
before this range.

>> plot(data(2).SIGNAL(261:270,2))
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Figure 6: Region of TBPOS around 650 msec.

Given the sample range that includes the actual
local maximum (Figure 4), the maximum position
in y-dimension can be calculated in the way shown
in the following code. First, a vector rng is created
containing all sample indices in the range from 250
to 270. All corresponding y-values (second column)
in the range rng have been index and assigned to the
vector y. The max function in the next line searches
for the largest y-value in the vector y. Two output
arguments have been returned by the max function
– the maximum positional value val and its index idx of the maximum value in the
argument values, i.e., not in the entire signal. We are interested in the second output ar-
gument idx that can only be extracted by also calling the first output argument. Multiple
output arguments are assigned to variables by combining these with squared brackets [].
The local index of the maximum value idx has been given as index to the vector rng
to get the relevant sample value of the signal that corresponds to the maximum y-value,
which is assigned to idx new. Given the sample index of the file, the time stamp of the
local maximum can be calculated by subtracting 1 from the sample value (see Section
3.1), divided over the sampling rate to get the duration as in equation (1′) in Section 3.1,
multiplying it by 1000 for msec. We thus find that the local maximum of the y-value in
TBPOS occurs at 647.50 msec.

>> rng = 250:270

rng =

Columns 1 through 16

250 251 252 253 254 255 256 257 258 259 [...]

Columns 17 through 21
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266 267 268 269 270

>> y = data(2).SIGNAL(rng,2)

y =

1.5934
1.6134
1.6427
1.6794

...

>> [val idx] = max(y)

val =

1.8798

idx =

11

>> idx_new = rng(idx)

idx_new =

260

>> maxms = 1000*(idx_new-1)/data(2).SRATE

maxms =

647.5000
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The region of interest defined above including the relevant time stamp in samples
can also be applied to other trajectories. All trajectory fields and the audio field are
synchronous in terms of samples. The trajectory TMPOS can be accessed by changing the
field to 3 as in the code below. The same sample region as for the trajectory TBPOS
in Figure 4 is shown in Figure 6 for the TMPOS trajectory, which shows different spatial
configurations for different sensors at the same point in time.

>> plot(data(3).SIGNAL(250:270,2))

3.3 Velocity signals

Now we come to the calculation of the vertical, horizontal, and tangential velocity as
exemplified in the code below. Velocity values are sometimes predefined for some fields.
If so this is usually seen in the field name, which should have an vel extension. However,
we will show for TBPOS how to calculate velocity values. Feel free to calculate the velocity
for other trajectories. First, the signal values of TBPOS are assigned to s. The following
formula computes the velocity and stores it in the vector vel. The formula differentiates
the positional signals using the so-called central difference approximation for the calcula-
tion of the derivative. This calculation is done on the basis of samples. To go from vel
to the individual dimension velocities (x, y) expressed in centimeters per second (cm/sec)
we proceed as follows. We need to convert from samples to secs and from millimeters
(mm) to cm. For the first conversion, the signal needs to be multiplied with the sampling
rate of the trajectory SRATE, according to equation (1′′) in Section 3.1. For the second
conversion, in all formulas, we must divide by 10 (./ below means that every cell entry
in the array will be divided by 10) for the unit conversion from mm to cm (1 cm = 10
mm), so the resulting velocity values are in the usual cm per second units. The vertical
velocity can be appended to the array of TBPOS (i.e., data(2)) by defining a new field
in it (here, VEL y). Note that only the second column of vel is used, since the vertical
velocity corresponds to the y-value. The same can be done for the horizontal velocity
which is shown in the line after using only using the x-values in the first column.

>> s = data(2).SIGNAL;
>> vel = [diff(s(1:2,:)) ; s(3:end,:) - s(1:end-2,:) ; diff(s(end-1:end,:))] ./ 2;
>> data(2).VEL_y = data(2).SRATE*vel(:,2)./10;
>> data(2).VEL_x = data(2).SRATE*vel(:,1)./10;

The tangential velocity (also known as resultant velocity) is defined as the square root
of the sum of the squared velocities in each dimension (see equation (2)). Following this
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equation, we can compute the tangential velocity using the command below and appended
it to data(2) in the field VEL tang, again after multiplying by sampling rate according to
equation (1′′) in Section 3.1 and dividing by 10 for cm per second velocity units. data(2)
shows the three new fields we have just appended to the TBPOS corresponding to the
different velocities.

vt =
√

v2
x + v2

y (2)

>> v_t = sqrt(sum(vel.ˆ2,2));

>> data(2).VEL_tang = data(2).SRATE*v_t./10;

data(2)

ans =

SIGNAL: [928x2 double]
SRATE: 400
NAME: ’TBPOS’

VEL_y: [928x1 double]
VEL_x: [928x1 double]

VEL_tang: [928x1 double]

Exercise 7: Plot the tangential velocity of TBPOS in the region that has been used for
the local maximum (250 to 270). Also, determine the corresponding local minimum of the
tangential velocity. This minimum corresponds to what labeling software of articulatory
kinematics considers to be a maximum constriction. You basically will have to change
the field SIGNAL to VEL tang. Then, calculate the minimum by applying the function min
instead of max (use the help function for min). You might see that the given range does
not include a local minimum (cf. Figure 4 and 5 in Section 3.2). In this case, increase the
range and re-plot. If you follow the detection of the local maximum, this exercise can be
solved easily.

3.4 Relating spatial and velocity signals

We have seen that in each file one time stamp or sample index has corresponding spatial
values in different signals. Signals can be expressed as spatial in the x- and y-dimension
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or as velocity in a particular dimension and as tangential velocity. Like introduced in the
formula in the previous Section 3.3, we first assign the signal TBPOS to a variable s for an
easier handling and its velocity in terms of samples to vel. For now, we keep both signal
and velocity in the samples unit.

>> s = data(2).SIGNAL;
>> vel = [diff(s(1:2,:)) ; s(3:end,:) - s(1:end-2,:) ; diff(s(end-1:end,:))] ./ 2;
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Figure 7: Vertical movement (upper panel) and
vertical velocity (lower panel) of TBPOS.

Since we want to plot different signals indepen-
dently in a comparable fashion the subplot com-
mand is introduced below. To illustrate the corre-
spondence between particular time slices and differ-
ent signals, the following command plots different
signal types of TBPOS in the sample range from 150
to 600. Using figure(1) a figure object is created.
The command subplot takes here three arguments.
The first determines the number of rows of the out-
put figure and the second the number of columns,
such that a 2×1 plot is produced. The last number in subplot specifies the position of
the plot. The plots are specified after the comma. For both the signal s and the velocity
vel, the y-signal, i.e. the vertical spatial signal and the vertical velocity, is index by 2 for
the range between 150 and 600. Thus both vertical signals correspond to the same range
in the same trajectory (i.e., TBPOS). In the first argument of both plots, the sample range
is specified. The output is shown in Figure 7. By default, MATLAB aligns the x-axis
starting with 0 (try out, and remove the first argument of the plot functions). The upper
panel of Figure 7 shows the vertical movement of TBPOS. The vertical velocity shown in
the lower panel corresponds to the vertical movement. At approximately 380 samples a
positive peak in the positional signal (upper panel) is surrounded by a two extrema in the
velocity signal (lower panel) with one positive extremum and the other negative and in
between the two extrema the velocity cross zero. You can close the open figure by typing
close all in you MATLAB console.

>> figure(1)
>> subplot(2,1,1), plot(150:600, s(150:600,2))
>> subplot(2,1,2), plot(150:600, vel(150:600,2))

The same code as for the vertical signals in Figure 7 can be applied to the horizontal
signal by changing the column index to 1 which corresponds to the x-values as shown
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below. Note, the range of the signal is still the same, such as the trajectory. Now,
the signal corresponds to the movement in the horizontal dimension. Figure 8 shows
the output plot. Again, the upper panel shows the spatial movement in the horizontal
dimension, and the lower panel shows the corresponding velocity.

>> figure(2)
>> subplot(2,1,1), plot(150:600, s(150:600,1))
>> subplot(2,1,2), plot(150:600, vel(150:600,1))
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Figure 8: Horizontal movement (upper panel)
and horizontal velocity (lower panel) of TBPOS.

Exercise 8: Create the similar plots like in Figure 7
and in Figure 8 for TMPOS in the sample range from
550 to 650. Observe the sensitivity to local extrema
under the variation of the sample range. Vary the
sample between (e.g., 200 to 700, 300 to 500, 400 to
450). You will have to change to index of the signal
s assignment and the range values. Hint: You can
save yourself some work, by creating a vector, say
range, that contains the sample slice of interest.

In Figure 7 and Figure 8, we are still in the realm
of spatial movement and velocities in sample coordinates for the x-axis. In the code below,
the velocity values will be converted to cm/sec similar to the conversion shown in Section
3.3. The tangential velocity is computed as shown in equation (2) in Section 3.3 and
assigned to t. All three velocities are multiplied by its sampling rate as in equation (1′′)
in Section 3.1 and divided by 10 for cm/sec. The sampling rate of the respective trajectory
TBPOS was assigned to sRate.

>> sRate = data(2).SRATE;
>> yvel = sRate*vel(:,2)./10;
>> xvel = sRate*vel(:,1)./10;
>> t = sqrt(sum(vel.ˆ2,2));
>> tvel = sRate*t./10;

Additionally, the x-axis in the plots should be in a time unit (msec). In the code below
the sample sequence that we are interested in is assigned to range for convenience. A
time vector ms unit is created with linspace similar to the example shown in Section
3.1. Given the vector range it is easier to change the range later on and re-plot the figures
without changing the sample slice in each line. Some changes in the linspace command
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must be pointed out: The first argument, which is the beginning of the spaced vector is
the first element in range index by 1. This value is divided by the sampling rate sRate for
seconds as in equation (1′) in Section 3.1. The second argument is the end of the spaced
vector specified by the final index in range using end which returns the last value. The
length of the vector range is provided as last argument. The results are multiplied with
1000 for msec and assigned to ms unit.

>> range = 150:600;
>> ms_unit = 1000*(linspace(range(1)/sRate, range(end)/sRate, length(range)));
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Figure 9: Vertical velocity (upper panel), hor-
izontal velocity (middle panel), and tangential
velocity (lower panel) of TBPOS.

Figures with the different velocity types can now
be created in the code below, introducing a new fig-
ure with figure(3) and creating a 3×1 subplot like
described above. The time vector ms unit created
above is the first argument in the plot function and
determines the values of the x-axis. Since we saved
the sequence of interest in the vector range, it can
be applied to each of the velocity vectors (i.e., yvel,
xvel, and tvel). This manner makes it easier to
change the range for new plots. The limits of the
x-axis have been defined for each plot using xlim which takes a matrix indicated by the
squared brackets that contains the limits, though the beginning (i.e., ms unit(1)) and
the end of the x-axis (i.e., ms unit(end)). Titles for each plot are added using the title
function which takes a string as argument being the title. The x-label can be added using
the xlabel function which takes a string that specifies the name of the x-axis. Figure
9 shows the returned plot with the vertical velocity in the upper panel, the horizontal
velocity in the middle panel, and the tangential velocity in the lower panel. We have
looked at the vertical and horizontal velocity before. When it comes to the tangential
velocity, both extrema are positive and in between the extrema the velocity dips to a value
close to zero (but not necessarily zero; it is never negative though since the tangential
velocity entails the squared vertical and horizontal velocities). For instance, we find a
positive extremum for the vertical velocity (upper panel) at approximately 800 msec that
corresponds to a positive peak in the tangential velocity (lower panel). The zero crossing
in the vertical velocity at approximately 1000 msec shows a peak in local minimum in the
tangential velocity and the negative extremum in vertical velocity peaks at 1200 msec,
which corresponds to a maximum peak in tangential velocity.
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>> figure(3)
>> subplot(3,1,1), plot(ms_unit, yvel(range))
>> xlim([ms_unit(1), ms_unit(end)])
>> title(’Vertical velocity’)
>> subplot(3,1,2), plot(ms_unit, xvel(range))
>> xlim([ms_unit(1), ms_unit(end)])
>> title(’Horizontal velocity’)
>> subplot(3,1,3), plot(ms_unit, tvel(range))
>> xlim([ms_unit(1), ms_unit(end)])
>> title(’Tangential velocity’)
>> xlim([ms_unit(1), ms_unit(end)])
>> xlabel(’Time (msec)’)

Exercise 9: Repeat Exercise 8 for the different velocity signals of the code for Figure 9.
Use TMPOS and the time slices in Exercise 8, compute the velocity signals in cm/sec and
change the x-axis to msec. Re-plot figure(3) for different time slices determined in a
vector range.

3.5 Storing labels

Having extracted a time stamp from a trajectory, the relevant information can be stored
in a new structure array that will be called labels. The code below shows how to
store information in a new structure array. For the first entry in the new structure
array, labels must be indexed with 1. This new structure array has its own fields that
you as the researcher will find useful. These field names are specified subsequently of
labels(1) using a dot. You can have as many fields as you find useful. As fields for our
structure here, we will use names that are mnemonic of the information we extracted in
the example task in Section 3.2. For instance, the field file stores the name of the file
that has been stored in the variable names (Section 2) or can be assigned directly as a
string ‘cascade 09 0823’.

>> labels(1).file = names{1};
>> labels(1).trajectory = trajectories{2};
>> labels(1).name = ’MAX_C’;
>> labels(1).timestamp = maxms;
>> labels(1).signal = ’y’;
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>> labels(1).phone = ’a’

labels =

file: ’cascade_09_0823’
trajectory: ’TBPOS’

name: ’MAX_C’
timestamp: 647.5000

signal: ’y’
phone: ’a’

The output shows the information that we have assigned to the structure array, e.g.,
the file name, the trajectory, the name of the landmark, the time stamp etcetera.

If a new hypothetical value is to be appended to the same structure array, increase
the index to the next value. In the case below, we use 2, but if you are not aware of
how many values are contained in a structure array you can name the index end. This
appends the new information to the end of the structure array. As you will see in the
output (type labels), the structure array has now the size 1×2, since we have added one
information point.

>> labels(2).file = names{1};
>> labels(2).trajectory = trajectories{2};
>> labels(2).name = ’MAX_C’;
>> labels(2).timestamp = 652.5;
>> labels(2).signal = ’x’;
>> labels(2).phone = ’a’

labels =

1x2 struct array with fields:
file
trajectory
name
timestamp
signal
phone
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If you are interested in the information that you have just stored in the structure array,
it can be accessed with the index 2 like shown below. Also, you can access only particular
information like the label’s name by adding the field name to the index structure array
(e.g., labels(2)).

>> labels(2)

ans =

file: ’cascade_09_0823’
trajectory: ’TBPOS’

name: ’MAX_C’
timestamp: 652.5000

signal: ’tang vel’
phone: ’a’

>> labels(2).name

ans =

MAX_C

Exercise 10: Given the results that you gained from Exercise 7, append your information
to the structure array labels. Use end instead of increasing the index of labels as
described in text above. The value for the field name signal must be something like
vel tang (i.e., tangential velocity) and obviously the value for the field timestamp is the
time stamp that you determined in Exercise 7. If you are done with this, type labels in
the MATLAB console, and a 1×3 structure array should be returned.
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