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What this first day is about

In Monday's lectures, we aim to provide a quick review of the
foundational ideas in frequentist statistical theory.

We will cover what you will need as a basis for the rest of the
summer school.

We will mainly use simulation to understand the key concepts,
and this requires some knowledge of the language R.

We assume you have downloaded and installed R from:
http://cran.r-project.org/
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Prerequisites for this course

For this course, we only assume that you are willing to put in
some work on your own.

This means doing the exercises we provide.
A certain amount of fearlessness is also assumed.

Only minimal math is used.
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Course lecture notes (optional during the summer school)
We have two sets of notes. Choose the one you like more.

A less technical, more intuitive presentation:
https://github.com /vasishth /Statistics-lecture-notes-
Potsdam/tree/master/IntroductoryStatistics

A more technical presentation assuming basic calculus and
linear algebra:
https://github.com /vasishth /LM

During this summer school, it is enough to just follow the
slides. Read the notes later, after you go home!

We suggest reading the first set of notes and then the second set.
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Exercises

We will provide exercises during the summer school.
Solutions will be provided, and discussed in class.
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What the frequentist stream is about
We will cover the following topics:
Random variables, including jointly distributed RVs, univariate
probability distributions, Maximum Likelihood Estimation.

The sampling distribution of the mean, null hypothesis,
t-tests, confidence intervals.

Type | error, Type Il error, power, Type M and Type S errors.
An introduction to linear modeling.

An introduction to linear mixed modeling.
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Lecture 1
L_Basic R constructs

for-loops

One construct we will use often is calculating some (varying)
quantity repeatedly, and then storing the result of that calculation
in a vector.

An example:

nsim<-10

results<-rep(NA,10)
for(i in 1:msim){
results[i]<-1+2%i

}

results

## [11] 3 5 7 9 11 13 15 17 19 21
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Lecture 1
LRandom variables, pdfs, cdfs

The definition of a random variable

A random variable X is a function X : .S — R that associates to
each outcome w € S exactly one number X (w) = x.

Sx is all the z's (all the possible values of X, the support of X).
le., z € Sx.

Discrete example: number of coin tosses till H

B X w—x
m w: H, TH, TTH,... (infinite)
mr=0,1,2,...;0 € Sx

We will write X (w) = x:

H—1

TH — 2
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Lecture 1
LRandom variables, pdfs, cdfs

Probability mass/distribution function

Every discrete random variable X has associated with it a
probability mass function (PMF). Continuous RVs have
probability distribution functions (PDFs). We will call both
PDFs (for simplicity).

Px 2SX—) [0,1] (1)
defined by

px(z) = P(X(w) =x),x € Sx (2)

This pmf tells us the probability of having getting a heads on 1, 2,
... tosses.
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Lecture 1
LRandom variables, pdfs, cdfs

The cumulative distribution function
The cumulative distribution function in the discrete case is

Fla)= ) p(@) (3)

all z<a

The cdf tells us the cumulative probability of getting a heads in 1
or less tosses; 2 or less tosses,. . ..
It will soon become clear why we need this.
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Lecture 1
LRandom variables, pdfs, cdfs

L The binomial random variable

Discrete example: The binomial random variable

Suppose that we toss a coin n = 10 times. There are two possible
outcomes, success and failure, each with probability 6 and (1 — 0)
respectively.

Then, the probability of x successes out of n is defined by the pmf:

px(a) =Px =)= (Mea-orr @)

[assuming a binomial distribution]
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Lecture 1
LRandom variables, pdfs, cdfs

L The binomial random variable

Discrete example: The binomial random variable

Example: n = 10 coin tosses. Let the probability of success be
0 =0.5.

We start by asking the question:

What's the probability of x or fewer successes, where x is some
number between 0 and 107

Let's compute this. We use the built-in CDF function pbinom.
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Lecture 1
LRandom variables, pdfs, cdfs

L The binomial random variable

Discrete example: The binomial random variable

n<-10

p<-0.5
probs<-rep(NA,11)
for(x in 0:10){

probs [x+1]<-round(pbinom(x,size=n,prob=p) ,digits=2)

}

We have just computed the cdf of this random variable.
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Lecture 1
LRandom variables, pdfs, cdfs

L The binomial random variable

Discrete example: The binomial random variable

P(X <) cumulative probability
0 0.00
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5 0.62
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Lecture 1

LRandom variables, pdfs, cdfs

L The binomial random variable

Discrete example: The binomial random variable

plot(1:11,probs,xaxt="n",xlab="x",
ylab=expression(P(X<=x)) ,main="CDF")
axis(1,at=1:11,1labels=0:10)
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Lecture 1
LRandom variables, pdfs, cdfs

L The binomial random variable

Discrete example: The binomial random variable
Another question we can ask involves the pmf: What is the
probability of getting exactly x successes? For example, if x=1, we
want P(X=1).

We can get the answer from (a) the cdf, or (b) the pmf:

pbinom(1,size=10,prob=0.5)-pbinom(0,size=10,prob=0.5)

## [1] 0.009765625

choose(10,1) * 0.5 * (1-0.5)"9
## [1] 0.009765625
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Lecture 1

LRandom variables, pdfs, cdfs

L The binomial random variable

Discrete example: The binomial random variable

The built-in function in R for the pmf is dbinom:

choose(10,1) * 0.5 * (1-0.5)"9

## [1] 0.009765625

dbinom(1,size=10,prob=0.5)

## [1] 0.009765625
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Lecture 1
LRandom variables, pdfs, cdfs

L The binomial random variable

Discrete example: The binomial random variable

plot(1:11,dbinom(0:10,size=10,prob=0.5) ,main="PMF",
xaxt="n",ylab="P(X=x)",xlab="x"
axis(1,at=1:11,1labels=0:10)
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Lecture 1
LRandom variables, pdfs, cdfs

L The binomial random variable

Summary: Random variables

To summarize, the discrete binomial random variable X will be
defined by

the function X : S — R, where S is the set of outcomes (i.e.,
outcomes are w € 5).

X (w) =z, and Sx is the support of X (i.e., x € Sx).

A PMF is defined for X:

Px - SX — [0,1]

pxta) = ()1 — o )
A CDF is defined for X:
F(a)= > p(x)
all r<a
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Lecture 1
LRandom variables, pdfs, cdfs

L The binomial random variable

Generating random binomial data

We can use the rbinom function to generate binomial data. So, 10
coin tosses can be simulated as follows:

rbinom(1,n=10,prob=0.5)

## [1] 0001011011
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Lecture 1
LRandom variables, pdfs, cdfs

L The binomial random variable

Exercise

Do Exercise 1 now.
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Lecture 1
LRandom variables, pdfs, cdfs

LThe normal random variable

Continuous example: The normal random variable

The pdf of the normal distribution is:

We write X ~ norm(mean = yu, sd = o).

The associated R function for the pdf is dnorm(x, mean = 0, sd
= 1), and the one for cdf is pnorm.

Note the default values for i and o are 0 and 1 respectively. Note
also that R defines the PDF in terms of i and o, not x and o2 (o2
is the norm in statistics textbooks).
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Lecture 1

LRandom variables, pdfs, cdfs

LThe normal random variable

Continuous example: The normal RV

plot (function(x) dnorm(x), -3, 3,
main = "Normal density",ylim=c(0, .4),
ylab="density",xlab="X")

Normal density
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Lecture 1

LRandom variables, pdfs, cdfs

LThe normal random variable

Probability in continuous RVs: The area under the curve

P(X<1.96)

0.4

0.2
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Lecture 1
LRandom variables, pdfs, cdfs

LThe normal random variable

Continuous example: The normal RV with mu = 0,0 =1

Computing probabilities using the CDF:

pnorm(Inf)-pnorm(-Inf)

## [1] 1

pnorm(2) -pnorm(-2)

## [1] 0.9544997

pnorm(1)-pnorm(-1)

## [1] 0.6826895 25 /59



Lecture 1
LRandom variables, pdfs, cdfs

LThe normal random variable

Finding the quantile given the probability

We can also go in the other direction: given a probability p, we can
find the quantile = of a Normal(u,o) such that P(X < z) = p.
For example:

The quantile = given X ~ N(u = 500, = 100) such that

P(X <x)=0.9751is

gnorm(0.975,mean=500,sd=100)

## [1] 695.9964

This will turn out to be very useful in statistical inference.
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Lecture 1
LRandom variables, pdfs, cdfs

LThe normal random variable

Standard or unit normal random variable

If X is normally distributed with parameters p and o, then
Z = (X — p)/o is normally distributed with parameters
uw=0,0=1

We conventionally write ®(z) for the CDF of N(0,1):

O(x) dy where y = (x — u)/o (7)

vl

27 /59



Lecture 1
LRandom variables, pdfs, cdfs

LThe normal random variable

Standard or unit normal random variable

For example: ®(2):
pnorm(2)
## [1] 0.9772499

For negative = we write:
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Lecture 1

LRandom variables, pdfs, cdfs

LThe normal random variable

Standard or unit normal random variable

In R;

1-pnorm(2)

## [1] 0.02275013

pnorm(2,lower.tail=F)

## [1] 0.02275013
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Lecture 1
LRandom variables, pdfs, cdfs

LThe normal random variable

Standard or unit normal random variable

If Z is a standard normal random variable (SNRV) then

p{Z < -z} =P{Z >z}, —-oco0o<zr<x (9)

Since Z = ((X — p)/o) is an SNRV whenever X is normally
distributed with parameters 1 and o, then the CDF of X can be
expressed as:

Fx(a) :P{Xga}:P(X_“ < a_“> ) <a_”)
o o o
(10)
The standardized version of a normal random variable X is used to
compute specific probabilities relating to X.
We will soon see the relevance of the SNRV in hypothesis testing.
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Lecture 1
LRandom variables, pdfs, cdfs

LSummary: dnorm, pnorm, gnorm

dnorm, pnorm, gnorm

For the normal distribution we have built in functions:

dnorm: the pdf
pnorm: the cdf
gnorm: the inverse of the cdf

Other distributions also have analogous functions:
Binomial: dbinom, pbinom, gbinom
t-distribution: dt, pt, qt
We will be using the t-distribution’s dt, pt, and gt functions a lot
in statistical inference.
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Lecture 1
LRandom variables, pdfs, cdfs

LSummary: dnorm, pnorm, gnorm

Exercise

Do Exercise 2 now.
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Lecture 1
L Maximum Likelihood Estimation

Maximum Likelihood Estimation

We now turn to an important topic: maximum likelihood
estimation.
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Lecture 1

L Maximum Likelihood Estimation

L The binomial distribution

MLE: The binomial distribution

Suppose we toss a fair coin 10 times, and count the number of
heads each time; we repeat this experiment 5 times in all. The
observed sample values are x1,x9,...,xs.

(x<-rbinom(5,size=10,prob=0.5))
## [1] 6 6 3 5 4

The joint probability of getting all these values (assuming
independence) depends on the parameter we set for the probability
0:

P(X1 = 1}1,X2 = T9y... ,Xn = l’n)

ZP(Xl :.’El) X P(X2 :$2),X P(Xn:xn)

= f(Xl = .%‘1,X2 = l‘g,...,Xn = xn,H)
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Lecture 1

L Maximum Likelihood Estimation

L The binomial distribution

MLE: The binomial distribution

P(X1 = {El,XQ =T2,... ,Xn = xn)

= P(X1 = $1) X P(X2 = :EQ), X P(Xn = .Tn)

= f(X1 =21, Xo =m2,..., X;y = 2,5 0)

The above joint probability is a function of 8. When the probability
is expressed as a function of @, we call it the likelihood function.
Note that the likelihood function itself is not a pdf.
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Lecture 1

L Maximum Likelihood Estimation

L The binomial distribution

MLE: The binomial distribution

The value of 0 for which this function has the maximum value is
the maximum likelihood estimate.

theta<-0.5
prod(dbinom(x,size=10,prob=theta))

## [1] 0.0002487367

theta<-0.1
prod(dbinom(x,size=10,prob=theta))
## [1] 1.809443e-14
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Lecture 1

L Maximum Likelihood Estimation
L The binomial distribution

MLE: The binomial distribution

Let's compute the product for a range of probabilities:

theta<-seq(0,1,by=0.01)
store<-rep(NA,length(theta))

for(i in 1:length(theta)){

store[i] <-prod(dbinom(x,size=10,prob=thetali]))

}

head(store)

## [1] 0.000000e+00 2.156526e-37 2.778674e-30 3.582737e-26
## [6] 4.398793e-21
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Lecture 1

L Maximum Likelihood Estimation

L The binomial distribution

MLE: The binomial distribution

....Xn[theta)

f(x1,
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theta
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Lecture 1

L Maximum Likelihood Estimation

L The binomial distribution

MLE: The binomial distribution

Detailed derivations: see lecture notes

We can obtain this estimate of 6 that maximizes likelihood by
computing:

T

n

0= (11)

where n is sample size, and z is the number of successes.

For the analytical derivation, see the Linear Modeling lecture
notes, section 4: https://github.com /vasishth/LM
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Lecture 1

L Maximum Likelihood Estimation

L The normal distribution

MLE: The normal distribution

Detailed derivations: see lecture notes

For the normal distribution, where X ~ N(u, o), we can get MLEs
of p and o by computing:

1
= — i:_ ]_2
NHE-%':E (12)

and

o1 _
52 = - Z(ggZ —z)? (13)
you will sometimes see the “unbiased” estimate (and this is what

R computes) but for large sample sizes the difference is not
important (see p 38 of Linear Modeling notes):

5= ! > (- )2 (14)
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Lecture 1

L Maximum Likelihood Estimation

L The normal distribution

The significance of the MLE

The significance of these MLEs is that, having assumed a
particular underlying pdf, we can estimate the (unknown)
parameters (the mean and variance) of the distribution that
generated our particular data.

This leads us to the distributional properties of the mean under
repeated sampling.
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Lecture 1

L The sampling distribution of the mean

LSampling from the normal distribution

The sampling distribution of the mean

When we have a single sample, we know how to compute MLEs
of the sample mean and standard deviation, /i and 6.

Suppose now that you had many repeated samples; from each
sample, you can compute the mean each time. We can simulate
this situation:

x<-rnorm(100,mean=500,sd=50)
mean (x)

## [1] 493.3942

x<-rnorm(100,mean=500,sd=50)
mean (x)

## [1] 505.7302
42 /59



Lecture 1

L The sampling distribution of the mean

LSampling from the normal distribution

The sampling distribution of the mean

Let's repeatedly simulate sampling 1000 times:

nsim<-1000

n<-100

mu<-500

sigma<-100

samp_distrn_means<-rep(NA,nsim)

samp_distrn_sd<-rep(NA,nsim)

for(i in 1:nsim){
x<-rnorm(n,mean=mu,sd=sigma)
samp_distrn_means[i]<-mean(x)
samp_distrn_sd[i]<-sd(x)

}
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Lecture 1
L The sampling distribution of the mean

LSampling from the normal distribution

The sampling distribution of the mean

Plot the distribution of the means under repeated sampling:

Samp. distrn. means
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Lecture 1

L The sampling distribution of the mean

LSampling from the exponential distribution

The sampling distribution of the mean

Interestingly, it is not necessary that the distribution that we are
sampling from be the normal distribution.

for(i in 1:nsim){
x<-rexp(n)
samp_distrn_means[i] <-mean (x)
samp_distrn_sd[i]<-sd(x)

}
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Lecture 1
L The sampling distribution of the mean

LSampling from the exponential distribution

The sampling distribution of the mean

Samp. distrn. means
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Lecture 1

L The sampling distribution of the mean

LThe central limit theorem

The central limit theorem

For large enough sample sizes, the sampling distribution of the
means will be approximately normal, regardless of the
underlying distribution (as long as this distribution has a mean
and variance defined for it).

This will be the basis for statistical inference.
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Lecture 1

L The sampling distribution of the mean

L Standard error

The sampling distribution of the mean

We can compute the standard deviation of the sampling
distribution of means:

sd (samp_distrn_means)

## [1] 0.09896015
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Lecture 1

L The sampling distribution of the mean

L Standard error

The sampling distribution of the mean

A further interesting fact is that we can compute this standard
deviation of the sampling distribution from a single sample of
size n:
g
v
n<-100
mu<-500
sigma<-100
x<-rnorm(n,mean=mu,sd=sigma)
hat_sigma<-sd(x)
hat_sigma/sqrt(n)

## [1] 10.16731

See linear modeling notes, section 5.1.5, for an analytical proof.
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Lecture 1

L The sampling distribution of the mean

L Standard error

The sampling distribution of the mean

So, from a sample of size n, and sd ¢ or an MLE &, we can
compute

the standard deviation of the sampling distribution of the
means.

We will call this standard deviation the estimated standard
error.

_ &
SE = T
| say estimated because we are estimating SE using an an
estimate of o.
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Lecture 1

L The sampling distribution of the mean

L Standard error

Exercise

Do Exercise 3 now.
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Lecture 1

L The sampling distribution of the mean

L Confidence intervals

Confidence intervals

The standard error allows us to define an (approximate) 95%
confidence interval:

£ 2SE (15)

So, for the mean, we define a 95% confidence interval as follows:

N

g

0+ 2
N

(16)
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Lecture 1

L The sampling distribution of the mean

L Confidence intervals

Confidence intervals

In our example:

mu- (2*hat_sigma/sqrt(n))

## [1] 479.6654

mu+(2*hat_sigma/sqrt(n))

## [1] 520.3346
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Lecture 1

L The sampling distribution of the mean

L Confidence intervals

The meaning of the 95% Cl

If you take repeated samples and compute the Cl each time, 95%
of those Cls will contain the true population mean.

nsim<-100

lower<-rep(NA,nsim)

upper<-rep(NA,nsim)

for(i in 1:msim){
x<-rnorm(n,mean=mu,sd=sigma)
lower [i]<-mean(x) - 2 * sd(x)/sqrt(n)
upper [i]<-mean(x) + 2 * sd(x)/sqrt(n)

}

54 /59



Lecture 1

L The sampling distribution of the mean

L Confidence intervals

The meaning of the 95% Cl

CIs<-ifelse(lower<mu & upper>mu,1,0)
table(CIs)

## Cls
## 0 1
## 2 98

table(CIs) [2] /sum(table(CIs))

## 1
## 0.98
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Lecture 1

L The sampling distribution of the mean

L Confidence intervals

The meaning of the 95% Cl

95% Cls in 100 repeated samples
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Lecture 1

L The sampling distribution of the mean

L Confidence intervals

The meaning of the 95% Cl

The 95% Cl from a particular sample does not mean that
the true value of the mean (a point value) lies inside that
particular Cl with probability 95%.

The "95%" refers to the coverage properties of the Cl under
repeated sampling.

Thus, the CI has a very confusing and (not very useful!)
interpretation.

In Bayesian statistics we use the credible interval, which has
the above interpretation (more on this later).

However, in our examples, for large sample sizes, the credible and
confidence intervals tend to be essentially identical.
For this reason, the Cl is often treated (this is technically
incorrect!) as a way to characterize uncertainty about our estimate
of the mean.
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Lecture 1

L The sampling distribution of the mean

L Confidence intervals

The meaning of the 95% Cl

Exercise: Generate 95% confidence intervals from a normal
distribution with mean 40 and sd 10, with 10,000 simulations

instead of 100.
Verify that the proportion of intervals that do not contain the true

mean is about 5%.
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Lecture 1

L The sampling distribution of the mean

L Confidence intervals

Main points from this lecture

We compute maximum likelihood estimates of the mean
Z = [ and standard deviation & to get estimates of the true

but unknown parameters.
2T

n

T =
For a given sample, having estimated &, we estimate the
standard error:

SE=¢6/\/n
This allows us to define a 95% Cl about the estimated mean:
nt2xSE

From here, we move on to statistical inference and null hypothesis
significance testing (NHST).
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