
Lecture 2

Frequentist foundations
SMLP 2017, Potsdam, Germany

Shravan Vasishth

Universität Potsdam
vasishth@uni-potsdam.de

http://www.ling.uni-potsdam.de/∼vasishth

August 9, 2017

1 / 84



Lecture 2

The story so far

1 We defined random variables.

2 We learnt about pdfs and cdfs, and learnt how to compute
P(X < x).

3 We learnt about Maximum Likelihood Estimation.

4 We learnt about the sampling distribution of the sample
means.

This prepares the way for null hypothesis significance testing
(NHST).
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Lecture 2

Statistical inference

Hypothesis testing

Suppose we have a random sample of size n, and the data come
from a N(µ, σ) distribution.
We can estimate sample mean x̄ = µ̂ and σ̂, which in turn allows
us to estimate the sampling distribution of the mean under
(hypothetical) repeated sampling:

N(x̄ ,
σ̂√
n

) (1)
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Lecture 2

Statistical inference

The one-sample hypothesis test

Imagine taking an independent random sample from a random
variable X that is normally distributed, with mean 12 and standard
deviation 10, sample size 11. We estimate the mean and SE:

sample <- rnorm(11,mean=12,sd=10)

(x_bar<-mean(sample))

## [1] 15.67387

(SE<-sd(sample)/sqrt(11))

## [1] 3.102064
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Lecture 2

Statistical inference

The one-sample t-test

The one-sample test

The NHST approach is to set up a null hypothesis that µ has some
fixed value. For example:

H0 : µ = 0 (2)

This amounts to assuming that the true distribution of sample
means is (approximately*) normally distributed and centered
around 0, with the standard error estimated from the data.

* I will make this more precise in a minute.
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Lecture 2

Statistical inference

The one-sample t-test

Null hypothesis distribution
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Lecture 2

Statistical inference

The one-sample t-test

NHST

The intuitive idea is that

1 if the sample mean x̄ is near the hypothesized µ (here, 0), the
data are (possibly) “consistent with” the null hypothesis
distribution.

2 if the sample mean x̄ is far from the hypothesized µ, the data
are inconsistent with the null hypothesis distribution.

We formalize “near” and “far” by determining how many standard
errors the sample mean is from the hypothesized mean:

t × SE = x̄ − µ (3)

This quantifies the distance of sample mean from µ in SE units.
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Lecture 2

Statistical inference

The one-sample t-test

NHST

So, given a sample and null hypothesis mean µ, we can compute
the quantity:

t =
x̄ − µ
SE

(4)

Call this the t-value. Its relevance will just become clear.
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Lecture 2

Statistical inference

The one-sample t-test

NHST

The quantity

T =
X̄ − µ
SE

(5)

has a t-distribution, which is defined in terms of the sample size n.
We will express this as: T ∼ t(n − 1)
Note also that, for large n, T ∼ N(0, 1).
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Lecture 2

Statistical inference

The one-sample t-test

NHST

Thus, given a sample size n, and given our null hypothesis, we can
draw t-distribution corresponding to the null hypothesis
distribution.
For large n, we could even use N(0,1), although it is traditional in
psychology and linguistics to always use the t-distribution no
matter how large n is.
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Lecture 2

Statistical inference

The one-sample t-test

The t-distribution vs the normal

1 The t-distribution takes as parameter the degrees of freedom
n − 1, where n is the sample size (cf. the normal, which takes
the mean and variance/standard deviation).

2 The t-distribution has fatter tails than the normal for small n,
say n < 20, but for large n, the t-distribution and the normal
are essentially identical.
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Lecture 2

Statistical inference

The one-sample t-test

The t-distribution vs the normal
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Lecture 2

Statistical inference

The one-sample t-test

t-test: Rejection region

So, the null hypothesis testing procedure is:

1 Define the null hypothesis: for example, H0 : µ = 0.

2 Given data of size n, estimate x̄ , standard deviation s,
standard error s/

√
n.

3 Compute the t-value:

t =
x̄ − µ
s/
√
n

(6)

4 Reject null hypothesis if t-value is large (to be made more
precise next).
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Lecture 2

Statistical inference

The one-sample t-test

t-test

How to decide when to reject the null hypothesis? Intuitively, when
the t-value from the sample is so large that we end up far in either
tail of the distribution.
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Lecture 2

Statistical inference

The one-sample t-test

t-test
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Lecture 2

Statistical inference

The one-sample t-test

Rejection region
1 For a given sample size n, we can identify the “rejection

region” by using the qt function (see lecture 1).
2 Because the shape of the t-distribution depends on the degrees

of freedom (n-1), the critical t-value beyond which we reject
the null hypothesis will change depending on sample size.

3 For large sample sizes, say n > 50, the rejection point is about
2.

abs(qt(0.025,df=15))

## [1] 2.13145

abs(qt(0.025,df=50))

## [1] 2.008559
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Lecture 2

Statistical inference

The one-sample t-test

t-test: Rejection region

Consider the t-value from our sample in our running example:

## null hypothesis mean:

mu<-0

(t_value<-(x_bar-mu)/SE)

## [1] 5.052725

Recall that the t-value from the sample is simply telling you the
distance of the sample mean from the null hypothesis mean µ in
standard error units.

t =
x̄ − µ
s/
√
n

or t
s√
n

= x̄ − µ (7)
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Lecture 2

Statistical inference

The one-sample t-test

t-test: Rejection region

So, for large sample sizes, if | t |> 2 (approximately), we can reject
the null hypothesis.
For a smaller sample size n, you can compute the exact critical
t-value:

qt(0.025,df=n-1)

This is the critical t-value on the left-hand side of the
t-distribution. The corresponding value on the right-hand side is:

qt(0.975,df=n-1)

Their absolute values are of course identical (the distribution is
symmetric).
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Lecture 2

Statistical inference

The one-sample t-test

The t-distribution vs the normal
Given the relevant degrees of freedom, one can compute the area
under the curve as for the Normal distribution:

pt(-2,df=10)

## [1] 0.03669402

pt(-2,df=20)

## [1] 0.02963277

pt(-2,df=50)

## [1] 0.02547353

Notice that with large degrees of freedom, the area under the
curve to the left of -2 is approximately 0.025. 19 / 84



Lecture 2

Statistical inference

The one-sample t-test

The t.test function

The t.test function in R delivers the t-value:

## from t-test function:

## t-value

t.test(sample)$statistic

## t

## 5.052725
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Lecture 2

Type I, Type II, power

Type I, Type II error, power

When we do a hypothesis test, the sample mean

1 will either fall in the rejection region → reject null

2 or it will not → fail to reject null

But the null hypothesis is either true or not true. We don’t know
which of those two is the reality.
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Lecture 2

Type I, Type II, power

Type I, Type II error, power

Reality: H0 TRUE H0 FALSE

Decision: ‘reject’: α 1 − β
Type I error Power

Decision: ‘fail to reject’: 1− α β
Type II error

Consider the situation where the true µ = 2. Now the H0 is false.
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Lecture 2

Type I, Type II, power

Type I, Type II error, Power

Type I error is conventionally held at 0.05. Power is 1-Type II error.
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Lecture 2

Type I, Type II, power

Example

The typical statistical test
t-test

Given data:

## Sampling from Normal(0,1)

(sample<-rnorm(10))

## [1] -0.065396894 0.522688728 0.213775723 1.168493100 -1.214004228

## [6] 0.068014795 -0.004296694 -0.233843523 0.506711348 2.228983553
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Lecture 2

Type I, Type II, power

Example

The typical statistical test
t-test

If we do a t-test to test the null hypothesis that µ = 0:

n<-length(sample)

x_bar<-mean(sample)

stddev<-sd(sample)

(t_value<- (x_bar - 0)/(stddev/sqrt(n)))

## [1] 1.110747
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Lecture 2

Type I, Type II, power

Example

The typical statistical test
t-test

We can also compute the probability of getting a t-value like the
one we got from the sample, or something more extreme, given the
null hypothesis.
This can be computed, as done earlier, simply by calculating the
area under the curve in the rejection region for the relevant
t-distribution:

pt(-abs(t_value),df=n-1)

## [1] 0.1477348
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Lecture 2

Type I, Type II, power

Example

The typical statistical test
t-test

I just took the absolute t-value from the sample and took its
negation in order to compute the probability on the left tail. I
could have also written:

pt(abs(t_value),df=n-1,lower.tail=FALSE)

## [1] 0.1477348
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Lecture 2

Type I, Type II, power

Example

The typical statistical test
t-test

The convention is to compute the probability of getting a t-value
like the one we got or something more extreme — we look at both
sides of the t-distribution.

2*pt(-abs(t_value),df=n-1)

## [1] 0.2954697

Conventionally, we reject the null if p < 0.05. This is because we
set the Type I error at 0.05.
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Lecture 2

Type I, Type II, power

Example

The typical statistical test

2*pt(-abs(t_value),df=n-1)

## [1] 0.2954697

Conventionally, we reject the null if this probability < 0.05.
This probability is called the p-value.
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Lecture 2

Type I, Type II, power

Example

The typical statistical test
t-test

You can use the built-in function in R to do such a t-test:

t.test(sample)

##

## One Sample t-test

##

## data: sample

## t = 1.1107, df = 9, p-value = 0.2955

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## -0.3307951 0.9690203

## sample estimates:

## mean of x

## 0.3191126
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Lecture 2

Type I, Type II, power

Example

Some cautionary notes about the p-value

The p-value is widely misunderstood, even by veteran scientists.
Here are some things people incorrectly think is true of p-values:

Mistake: A lower p-value gives me more confidence in the specific
alternative hypothesis I am interested in verifying.
In fact, a lower p-value only gives me stronger evidence against the
null; it doesn’t necessarily give me any more evidence than p=0.05
for my specific favored alternative.
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Lecture 2

Type I, Type II, power

Example

Some cautionary notes about the p-value

Mistake: A p-value greater than 0.05 tells me that the null
hypothesis is true.
Psychology and linguistics is littered with invalid claims like these.
The issue here is lack of statistical power (to be explained next).
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Lecture 2

Type I, Type II, power

Example

Some cautionary notes about the p-value

Mistake: It is widely assumed that if p < 0.05, we have found out
that the alternative is true, i.e., that there is a true effect.
One can always be wrong, typically we allow probability 0.05 to be
wrong. The only currency we will recognize is replicability.
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Lecture 2

Type I, Type II, power

Example

Some cautionary notes about the p-value

Mistake: It is widely believed that the p-value is the probability of
the null hypothesis being true.
The p-value is a conditional probability: the probability of seeing
the t-value that you got, or something more extreme, assuming the
null is true.
An analogy: If you know that the probability of the streets being
wet given that it is raining is 0.99, it does not mean that the
probability that it’s raining is 0.99.
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Lecture 2

Type I, Type II, power

Example

Type I error vs p-values
Type I error is the probability of your incorrectly rejecting the null
under repeated sampling. We can simulate this:

nsim<-10000

n<-10

pvals<-rep(NA,nsim)

for(i in 1:nsim){
x<-rnorm(n)

pvals[i]<-t.test(x)$p.value

}
mean(pvals<0.05)

## [1] 0.0531

The single p-value you get from one experiment is just that, a
single value. It will vary from experiment to experiment.
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Lecture 2

Type I, Type II, power

Example

The distribution of p-values under repeated sampling
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Lecture 2

Type I, Type II, power

Example

Power in psycholinguistics
Computing power, a simple example:

power.t.test(d=0.07,n=50,sd=1,

type="one.sample",

alternative="two.sided")

##

## One-sample t test power calculation

##

## n = 50

## delta = 0.07

## sd = 1

## sig.level = 0.05

## power = 0.07015854

## alternative = two.sided

37 / 84



Lecture 2

Type I, Type II, power

Example

Power in psycholinguistics (Jäger et al 2017, JML)
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Lecture 2

Type I, Type II, power

Example

Type II error (1-power) vs p-values

1 Most studies in linguistics and psychology have very low
power (maybe as low as 0.06).

2 This implies that if we get a so-called null result, i.e., fail to
reject the null hypothesis (when p > 0.05), we can’t really
conclude anything.

3 If power were high, then a null result could be more
meaningful and we might be justified in accepting the null.

But the situation with low power is not just that null results are
inconclusive. Even “statistically significant” results are suspect
with low power.
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Lecture 2

Type I, Type II, power

Type S and Type M errors

Type S- and M-error
Gelman and Carlin, Beyond Power Calculations: Assessing Type S (Sign) and Type M
(Magnitude) Errors, Perspectives on Psychological Science November 2014 vol. 9 no. 6
641-651

If your true effect size is believed to be D = 15, then we can
compute (apart from statistical power) these error rates, which are
defined as follows:

1 Type S error: the probability that the sign of the effect is
incorrect, given that the result is statistically significant.

2 Type M error: the expectation of the ratio of the absolute
magnitude of the effect to the hypothesized true effect size
(conditional on whether the result is significant). Gelman and
Carlin also call this the exaggeration ratio, which is perhaps
more descriptive than “Type M error”.
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Lecture 2

Type I, Type II, power

Type S and Type M errors

Type S- and M-error
Suppose a particular study has standard error 46, and sample size
37. And suppose that our estimated true D=15. Then, we can
compute Type S error as follows:

## probable effect size derived from past studies:

D<-15

## SE from the study of interest:

se<-46

stddev<-se*sqrt(37)

nsim<-10000

tscores<-drep<-rep(NA,nsim)

for(i in 1:nsim){
samp<-rnorm(37,mean=D,sd=stddev)

drep[i]<-mean(samp)

tscores[i]<-t.test(samp)$statistic

} 41 / 84



Lecture 2

Type I, Type II, power

Type S and Type M errors

Type S- and M-error

##power:

(pow<-mean(ifelse(abs(drep/se)>2,1,0)))

## [1] 0.0537
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Lecture 2

Type I, Type II, power

Type S and Type M errors

Type S- and M-error

## which cells in drep are significant at alpha=0.05?

signif<-which(abs(drep/se)>2)

## Type S error rate | signif:

(types_sig<-mean(drep[signif]<0))

## [1] 0.1787709
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Lecture 2

Type I, Type II, power

Type S and Type M errors

Type S- and M-error

## Type M error rate | signif:

(typem_sig<-mean(abs(drep[signif])/D))

## [1] 7.346615
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Lecture 2

Type I, Type II, power

Type S and Type M errors

Type S- and M-error
Funnel plot
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Lecture 2

Type I, Type II, power

Type S and Type M errors

Type S- and M-errors

1 So, you can see that the Type S error and the exaggeration
ratio, conditional on a result being significant, are pretty high.

2 The practical implication of this is that if most studies are low
powered, then it doesn’t matter much whether you got a
significant result or not. You could be (and probably are)
barking up the wrong tree.

3 The main point here is: run high powered studies, and
replicate the results. There’s really nothing that can match
consistent replication.
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Lecture 2

Type I, Type II, power

Stopping rules

Stopping rules

Psycholinguists and psychologists often adopt the following type of
data-gathering procedure:

1 The experimenter gathers n data points, then checks for
significance (p < 0.05 or not).

2 If it’s not significant, he gets more data (n more data points).
Since time and money are limited, he might decide to stop
anyway at sample size, say, some multiple of n.
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Lecture 2

Type I, Type II, power

Stopping rules

Stopping rules

1 One can play with different scenarios here. A typical n might
be 15.

2 This approach would give us a range of p-values under
repeated sampling.

3 Theoretically, under the standard assumptions of frequentist
methods, we expect a Type I error to be 0.05. This is the case
in standard analyses (I also track the t-statistic, in order to
compare it with my stopping rule code below).

48 / 84



Lecture 2

Type I, Type II, power

Stopping rules

Stopping rules

##Standard:

pvals<-NULL

tstat_standard<-NULL

n<-10

nsim<-10000

## assume a standard dev of 1:

stddev<-1

mn<-0

for(i in 1:nsim){
samp<-rnorm(n,mean=mn,sd=stddev)

pvals[i]<-t.test(samp)$p.value

tstat_standard[i]<-t.test(samp)$statistic

}
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Lecture 2

Type I, Type II, power

Stopping rules

Stopping rules

## Type I error rate: about 5% as theory says:

table(pvals<0.05)[2]/nsim

## TRUE

## 0.051
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Lecture 2

Type I, Type II, power

Stopping rules

Stopping rules

But the situation quickly deteriorates as soon as adopt the strategy
I outlined above. I will also track the distribution of the t-statistic
below.

pvals<-NULL

tstat<-NULL

## how many subjects can I run?

upper_bound<-n*6
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Lecture 2

Type I, Type II, power

Stopping rules

Stopping rules

for(i in 1:nsim){
significant<-FALSE

x<-rnorm(n,mean=mn,sd=stddev) ## take sample

while(!significant & length(x)<upper_bound){
## if not significant:

if(t.test(x)$p.value>0.05){
x<-append(x,rnorm(n,mean=mn,sd=stddev)) ## get more data

} else {significant<-TRUE} ## otherwise stop:

}
pvals[i]<-t.test(x)$p.value

tstat[i]<-t.test(x)$statistic

}
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Lecture 2

Type I, Type II, power

Stopping rules

Stopping rules

## Type I error rate: much higher than 5%:

table(pvals<0.05)[2]/nsim

## TRUE

## 0.1604
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Lecture 2

Type I, Type II, power

Stopping rules

Stopping rules
Now let’s compare the distribution of the t-statistic in the standard
case vs with the above stopping rule (red):
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Lecture 2

Type I, Type II, power

Stopping rules

Stopping rules

1 We get bumps in the tails with the above stopping rule—a
higher Type I error than 0.05.

2 The point is that one should fix one’s sample size in advance
based on a power analysis, not deploy a stopping rule like the
one above; if we used such a stopping rule, we are much more
likely to incorrectly declare a result as statistically significant.

3 Of course, if your goal is to get an article published no matter
what, such stopping rules are a great way to have a successful
career!
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Lecture 2

Summary so far

Summary

1 We learnt about the single sample t-test.

2 We learnt about Type I, II error (and power).

3 We learnt about Type M and Type S errors.
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Lecture 2

Two sample and paired t-tests

Reminder about one-sample t-tests

t-test

These are the heights of students in one of my classes at Potsdam:

heights <- c(173,174,160,157,158,170,172,170,

175,168,165,170,173,180,168,162,

180,160,155,163,173,175,176,172,

160,161,150,170,165,184,165)

We can do a t-test to evaluate the null hypothesis that
H0 : µ = 170 cm.
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Lecture 2

Two sample and paired t-tests

Reminder about one-sample t-tests

The t-distribution

The formal definition of the t-distribution is as follows:
Suppose we have a random sample of size n, say of heights, which
come from a Normal(µ, σ) distribution. Then the quantity

T = X−µ
S/
√
n

has a t(df = n − 1) sampling distribution. The distribution is
defined as (r is degrees of freedom):

fX (x , r) = Γ[(r+1)/2]√
rπ Γ(r/2)

(
1 + x2

r

)−(r+1)/2
, −∞ < x <∞.

[Γ refers to the gamma function; in this course we can ignore what
this is, but read Kerns if you are interested.]
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Lecture 2

Two sample and paired t-tests

Reminder about one-sample t-tests

The t-test

t.test(heights,mu=170)

##

## One Sample t-test

##

## data: heights

## t = -1.4866, df = 30, p-value = 0.1476

## alternative hypothesis: true mean is not equal to 170

## 95 percent confidence interval:

## 164.9461 170.7958

## sample estimates:

## mean of x

## 167.871
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Lecture 2

Two sample and paired t-tests

Reminder about one-sample t-tests

The t-test
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Lecture 2

Two sample and paired t-tests

Reminder about one-sample t-tests

Computing the p-value by hand
First, we compute t = x̄−µ

s/
√
n

:

(observed_t<-(mean(heights)-170)/(sd(heights)/sqrt(31)))

## [1] -1.486597

Then we compute the probability of seeing that observed t or
something more extreme, assuming the null is true:

2*pt(observed_t,df=30)

## [1] 0.1475564

Notice that for n=31, we could have used the normal distribution:

2*(pnorm(mean(heights),mean=170,sd=sd(heights)/sqrt(30)))

## [1] 0.1436253 61 / 84



Lecture 2

Two sample and paired t-tests

The two-sample t-test

Two-sample t-test

This is a data-set from Keith Johnson’s book (Quantitative
Methods in Linguistics):

F1data<-read.table("data/F1_data.txt",header=TRUE)

head(F1data)

## female male vowel language

## 1 391 339 i W.Apache

## 2 561 512 e W.Apache

## 3 826 670 a W.Apache

## 4 453 427 o W.Apache

## 5 358 291 i CAEnglish

## 6 454 406 e CAEnglish
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Lecture 2

Two sample and paired t-tests

The two-sample t-test

Two-sample t-test

Notice that the male and female values are paired in the sense that
they are for the same vowel and language. We will ignore this
detail here.
We can compare males and females’ F1 frequencies, ignoring the
fact that the data are paired.
Now, our null hypothesis is H0 : µm = µf or H0 : µm − µf = δ = 0.
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Lecture 2

Two sample and paired t-tests

The two-sample t-test

Two-sample t-test
Assuming equal variance between men and women

t.test(F1data$female,F1data$male,var.equal=TRUE)

##

## Two Sample t-test

##

## data: F1data$female and F1data$male

## t = 1.5356, df = 36, p-value = 0.1334

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -30.06631 217.53999

## sample estimates:

## mean of x mean of y

## 534.6316 440.8947
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Lecture 2

Two sample and paired t-tests
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Two-sample t-test

Doing this “by hand”: The only new thing is the SE calculation,
and the df for t-distribution (2× n − 2) = 36.

SEδ =
√

σ2
1

n1
+

σ2
2

n2

d<-mean(F1data$female)-mean(F1data$male)

(SE<-sqrt(var(F1data$male)/19+var(F1data$female)/19))

## [1] 61.04409

observed_t <- (d-0)/SE

2*(1-pt(observed_t,df=36))

## [1] 0.1333895
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The paired t-test

The paired t-test
Gibson and Wu 2013

gwdat<-read.table("data/gwdatbysubj.txt",header=TRUE)

There are three syntaxes for the paired t-test.
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The paired t-test
Using data frame:

with(gwdat,

t.test(rt~type,paired=TRUE)

)

##

## Paired t-test

##

## data: rt by type

## t = -2.6301, df = 36, p-value = 0.01248

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -218.20667 -28.19893

## sample estimates:

## mean of the differences

## -123.2028
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The paired t-test
Creating two vectors, one for each condition:

or<-subset(gwdat,type=="obj-ext")

sr<-subset(gwdat,type=="subj-ext")

t.test(or$rt,sr$rt,paired=TRUE)

##

## Paired t-test

##

## data: or$rt and sr$rt

## t = -2.6301, df = 36, p-value = 0.01248

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -218.20667 -28.19893

## sample estimates:

## mean of the differences

## -123.2028
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The paired t-test
Taking the pointwise difference between the two vectors:

d<-or$rt-sr$rt

t.test(d)

##

## One Sample t-test

##

## data: d

## t = -2.6301, df = 36, p-value = 0.01248

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## -218.20667 -28.19893

## sample estimates:

## mean of x

## -123.2028
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The paired t-test
A fourth way: by hand.

(SE<-sd(d)/sqrt(36))

## [1] 47.49007

(observed_t <- (mean(d)-0)/SE)

## [1] -2.594285

2*(pt(observed_t,df=36))

## [1] 0.01362448

(critical_t<-abs(qt(0.025,df=36)))

## [1] 2.028094

mean(d)-critical_t*SE;mean(d)+critical_t*SE

## [1] -219.5171

## [1] -26.88847
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The paired t-test

Summary so far

We have worked through the

1 One sample t-test

2 Paired t-test (which is just the one sample t-test)

71 / 84



Lecture 2

Two sample and paired t-tests

An often-seen mistake in paired t-tests

A note on paired t-tests
Note that to use the t-test, each row of the data frame cannot
have repeated measures from one subject.
An example:

gwdatfull<-read.table("data/gibsonwu2012data.txt",header=TRUE)

gwdatfull<-gwdatfull[,c(1,2,3,7,8)]

gwdatfull<-subset(gwdatfull,region=="headnoun")

head(gwdatfull)

## subj item type rt region

## 94 1 13 obj-ext 1561 headnoun

## 221 1 6 subj-ext 959 headnoun

## 341 1 5 obj-ext 582 headnoun

## 461 1 9 obj-ext 294 headnoun

## 621 1 14 subj-ext 438 headnoun

## 753 1 4 subj-ext 286 headnoun

Here, we have repeated measures from subject 1. The
independence assumption is violated.
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A note on paired t-tests
Compare:

## paired t-test valid:

xtabs(~subj+type,gwdat)

## type

## subj obj-ext subj-ext

## 1 1 1

## 2 1 1

## 3 1 1

## 4 1 1

## 5 1 1

## 6 1 1

## 7 1 1

## 8 1 1

## 9 1 1

## 11 1 1

## 12 1 1

## 14 1 1

## 15 1 1

## 16 1 1

## 17 1 1

## 18 1 1

## 19 1 1

## 20 1 1

## 21 1 1

## 22 1 1

## 23 1 1

## 24 1 1

## 26 1 1

## 27 1 1

## 28 1 1

## 29 1 1

## 30 1 1

## 31 1 1

## 32 1 1

## 33 1 1

## 34 1 1

## 35 1 1

## 36 1 1

## 37 1 1

## 38 1 1

## 39 1 1

## 40 1 1

## paired t-test cannot be done:

xtabs(~subj+type,gwdatfull)

## type

## subj obj-ext subj-ext

## 1 8 7

## 2 7 8

## 3 8 7

## 4 7 8

## 5 8 7

## 6 7 8

## 7 8 7

## 8 7 8

## 9 8 7

## 11 8 7

## 12 7 8

## 14 7 8

## 15 8 7

## 16 7 8

## 17 8 7

## 18 7 8

## 19 8 7

## 20 7 8

## 21 8 7

## 22 7 8

## 23 8 7

## 24 7 8

## 26 7 8

## 27 5 2

## 28 7 8

## 29 8 7

## 30 7 8

## 31 8 7

## 32 7 8

## 33 8 7

## 34 7 8

## 35 8 7

## 36 7 8

## 37 8 7

## 38 8 7

## 39 8 7

## 40 7 8
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A note on paired t-tests

1 What to do when we have repeated measurements from each
subject or each item?

2 We aggregate the data so that each subject (or item) has only
one value for each condition.

3 This has a drawback: it pretends we have one measurement
from each subject for each condition.

4 Later on we will learn how to analyze unaggregated data.
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An often-seen mistake in paired t-tests

Example of INCORRECT pair-wise t-test

We have repeated measures data on noun pronunciation durations,
in seconds:

dataN2<-read.table("data/dataN2.txt",header=T)

head(dataN2)

## Sentence Speaker_id N2_dur.2 N2_dur.1

## 1 1 1 0.4965026 0.6144392

## 2 1 2 0.4797888 0.5873895

## 3 1 3 0.5471585 0.6945130

## 4 1 4 0.3783597 0.5684208

## 5 1 5 0.5671948 0.4404005

## 6 1 6 0.5183090 0.5465097

75 / 84



Lecture 2

Two sample and paired t-tests

An often-seen mistake in paired t-tests

Example of INCORRECT pair-wise t-test

## significant effect:

with(dataN2,

t.test(N2_dur.2,N2_dur.1,paired=TRUE))

##

## Paired t-test

##

## data: N2_dur.2 and N2_dur.1

## t = 2.22, df = 335, p-value = 0.02709

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 0.002320133 0.038405219

## sample estimates:

## mean of the differences

## 0.02036268
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An often-seen mistake in paired t-tests

Example of INCORRECT pair-wise t-test

The above t-test was incorrect because we have multiple rows of
(dependent) data from the same subject.
We need to aggregate the multiple measurements from each
subject until we have one data point from each subject for each
combination of vowel and language.
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CORRECT pair-wise t-test

First, convert data to “long” form:

N2dur1data<-data.frame(item=dataN2$Sentence,

subj=dataN2$Speaker_id,

cond="a",

dur=dataN2$N2_dur.1)

N2dur2data<-data.frame(item=dataN2$Sentence,

subj=dataN2$Speaker_id,

cond="b",

dur=dataN2$N2_dur.2)

N2data<-rbind(N2dur1data,N2dur2data)
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CORRECT pair-wise t-test

head(N2data)

## item subj cond dur

## 1 1 1 a 0.6144392

## 2 1 2 a 0.5873895

## 3 1 3 a 0.6945130

## 4 1 4 a 0.5684208

## 5 1 5 a 0.4404005

## 6 1 6 a 0.5465097
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An often-seen mistake in paired t-tests

CORRECT pair-wise t-test

Then aggregate so that we have only one data point per subject
for each condition:

N2data_bysubj<-aggregate(dur~subj+cond,mean,

data=N2data)
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An often-seen mistake in paired t-tests

Example of CORRECT pair-wise t-test (by subject)

Create a vector for each condition:

conda<-subset(N2data_bysubj,cond=="a")

condb<-subset(N2data_bysubj,cond=="b")
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An often-seen mistake in paired t-tests

Example of CORRECT pair-wise t-test (by subject)
Notice that the result is no longer significant

## not significant:

t.test(condb$dur,conda$dur,paired=TRUE)

##

## Paired t-test

##

## data: condb$dur and conda$dur

## t = 1.8355, df = 13, p-value = 0.08941

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.003604625 0.044329976

## sample estimates:

## mean of the differences

## 0.02036268
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An often-seen mistake in paired t-tests

Example of CORRECT pair-wise t-test (by subj)
Alternative syntax:

## alternative syntax:

t.test(dur~cond,paired=TRUE,N2data_bysubj)

##

## Paired t-test

##

## data: dur by cond

## t = -1.8355, df = 13, p-value = 0.08941

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.044329976 0.003604625

## sample estimates:

## mean of the differences

## -0.02036268
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Exercise

Do Exercise 4.
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