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27We offer a dynamical model of phonological planning that provides a formal instantiation
28of how the speech production and perception systems interact during online processing.
29The model is developed on the basis of evidence from an experimental task that requires
30concurrent use of both systems, the so-called response–distractor task in which speakers
31hear distractor syllables while they are preparing to produce required responses. The
32model formalizes how ongoing response planning is affected by perception and accounts
33for a range of results reported across previous studies. It does so by explicitly addressing
34the setting of parameter values in representations. The key unit of the model is that of
35the dynamic field, a distribution of activation over the range of values associated with each
36representational parameter. The setting of parameter values takes place by the attainment
37of a stable distribution of activation over the entire field, stable in the sense that it persists
38even after the response cue in the above experiments has been removed. This and other
39properties of representations that have been taken as axiomatic in previous work are
40derived by the dynamics of the proposed model.
41� 2016 Published by Elsevier Inc.
42

43

44

45 Introduction

46 Discussion about the links between speech perception
47 and production has traditionally been concerned with
48 whether the objects of speech perception are acoustic or
49 articulatory (see Diehl, Lotto, & Holt, 2004; Fowler, 1996;
50 Galantucci, Fowler, & Turvey, 2006; Liberman &
51 Mattingly, 1985; Ohala, 1996, among many others).
52 Despite disagreement on answers to that theoretical ques-
53 tion, the assertion that speech perception and production
54 are tightly linked is not contentious (see, e.g., Diehl et al.,
55 2004; Hickok & Poeppel, 2000; Moulin-Frier, Laurent,

56Bessière, Schwartz, & Diard, 2012), and more attention is
57now being paid to understanding better how perception
58and production are related, and to what representations
59are involved in the link between the two. Nevertheless,
60very little to no attention has been paid to developing
61explicit computational models of the online interaction
62between speech perception and production. We present a
63dynamical, computationally explicit model of the process
64by which phonological production parameters are set.
65The model focuses on a specific task that requires the con-
66current use of both speech perception and production, and
67thereby sheds light on the nature of the representations
68involved in the perception–production link.
69There is good evidence for facilitation in speech produc-
70tion response times (RTs) when perceived stimuli share
71phonemes with intended productions in a variety of exper-
72imental paradigms (Forster & Davis, 1991; Galantucci,
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73 Fowler, & Goldstein, 2009; Kerzel & Bekkering, 2000;
74 Schriefers, Meyer, & Levelt, 1990). Beyond shared
75 phonemes, studies have attempted to further probe the
76 specificity of representations involved in the perception–
77 production link by also seeking to uncover effects on RTs
78 attributable to linguistic properties corresponding to
79 distinctive features. The results have been mixed. For
80 instance, several studies have sought (without success) a
81 feature-level effect for the feature of place, corresponding
82 to sharing of primary oral articulator between the per-
83 ceived stimulus and the required response (Galantucci
84 et al., 2009; Gordon & Meyer, 1984; Mitterer & Ernestus,
85 2008; Roelofs, 1999). The lack of an effect in these studies
86 is particularly surprising given the undisputed status of the
87 oral articulator in the description of linguistic contrasts
88 (Chomsky & Halle, 1968; Ladefoged & Maddieson, 1996).
89 Another set of studies has uncovered feature-level effects
90 for primary oral articulator as well as for voicing, evi-
91 denced both by modulations of production RTs (Gordon
92 & Meyer, 1984, for voicing; Klein, Roon, & Gafos, 2015,
93 for articulator; Mousikou, Roon, & Rastle, 2015, for voicing;
94 Roon & Gafos, 2015, for both) and by modulations of the
95 phonetic output of speakers (Goldinger, 1998; Nielsen,
96 2007; Tilsen, 2009; Yuen, Brysbaert, Davis, & Rastle,
97 2010) driven by (in)compatibility between recently per-
98 ceived stimuli and utterances produced. It can be reason-
99 ably argued that the inconsistency in finding feature-

100 level effects is due to the variety in the experimental tasks
101 across the various studies, which included responding to
102 an auditory cue based on learned cue–response pairs
103 (Gordon & Meyer, 1984; Roelofs, 1999), responding to a
104 visual cue in the presence of various distractors
105 (Galantucci et al., 2009; Kerzel & Bekkering, 2000; Roon
106 & Gafos, 2015), reading aloud with masked primes
107 (Mousikou et al., 2015), and shadowing spoken stimuli
108 (Mitterer & Ernestus, 2008). However, if we focus on
109 results from a series of studies that use the same experi-
110 mental task, the response–distractor task, it turns out that
111 the results for feature-level effects are reliably consistent.
112 These latter results offer a rich and sufficiently coherent
113 dataset that makes possible the formalization of the link
114 between perception and production. In the present study,
115 therefore, we provide a computationally explicit model of
116 these feature-level effects in the response–distractor task.
117 The model will be shown to account for the range of results
118 from studies using this task by proposing a link between
119 speech perception and production that is situated in the
120 process of phonological planning.
121 In a response–distractor task, participants learn pairs of
122 visual cues and spoken syllables (e.g., ‘‘if you see && say ba,
123 if you see ## say da”). Participants are instructed that they
124 will repeatedly see these cues and that they should say the
125 corresponding syllable that they have learned as quickly as
126 possible, but not so quickly that they make a lot of mis-
127 takes. They are also told that they will hear various things
128 over headphones while they are performing the task, and
129 that they should ignore what they hear. As shown in
130 Fig. 1, participants first see a fixation box alerting them
131 to the beginning of the trial. After 500 ms, participants
132 see a cue instructing them which syllable to say. Shortly
133 after the presentation of the cue, participants hear one of

134a number of various linguistic distractors, a non-speech
135sinusoidal tone equal in length to the linguistic distractors,
136or no distractor. The timing of the distractor relative to the
137cue is such that the distractor always follows the cue by a
138set duration, that is, a positive Stimulus Onset Asynchrony
139(SOA) is used. The response time on the trial is measured as
140the time from the onset of the visual cue to the acoustic
141onset of the produced response. The crucial experimental
142manipulation consists of systematically varying the (in)-
143compatibility between the distractor and response along
144various phonological parameters.
145The design of the response–distractor task is well suited
146to provide evidence of effects attributable to the interac-
147tion of the speech production and perception systems.
148Any results from experimental tasks that present some
149priming or distractor stimulus at any time before the par-
150ticipant has decided on a response (e.g., a shadowing task)
151are open to being interpreted as reflecting ‘‘selection”
152effects (or, ‘‘stimulus-response” compatibility effects, see
153Galantucci et al., 2009; Kerzel & Bekkering, 2000;
154Kornblum, 1994, for discussion). A prime or distractor
155stimulus may bias the participant toward (or away from)
156a particular response, thereby speeding up (or slowing
157down) RTs, but the nature of the bias is highly
158task-dependent. That is, depending on the task, the bias
159may be driven by congruency along any number or
160combination of parameters—acoustic, articulatory, visual,
161orthographic—and not be driven solely by sharing
162speech-specific (acoustic or articulatory) properties. In
163contrast, in the response–distractor task, the distractor
164stimulus is presented so close in time to the beginning of
165the utterance that any influence of the distractor stimulus
166must reflect involvement of the production system in per-
167ception since it is simply too late for any other representa-
168tions to be involved. Effects on RTs that are attributable to
169the interaction of the speech production and perception
170systems have therefore been dubbed ‘‘perceptuo-motor”
171effects (also referred to as ‘‘stimulus-stimulus” compatibil-
172ity effects, Kornblum, 1994).
173Kerzel and Bekkering (2000) and Galantucci et al.
174(2009) use this response–distractor task to show that

Fig. 1. Time line of one trial from the response–distractor task. The
participant’s task is to produce ta upon seeing the visual cue ##. At an
SOA of 100 ms, the participant hears an auditory distractor, which is the
syllable pa.
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175 phonemic identity between response and distractor yields
176 facilitative effects on RTs. The main difference between the
177 two studies is that Kerzel and Bekkering (2000) used silent
178 videos of speakers producing the distractor stimuli, while
179 Galantucci et al. (2009) used auditory stimuli only. Fig. 2
180 illustrates the basic findings from Galantucci et al.
181 (2009), which were consistent with the results found by
182 Kerzel and Bekkering (2000) despite the different modali-
183 ties of the distractor stimuli. In order to understand the
184 effects of the linguistic distractors on RTs, the conditions
185 that did not involve linguistic distractors must be exam-
186 ined first. There are two consistent non-linguistic influ-
187 ences on RTs: the presence of any distractor vs. no
188 distractor, and SOA. The presence of a distractor increased
189 RTs, regardless of whether the distractor was a speech syl-
190 lable or a tone, as RTs were fastest when there was no dis-
191 tractor (bar with vertical pattern). RTs increased
192 monotonically as SOAs increased. These non-linguistic
193 influences presumably arise from some other cognitive
194 process (or processes) involved in this task that do not
195 involve the (specifically) speech perception–production
196 link. The RT slowdown of the Tone condition at various
197 SOAs compared to the No Distractor condition therefore
198 can be treated as a neutral baseline RT reference indicating
199 the influence of these other processing demands, but not
200 reflecting any influence of the process that generates
201 perceptuo-motor effects. The main perceptuo-motor effect
202 from Galantucci et al. (2009) is the dependence of RTs on
203 phonemic identity. Specifically, RTs were shorter than the
204 neutral tone distractor within a given SOA if the distractor
205 was the same syllable as the response (e.g., ba–ba, white
206 bars in Fig. 2) and longer if the distractor had a different
207 onset consonant from the response, which in the case of
208 the Galantucci et al. (2009) experiment meant that they
209 differed in articulator (e.g., ba–da, bars with horizontal
210 shading in Fig. 2).
211 Roon and Gafos (2015) used the same task to reveal
212 perceptuo-motor effects beyond phonemic identity and
213 found effects both of articulator and voicing (Fig. 3). The
214 key difference in experimental design between Roon and
215 Gafos (2015) and Galantucci et al. (2009) was that
216 response and distractor were never identical in the former,
217 which allowed for teasing apart individual feature-level
218 effects. Specifically, in Roon and Gafos (2015)’s articulator
219 experiment (Fig. 3A), distractors never matched responses
220 in voicing, but had an articulator that was either congruent
221 with the response (e.g., response pa–distractor ba) or
222 incongruent (e.g., pa–da). In their voicing experiment
223 (Fig. 3B), distractors never matched responses in articula-
224 tor, but had voicing that was either congruent (e.g., ta–
225 pa) or incongruent (e.g., ta–ba) with the response. In both
226 experiments, RTs were slower in the incongruent case than
227 in the congruent case. These results were the first to pro-
228 vide clear evidence for independent effects of articulator
229 and voicing in this task.
230 Taken together, the results from the above experiments,
231 which all employed the response–distractor task to isolate
232 perceptuo-motor effects, securely establish perceptuo-
233 motor interactions beyond cases of complete identity
234 between required responses and distractors, and provide
235 design characteristics for a model of the perception–pro-

236duction link. We next present such a model and demon-
237strate its efficacy in capturing these results and others, as
238well as in making novel predictions.

239Model of phonological planning

240Consider a syllable ta, beginning with a tongue tip con-
241striction as required for a /t/ followed by tongue back
242vowel and glottal gestures as required for an /a/. Upon pre-
243sentation of a visual cue indicating that the required
244response is the syllable ta, a speaker must assemble a set
245of parameter values that specify the required vocal tract
246actions. These include (but are not limited to) articulator-
247specific parameters referring to the constriction location
248and constriction degree of the articulator forming the con-
249striction required for the initial consonant (Browman &
250Goldstein, 1990; Guenther, 1995; Saltzman & Munhall,
2511989), as well as the parameter specifying the voicing for
252that consonant to be voiceless. For instance, in ta, the
253speaker must set a constriction location value for the ton-
254gue tip articulator (and not the tongue back, as would be
255the case for ka), and a degree of constriction (for a stop like
256/t/, that is ‘‘full closure” as opposed to ‘‘critical”, as would
257be the case for the fricative in sa) to be effected by this
258articulator. For voicing, the speaker must set the oral–
259laryngeal timing needed for properly coordinating the con-
260sonant’s release with the onset of modal voicing for the
261vowel, known as the Voice Onset Time parameter (VOT,
262Lisker & Abramson, 1964). In our model, each such param-
263eter corresponds to a planning field. Fig. 4 shows the com-
264ponents of the model for the response–distractor task. It
265includes three planning fields for each potential speech
266articulator (limited to those relevant to the data consid-
267ered here: Tongue Tip, Tongue Back, and Lower Lip; shown
268in orange shaded rectangles), another planning field for
269Voicing (shown in the blue shaded rectangle), inputs to
270the fields (shown in ovals), and a Monitor function. Inputs
271to the fields as well as interaction within and across fields
272determine in a mathematically explicit way described
273below the actual parameter values to be produced. The
274Monitor function decides when all of the required param-
275eter values have been determined. At that point, those
276parameter values are sent to Implementation. Implemen-
277tation is separate from our model, and is a system that con-
278trols the online movements of articulators, such as the

Fig. 2. Schematic representation of the results from Galantucci, Fowler,
and Goldstein (2009). RTs were faster when distractors were identical to
responses (white bars), and slower when they mismatched in articulator
(bars with horizontal shading).
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279 Task Dynamics Model (Saltzman & Munhall, 1989) or DIVA
280 (Guenther, 1995, et seq.).
281 The planning fields in Fig. 4 evolve over time and deter-
282 mine the specific parameter settings for the phonological
283 parameters in an intended utterance. The evolution of
284 the fields is specified by a dynamical system. A dynamical
285 system is a formal system whose internal state changes
286 over time in a mathematically explicit way. The workings
287 of the proposed model are based on Dynamic Field Theory
288 (‘‘DFT”), a theoretical framework originally developed in
289 the context of movement planning (see Erlhagen &
290 Schöner, 2002, for a general formulation of the theory;
291 see Kopecz & Schöner, 1995, for an earlier formulation in
292 the context of oculomotor tasks; see Schöner, Spencer, &
293 DFT Research Group, 2016, for a comprehensive survey of
294 the current state of the theory), and by now extended to
295 domains as wide-ranging as motion preparation (Hock,
296 Schöner, & Giese, 2003), behavioral choice in the A-not-B
297 infant perseverative-reaching paradigm (Thelen, Schöner,
298 Scheier, & Smith, 2001), and turn-taking in dyadic commu-
299 nication (Sandamirskaya & Schöner, 2008). The mathemat-
300 ical foundations of DFT derive from the landmark
301 analytical treatment of neural field dynamics by Amari
302 (1977). Amari’s key equation for field dynamics is given
303 in (1). In this equation, A is the field (a function of the con-
304 tinuous variables x, t), h is the field’s resting activation,

305dAðx; tÞ is the change in activation at x at time t, s is a con-
306stant corresponding to the rate of decay of the field, Input
307(x, t) is time-dependent input to the system (i.e., a cue
308specifying a required response or a perceived distractor)
309in the form of a localized activation spike, S(x, t) is a term
310expressing interactions among different field sites, and
311noise contributes stochastic random noise to the activation
312evolution.
313

Main stochastic differential equation for field evolution :

sdAðx; tÞ ¼ �Aðx; tÞ þ hþ Inputðx; tÞ þ Sðx; tÞ þ noise

ð1Þ 315315

316Eq. (1) can be broken down into simpler components to
317better understand how it functions. The core component
318sdA(x, t) = �A(x, t) + h states that the rate of activation
319change dA(x, t) is a linear function of current activation A
320(x, t) and specifically that it is inversely related to the cur-
321rent activation A(x, t) plus some constant h. This relation is
322an instance of exponential decay dynamics. To see this, let
323us arbitrarily select a single location for x, which we call xi,
324and plot its activation A(xi, t) over time. As shown in the top
325left panel of Fig. 5, in the absence of any input or interac-
326tion, activation A(xi, t) converges exponentially to the rest-
327ing level h and stays there once h is reached (at this level
328the right hand side of the equation becomes zero, which
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Fig. 3. Results from Roon and Gafos (2015). (A) Articulator experiment. (B) Voicing experiment.

Fig. 4. Model of phonological planning. Shaded rectangles represent planning fields: orange for articulator planning fields and blue for voicing. Double-
pointed arrows represent cross-field inhibition. Ovals represent three sources of input. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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329 means that the rate of change on the left hand side
330 becomes zero and thus no further change is due). Let us
331 call this resting activation level the ‘‘off” state for the
332 parameter represented by this equation governing the evo-
333 lution of xi. In the terminology of dynamical systems, the
334 starting activation of xi is known as an initial condition,
335 and the activation it converges to, in this case the resting
336 activation, is known as a stable fixed point or an attractor.
337 If the input term, Input(x, t), is non-zero, then the system
338 will move toward a new attractor equal to the resting acti-
339 vation plus the input term, as shown in the top right panel.
340 The speed of the process is modulated by the s term, which
341 defines the time scale of the planning process, with the top
342 two panels in Fig. 5 showing faster convergence than the
343 bottom two.
344 Fig. 6 depicts the same dynamics as above in a way that
345 fully captures the system’s behavior regardless of initial
346 conditions and without solving the equation sdA(x, t) = –A
347 (x, t) + h as was done to obtain the trajectories in Fig. 5.
348 Let us denote the right hand side of sdA(x, t) = �A(x, t) + h
349 by f(A). Without solving sdA(x, t) = f(A), one can fully
350 describe the behavior of A(x, t) by considering just three
351 cases. If f(A) is positive, the rate of change dA(x, t) must
352 be positive and thus A(x, t) will increase by an amount
353 given by dA(x, t). If f(A) is negative, A(x, t) will decrease. If
354 f(A) is zero, A(x, t) stays the same. The values of A for which
355 the latter is true are called fixed points—these are the
356 points where the line representing f(A) intersects the A
357 axis. Thus, f(A) can be seen to specify a vector which indi-
358 cates the direction of change for A and also the magnitude

359of the change and for this reason it is known as a vector
360field of the dynamical system. The arrows on the A axis of
361Fig. 6 show the vector field by taking representative values
362of A and drawing on top of each of these values an arrow
363pointing in the direction of change, that is, to the right/left
364for positive/negative f(A). The stability of the fixed point is
365indicated by the arrows (both to its left and to its right)
366pointing toward it. This much background is sufficient to
367illustrate one essential point, which is that the dynamics
368controlling the change of activation is self-stabilizing:
369when the system finds itself below or above the resting
370level, due to setting its initial conditions of activation at
371this level or due to perturbations that may be applied to
372it (e.g., noise introduced by stochastic forces) during the
373course of its evolution, the system converges back to that
374level of activation. This property of dynamical systems,
375which derives formally from the state dependence of the
376dynamics and specifically from the rate of activation
377change dA(x, t) being inversely related to the current acti-
378vation A(x, t), plays a key role in formalizing the concept
379of representation and in setting and maintaining parame-
380ter values in our model.
381In moving from the single parameter linear dynamics to
382fields, the parameter x turns to a continuum of locations
383representing the range of possible parameter values (e.g.,
384constriction locations) as opposed to a single location xi

385above. This continuum is shown by an axis in our field rep-
386resentations with each point along that axis associated
387with an activation value (hence we can still speak of acti-
388vation at x). Single location activation now turns to a distri-

Fig. 5. Trajectories of the simplified linear dynamics sdA(x, t) = �A(x, t) + h. Top left: In the absence of input, field activation at a particular point converges to
the resting level, the ‘‘off” state. Here h = �2 (dashed line) and the time scale is specified by s = 1. Top right: With added input Input(x, t) = 3, activation
converges to resting level h plus input (top dashed line) with s = 1. Bottom left: In the absence of input, activation converges to resting level h = �2 with a
slower time scale specified by s = 2. Bottom right: With added input Input(x, t) = 3, activation converges to resting level h plus input with s = 2.
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389 bution of activation over that continuum of locations rep-
390 resented by the parameter axis. Issues of stability in the
391 field dynamics correspondingly translate to the existence
392 and specification of regions of locations over which an acti-
393 vation distribution stabilizes. We first illustrate graphically
394 the different stabilization scenarios with field dynamics in
395 Fig. 7 and then turn to a discussion of how Eq. (1) pre-
396 scribes these scenarios.
397 When input to the field is weak as in the case of a small
398 spike introduced and removed shortly thereafter, the field
399 relaxes back to its resting level. This is shown in Fig. 7A,
400 which illustrates what is involved as we move from the
401 single parameter exponential growth/decay dynamics to
402 fields. It is now the evolution of activation along the entire
403 field represented by the constriction location axis that is
404 depicted. A small spike raises activation values in a region
405 between the anterior and posterior ends of the constriction
406 location continuum. Eventually, the spike wanes as the
407 retraction of input results in the field relaxing back to its
408 resting level (this is analogous to what happens with the
409 no-input case of the simple dynamics illustrated above).
410 At each time step, evolution is noisy as shown by the small
411 random perturbations throughout the field.
412 In contrast, inputs of sufficient strength and duration
413 lead to stabilization, i.e., to a state of activation distribution
414 where a peak formed above the resting level can be main-
415 tained.1 This is illustrated in Fig. 7B. The figure shows input
416 to the Tongue Tip Constriction Location field introduced at
417 time step 200 and evolving over time to an eventually stable
418 peak with higher activation at some intermediate value of
419 Tongue Tip Constriction Location on the anterior–posterior
420 axis (note that the noise in the field is still present but less
421 visible than in Fig. 7A due to the larger range of activation
422 values displayed). This peak is stable in the sense that, once
423 achieved, it persists indefinitely, even in the absence of fur-
424 ther input. Indeed, in the example shown in Fig. 7B, there is
425 no input to the field after time step 500 but the single-peak
426 distribution of activation in the field remains. This is the
427 ‘‘on” state of a planning field. It is when the dynamics have
428 reached this stable, non-resting activation state that we say

429a parameter value in a representation has been set. In our
430model, the phonetic parameter value of the peak in this sec-
431ond stable ‘‘on” state is what is sent to implementation.
432Whereas Fig. 7A and B illustrates cases of monomodal
433or single-peak input, Fig. 7C turns to a case where the input
434is bimodal. Specifically, Fig. 7C shows that the buildup of
435activation for a posterior constriction location can be sup-
436pressed by the introduction of an incongruent input. The
437activation buildup for the posterior constriction starts off
438similar to the buildup in Fig. 7B, but 300 time steps into
439the evolution of the posterior constriction peak, a second,
440incongruent anterior constriction location input is intro-
441duced into the field. As that peak rises, it inhibits the
442buildup of the posterior activation peak, resulting in a brief
443dip in its maximum value around time step 1000. The
444incongruent anterior constriction location activation is
445ultimately not sufficient to prevent the field from stabiliz-
446ing with the posterior constriction location peak, and it
447soon dies out due to the inhibition introduced by the pos-
448terior peak. Nevertheless, the introduction of the incongru-
449ent peak does result in achievement of the stable ‘‘on” state
450being delayed compared to the field evolution depicted in
451Fig. 7B. Indeed, a crucial function of dynamic fields in DFT
452in general and in our model specifically is to provide a
453mechanism to resolve multiple—and potentially conflict-
454ing—inputs to the planning process. In Eq. (1), this mecha-
455nism corresponds to the interaction term S(x, t), which
456crucially endows fields with this capacity of decision. As
457we formally explicate below, how close the peaks of the
458two inputs are to each other, as well as their relative
459strength, width, and timing all affect the field’s achieve-
460ment of a single stable state.
461We now characterize formally the Input(x, t) term.
462Inputs to the model take the form of activation distribu-
463tions. The key idea is that each phonological parameter is
464not specified by a single numerical value, but rather by
465an activation distribution depicting the continuity of its
466phonetic detail. These distributions in the model are
467defined by (2), and examples are illustrated in Fig. 8.
468

input ¼ e�ðx�valþnoiseÞ2=2r2 ð2Þ 470470

471In this equation, val indicates the mean of the distribution,
472and includes a small noise term. The standard deviation of
473the distribution (r) defines the width of an input. For

(B)(A)

Fig. 6. Linear dynamics with corresponding vector fields. (A) In the absence of input, the fixed point is the resting level h, which represents the ‘‘off” state of
the system. (B) With added input, the fixed point is lifted higher to an input-determined value, namely, that of the resting level h plus input. When input is
removed, the system returns back to the ‘‘off” state. In this linear system, there is no qualitative change in the dynamics as input strength is scaled.
Specifically, there is a single fixed point throughout.

1 The reason why the strength of input leads to stabilization in field
dynamics requires considering the effects of the interaction term S(x, t) in
the right hand side of Eq. (1). We therefore return to this reason below after
we describe the interaction term.
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474 instance, a speaker producing VOTs around 45 ms for ta
475 has an activation distribution for voicing with a localized
476 peak around that value (versus say, at 70 ms for another

477speaker or context), as shown by the solid line in Fig. 8A.
478In contrast, a voiced syllable such as dawill have an activa-
479tion peak around 0 ms VOT, shown by the dotted line in

Fig. 7. Planning field for the Tongue Tip constriction location. (A) Insufficient input to the field results in activation levels returning to rest, i.e., the ‘‘off”
state. (B) Sufficient input to the field results in a self-sustaining peak of activation, i.e., the ‘‘on” state. (C) Stable peak temporarily inhibited by incongruent
input.

Fig. 8. (A) Representations of Voice Onset Times for syllable-initial stops differing in voicing: voiced (e.g., da, dashed line), and voiceless (e.g., ta, solid line).
(B) Representation of an alveolar Tongue tip constriction location typical of English ta or da.
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480 Fig. 8A. The same applies to articulator-specific parame-
481 ters. Thus, the parameter relevant to the constriction loca-
482 tion of the tongue tip is represented by a continuum of
483 constriction locations from dental (most anterior) to
484 post-alveolar (most posterior). An example of a tongue-
485 tip constriction location for a typical English ta is shown
486 in Fig. 8B. Localized peaks in this axis reflect (language-,
487 lexical item-, and) participant-specific modes for constric-
488 tion location values, e.g., constriction locations for Ameri-
489 can English /t/ are more posterior than those of French
490 (Dart, 1998). Overall, Input(x, t) represents three kinds of
491 input, defined in (3).

492
Inputðx; tÞ ¼ r� inputRESPONSEðx; tÞ þ d� inputDISTRACTORðx; tÞ

þ p� inputTASKðx; tÞ ð3Þ494494

495 The inputs are added to the field by the terms
496 inputRESPONSE(x, t), inputDISTRACTOR(x, t) and inputTASK(x, t), as
497 required by the particular trial modeled (i.e., for some tri-
498 als, there is no linguistic distractor and hence the corre-
499 sponding input would not be present). The first input
500 term, inputRESPONSE(x, t), reflects input to the fields specified
501 by the required response, e.g., assuming participants
502 should produce da when they see ##, then presentation
503 of the visual cue ## introduces a peak of activation in
504 the Tongue Tip field and not the Tongue Back field, as
505 would be the case if the visual cue was associated with
506 ga instead. The second input term, inputDISTRACTOR(x, t),
507 reflects input corresponding to the perceived distractor,
508 e.g., presentation of an auditory distractor introduces a
509 local peak of activation in its corresponding fields. The
510 other input term, inputTASK(x, t), reflects task knowledge
511 and specifies contributions to activation fields based on
512 the participant’s expectation of possible responses. For
513 example, in simulating a trial from the articulator experi-
514 ment where the potential responses within the experimen-
515 tal block are either ta or ka, small amounts of input are
516 introduced for an alveolar constriction in the Tongue Tip
517 planning field, for a velar constriction in the Tongue Back
518 planning field, and for a voiceless VOT value (e.g., 45 ms)
519 in the Voicing field. For a trial from the voicing experiment
520 where the potential responses are ta or da, small amounts
521 of input are introduced for an alveolar constriction in the
522 Tongue Tip planning field, and two inputs are introduced
523 to the Voicing field, one for a voiced VOT value (e.g.,
524 5 ms) and another for a voiceless VOT value (e.g., 45 ms).
525 In their trial-initial states, fields are in states of prepared-
526 ness reflecting the possible responses of the task at hand.
527 The scaling factors r, d, and p, scale the response, distractor,
528 and task inputs, respectively. The response input is scaled
529 such that it is sufficient on its own to generate the neces-
530 sary peaks of activation to produce the response. The
531 weight of the distractor is strong enough to affect the evo-
532 lution of the fields without having the participant produce
533 the distractor instead of the required response, which did
534 not happen. The activation strength of the task-
535 knowledge input was the maximum that could be added
536 to the fields without triggering a self-stabilizing peak in
537 any field.
538 We now turn to the formal component of the dynamics
539 that enables the buildup and stabilization of activation dis-

540tributions, as opposed to single activation values, over an
541entire field. Understanding how this is achieved requires
542considering the interaction component of the dynamics,
543the S(x, t) term in Eq. (1). Interaction means that the evolu-
544tion of activation of any given parameter value x depends
545on its own activation, exactly as with the single parameter
546exponential growth/decay dynamics, but also on the acti-
547vation levels of the other parameter values x0 within the
548same field. In other words, field sites are connected and
549influence the activation of other sites, as in the so-called
550recurrent networks of connectionist models. In dynamic
551fields, parameter values excite each other when they are
552local (nearby one another) and inhibit each other when
553they are not local (global inhibition). To appreciate what
554‘‘excite or inhibit” means in the context of an evolving field,
555recall our main field evolution equation in (1). The interac-
556tion term S(x, t) contributes to the rate of activation change
557denoted by the left hand side of the equation dA(x, t). To say
558that a field parameter value excites (inhibits) another
559nearby (far away) parameter value is to say that the former
560raises (lowers) the rate of activation change of the latter.
561Locally excitatory and non-locally inhibitory interaction
562is achieved by Eq. (4) for the within-field interaction (we
563turn to the cross-field interaction below). This equation
564represents a convolution operation where the convolution
565kernel w(x) is applied to a nonlinear transformation of the
566field expressed by the function f.
567

InteractionWITHIN-FIELD ¼
Z

wðx� x0Þf ½Aðx0; tÞ�dx0 ð4Þ
569569

570We first consider the term f[A(x, t)]. Not all values of x
571participate equally in the interaction. Specifically, only suf-
572ficiently activated values of x can participate in changes to
573the field. This is achieved by transforming the activation A
574(x, t) using some ‘‘threshold” function f (for antecedent
575notions of this by now widely accepted property of neural
576activation propagation, see Grossberg, 1973). This function
577admits different implementations. It can be a ‘‘hard”
578threshold implemented by a step function so that f(A) = 0
579when A(x, t) is less than h, thus zeroing the transformed
580activation so that this value of x has no participation in
581the interaction, and 1 otherwise. Alternatively, it can be a
582‘‘soft” threshold as specified by the sigmoid in (5), where
583the term b controls the steepness of the threshold (see
584Fig. 9). In the neighborhood of h, the greater the activation,
585the greater its interactive influence, i.e., the bigger the
586transformed f(A). As activation gets farther away from h
587(farther higher or lower), then f(A) becomes less sensitive
588to differences in activation and thus such differences have
589relatively little effect on the strength of their interactive
590influence. In sum, thresholding ensures that only suffi-
591ciently activated (near h) values of x are instigators of acti-
592vation change elsewhere in the field and that the strength
593of their effect on other field locations depends nonlinearly
594on their activation.
595

f ðAÞ ¼ 1
1þ exp½�bðA� hÞ� ð5Þ

597597

598Given this transformed f[A(x, t)], the interaction induces
599changes in the field as some value(s) of x approaches the
600soft threshold (h). These changes can be either excitatory
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601 or inhibitory. Whether it is one or the other and the degree
602 of the corresponding activation change is determined by
603 the interaction kernel defined in (6) below, and illustrated
604 in Fig. 10. This kernel consists of two components, an exci-
605 tatory component expressed by the first positive Gaussian
606 term containing wexcite and a second inhibitory component
607 expressed by the winhibit term.

608

wðxÞ ¼ wexcitee�ðx2=2r2
wÞ �winhibit ð6Þ610610

611 Whether activation change is excitatory or inhibitory
612 depends on the distance between the values of x partaking
613 in the interaction. Specifically, the convolution kernel’s rw

614 term defines the width of the excitatory region. For values
615 within a local range defined by rw, the kernel is positive
616 and thus excitatory, with wexcite being the degree of excita-
617 tion. Outside of that range, it is inhibitory (the winhibit term
618 overtakes the positive first term). This is how within-field
619 interaction encompasses both local excitation and lateral
620 inhibition, two properties crucial to the buildup and main-
621 tenance of stable local peaks of activation over an entire
622 field. We can now, in particular, understand why input-
623 contributed localized peaks of activation sometimes wane
624 out, with the field relaxing back to its resting level, and
625 other times lead to the generation of a stable peak main-
626 tained even after the input has been retracted (in the

627words of Amari, 1977: 77, ‘a fixed size of localized excita-
628tion, once evoked by stimulation, can be retained in the
629field persistently even after the stimulus vanishes’). The
630two scenarios were illustrated in Fig. 7A and B, respec-
631tively. The difference is due to the effects of interaction.
632Unlike in Fig. 7A, in Fig. 7B the input-contributed activa-
633tion values were sufficiently high to be above the threshold
634of the functional term f[A(x, t)] in Eq. (4). This engages the
635interaction term. Interaction in turn sets up a wave of
636change throughout the field where local excitation in the
637neighborhood of a peak sustains local activation levels
638above values contributed by the input and suppresses acti-
639vation levels in field locations non-local to that peak. Even-
640tually, the field reaches a stable state which persists even
641after input has been removed. To appreciate how this hap-
642pens, consider in Fig. 11A a nonlinear system with two
643stable fixed points shown by the two filled circles, sepa-
644rated by an unstable fixed point shown by an open circle
645(for the unstable fixed point, the arrows of the vector field
646point away from it). This system can be in two possible
647states given by the two stable fixed points, the lower stable
648fixed point being the ‘‘off” state and the higher stable fixed
649point being an ‘‘on” state. When input of sufficient strength
650is introduced, it results under appropriate parameter con-
651ditions in a change from Fig. 11A to B. The bistable attrac-
652tor landscape in the vector field has changed qualitatively
653to one where only an ‘‘on” remains at activation values
654higher than those of the input-contributed activation. This
655‘‘on” state formally expresses the notion of setting param-
656eter values in our model. It is notable that this qualitative
657change is caused by a quantitative increase in input
658strength. Such a change is not possible with the linear
659dynamics described in Figs. 5 and 6. In those systems, input
660does not result in changing the number of fixed points.
661Input only shifts the location of the single fixed point. In
662sum, the nonlinearity in the dynamics of Eq. (1) endows
663fields with behaviors not accessible to the linear dynamics
664reviewed above.
665Interaction furthermore endows fields with the capacity
666to reach stable activation distributions even in the face of
667input with multiple competing or ambiguous peaks. The
668case of a single-peaked input was illustrated in Fig. 6B
669above. As we have seen, given sufficient input strength,
670activation builds up locally as nearby values of x excite

Fig. 9. Sigmoid threshold function defined in (5). The sigmoid function is
most sensitive to activation values around h, which in the model is 0.75.
Activation values much lower than h have no effect on the interaction,
while activation values much greater than h have a uniform, positive
effect on the interaction.

Fig. 10. The interaction term w(x), showing the values for (6) used in the model (see Appendix A). The x axis is defined along arbitrary units of constriction
location.
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671 each other (local excitation), eventually reaching a stable
672 activation distribution over the entire field. Second, lateral
673 inhibition suppresses activation levels in the field in loca-
674 tions other than those near the activation peak, effectively
675 disallowing two or more self-stabilizing peaks to coexist
676 within a field (formally, this is due to the winhibit term).
677 Thus, when two inputs to a field are sufficiently distant,
678 for example, as in Fig. 7C with a posterior and an anterior
679 constriction location (or as in the case of one voiced and
680 another voiceless input to the Voicing field, which will be
681 illustrated in Fig. 13B below), both peaks inhibit each other
682 due to lateral inhibition (as illustrated in Fig. 7C). In terms
683 of deciding between the two peaks, it is the relative
684 strengths, widths, and relative timing of the two compet-
685 ing inputs plus the noisy evolution of activation that deter-
686 mine which peak wins. In terms of RTs, this means that
687 whichever peak ultimately stabilizes takes longer to do
688 so than it would have without the other, incongruous
689 input.
690 Our interaction term also involves a component intro-
691 ducing interactions among different fields, in the form of
692 cross-field inhibition. This is necessitated by two consider-
693 ations. First, unlike the basic model of Dynamic Field The-
694 ory with one field (Erlhagen & Schöner, 2002), in the case
695 of speech we have multiple fields representing the multi-
696 ple organs or articulators. Second, specific task demands
697 of the task we model impose the specific constraint that
698 required responses involve at most one supra-glottal artic-
699 ulator, e.g., Tongue Tip, Tongue Back, or Lower Lip. Cross-
700 field inhibition is indicated in Fig. 4 by the bidirectional
701 arrows between articulator fields. That the cross-field
702 interaction in our model takes the form of inhibition (and
703 not both excitation and inhibition as with the within-
704 field interaction) is because of this constraint. Cross-field
705 inhibition, that is, is necessary to effect this exclusivity
706 condition among the different articulators. Thus, each
707 articulator field inhibits the activation level of the other
708 two articulator fields when the inhibiting field’s activation
709 level rises above a cross-field threshold v. Unlike the soft,
710 field-internal threshold h, the cross-field threshold v is a
711 hard threshold, meaning that no cross-field inhibition is
712 introduced until some activation value of some articulator

713planning field passes v. Thus, interactionCROSS-FIELD was
714defined such that at each time step t in the evolution of
715the field, if the maximum activation value is greater than
716or equal to v in a given field, the activation levels for all
717values of x in the other two articulator planning fields
718are reduced by a set amount. In sum, the fully expanded
719form of the interaction term S(x, t) from (1) reads as in (7).2
720

Sðx;tÞ¼ interactionWITHIN-FIELDþ interactionCROSS-FIELDðx;tÞ ð7Þ 722722

723Functionally, the model sends production values to
724Implementation at the point when the Voicing planning
725field and one articulator planning field achieve a stable
726‘‘on” state. This is determined in the model by a Monitor,
727which waits until the activation level for some x value in
728both the Voicing field and one articulator field (one of
729the Lower Lip, Tongue Tip, or Tongue Back) reach a crite-
730rion value j. The numerical value of j in the model serves
731as a computational convenience for indicating that once
732some activation level of an x value has achieved j, the field
733will inevitably stabilize with an ‘‘on”-state peak. At that
734point the Monitor chooses the parameter values x with
735the highest activation level from those two fields (voicing
736and the constriction location of one of the articulator
737fields) to be sent to Implementation. The time step in the
738evolution of the model at which the Monitor make this
739choice serves as the RT on that trial. In other words, the
740intention to produce a particular combination of constric-
741tion and voicing values reaches a stable state, which drives
742the implementation of that constriction and voicing com-
743bination. Given the behavior of the Monitor, whichever
744field evolves more slowly determines the RT on the trial.
745As will become clear below, sometimes it is the Voicing
746field and sometimes it is an articulator field that evolves
747more slowly.

Fig. 11. Nonlinear dynamics with corresponding vector fields. (A) The system dA/dt = f(A) = kA � A3, which is nonlinear due to the cubic term, describes a
bistable regime. There are two stable fixed points (filled circles) separated by an unstable fixed point (open circle). (B) With added input, the nonlinear
system moves to a regime where only one stable fixed point exists. Unlike in Fig. 6, where added input resulted in no qualitative change to the dynamics,
input strength in the nonlinear system results in a bifurcation where the system has changed from two stable fixed points to one stable fixed point. This
change corresponds to a form of decision-making and provides a formal expression of the notion of setting a parameter value for the required response in
our model.

2 Note that the equation that defines the evolution of the Voicing field
differs from the one that defines the evolution of the articulator fields (7)
only in that its interaction term S(x, t) does not contain a term for cross-field
inhibition. The Voicing field neither inhibits nor is inhibited by any other
planning field, since it is not an articulator and functions independently of
which primary oral articulator is involved in the utterance. This design
reflects the fact that voicing and articulator are cross-classifying parame-
ters for English consonants (Chomsky & Halle, 1968; Ladefoged, 1999).
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748 To sum up, the proposed model of phonological plan-
749 ning provides a formal and computationally explicit
750 instantiation of how perception affects the online buildup
751 of phonological plans in the response–distractor task. We
752 highlight here the essential properties of our model and
753 how those properties set it apart from other models in
754 the speech motor control and phonological literature. The
755 most important property of our model is time dependence.
756 In our model and using the example of a lexical item con-
757 taining a syllable ta, the tongue-tip constriction location,
758 constriction degree, and voicing parameters for this /t/
759 are not statically assigned to their canonical values. Rather,
760 assigning values to these parameters is a time-dependent
761 process, captured as the evolution of a dynamical system.
762 This system governs how the activation distributions in
763 the planning fields representing parameters change in
764 time. Thus, activation distributions like those shown in
765 Fig. 7 are not static but evolve in explicit ways. Our model’s
766 time dependence in setting parameter values stands in
767 contrast to other formally explicit models with compo-
768 nents devoted to the control and execution of speech
769 movements (Browman & Goldstein, 1990; Guenther,
770 1995; Saltzman & Munhall, 1989). In these models, assign-
771 ment of values to parameters is instantaneous. Of course,
772 movement execution in these models does unfold in time,
773 but with parameters such as target location and stiffness
774 set from the start and kept fixed during the lifetime of
775 the movement. That is, in these models the targets arrive
776 fully specified from some preceding sources, usually taken
777 from the phonological inventory of the language (a notable
778 exception is Nam & Saltzman, 2003, on setting the param-
779 eters of temporal coordination of gestures). However,
780 models of phonological representation that could produce
781 such targets (e.g., Browman & Goldstein, 1989; Chomsky
782 & Halle, 1968) have no formal notion of the time course
783 by which those representations are assembled.
784 Finally, the key representational unit in our model is
785 that of the dynamic field. Fields are continuous (in the
786 parameter space they represent), self-stabilizing, interac-
787 tive, and noisy, in ways explicitly captured by the dynam-
788 ics we have described in this section. Using fields is a
789 generalization of a similar idea put forth in Byrd and
790 Saltzman (2003), where gestural parameters are stored as
791 ranges of possible values. In our model, each range is
792 approximated by an activation field in memory; hence,
793 there is a range of values but also activations associated
794 with those values and of course dynamics governing the
795 evolution of activation values on top of that range. Repre-
796 senting targets by activation fields is also a generalization
797 of two well-known proposals about the nature of speech
798 targets, Keating’s ‘‘windows” (Keating, 1990) and Guen-
799 ther’s ‘‘convex regions” (Guenther, 1995). In Guenther’s
800 model of speech production, speech targets take the form
801 of convex regions over orosensory dimensions. Unlike
802 other properties of targets in Guenther’s model, the con-
803 vexity property does not fall out from the learning dynam-
804 ics of the model. Rather, it is an enforced assumption. No
805 such assumption about the nature of the distributions
806 underlying target specification needs be made in our
807 model.

808Simulations

809We now turn to illustrating the model at work. In doing
810so, we simulated the results from the articulator and voic-
811ing experiments of Roon and Gafos (2015), as well as those
812reported by Galantucci et al. (2009). For the purpose of
813illustration and without loss of generalization, we take
814the required response on all simulated trials to be ta.
815Therefore in the simulations of these experiments, the dis-
816tractor in the Identity condition was ta, the Tone condition
817represented the case of a non-speech distractor, and the
818Incongruent condition distractor was ga.3 In the simulated
819experiments, the distractor was introduced 250 time steps
820after the start of the trial and 150 time steps after the pre-
821sentation of the visual cue, reflecting its timing relative to
822the presentation of the visual cue in the actual experiments
823(i.e., a positive SOA). The only differences between the two
824simulations were that the Congruent distractor was ka in
825the simulated voicing experiment and da in the articulator
826experiment, and that the task-knowledge inputs reflected
827the possible responses of ta or da for the voicing experiment
828but ta or ka for the articulator experiment. The values for all
829of the model parameters used in the simulations are found
830in Appendix A. A link to the MATLAB scripts (MATLAB
8312014, The MathWorks Inc., Natick, MA) can be found in
832Appendix B.

833Trial simulations by condition

834Fig. 12 illustrates evolutions of the planning fields dur-
835ing a single trial in each of four experimental conditions:
836the Tone, Congruent, and Incongruent conditions from
837the voicing experiment of Roon and Gafos (2015), plus
838the Identity condition from Galantucci et al. (2009). Each
839panel in Fig. 12 shows how the maximum activation level
840for the four planning fields unfolds as a function of time
841steps in the model. The black line shows the evolution of
842the Tongue Tip field, the light gray line shows the Lower
843Lip field, the dark gray line shows the Tongue Back field,
844and the blue line shows the Voicing field. Differences in
845the rate of rise of the maximum activation level of the
846fields predict differences in experimental RTs.
847We begin with Fig. 12A, which shows the evolution of
848the four planning fields in the Tone condition. Since the
849tone distractor is not a speech syllable, the behavior of
850the fields in this tone condition serves as a baseline refer-
851ence to how the planning fields evolve in the other condi-
852tions with a speech distractor. On all trials simulated in
853Fig. 12, the response always involves the tongue tip, but
854a voiceless (ta) or voiced (da) response is equally likely.
855Therefore, at the start of the trial, the Tongue Tip and Voic-
856ing fields have higher activation levels than the Lower Lip
857and Tongue Back fields due to the task input, since no pos-
858sible response will involve the lower lip or the tongue back
859(the Voicing field has a slightly lower activation level for
860reasons we explain in the section ‘‘Unknown voicing vs.
861unknown articulator” below). The activation levels of the

3 The response in the Galantucci et al. (2009) experiment was da, not ta,
and the Incongruent distractor common to both experiments in Roon and
Gafos (2015) was ba, but these differences are immaterial in the model.
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862Tongue Tip and Voicing fields start to rise at time step 100,
863the point at which the participant begins planning the
864required utterance based on the appearance of the visual
865cue on that trial (here ## instructing the participant to
866say ta, indicated by the vertical black dashed lines at time
867steps 100 and 500, indicating the duration of the response
868input resulting from this visual cue). The horizontal green
869line drawn at activation level 0.75 indicates the value of
870the soft threshold (h) that determines the engagement of
871the within-field interaction term. The Tongue Back and
872Lower Lip fields receive no input, apart from random fluc-
873tuations due to stochastic noise. The cross-field inhibition
874threshold (v) is indicated by the horizontal red line drawn
875at activation level �0.5. As the activation level of the Ton-
876gue Tip field increases and continues past v, it takes away
877activation from the Tongue Back and Lower Lip fields, as a
878result of this cross-field inhibition. The Tongue Tip and
879Voicing activation levels continue to rise until they both
880have passed the criterion value (j), indicated by the black
881line drawn at activation level 6. The time step at which the
882second field passes j is marked as the RT on that trial (the
883vertical line at about time step 390). At that time step, the
884Monitor takes the maximum parameter values from the
885Voicing and Tongue Tip fields and passes them to
886Implementation.
887Fig. 12B shows the evolution of the fields in the Identity
888case from the experiment of Galantucci et al. (2009). In this
889case, participants are required to respond with ta and the
890distractor is also ta. From time step 0 to 250, all fields
891evolve in the same way as in the Tone condition. The dis-
892tractor is presented at time step 250, thus the vertical gray
893dashed lines at time steps 250 and 325 indicate the dura-
894tion of the input from the distractor. In this condition the
895distractor inputs are the same as those for the response.
896Therefore, the activation level for the Tongue Tip and Voic-
897ing fields rises at a much faster rate than in the Tone con-
898dition because both inputs add activation to the same
899range of parameter values, in addition to the local excita-
900tion being generated by the interaction term. Both fields
901therefore cross j earlier than in the Tone condition, and
902the simulated RT is shorter, around time step 290.
903Fig. 12C shows the evolution of the fields in the Congru-
904ent case (from the voicing experiment of Roon & Gafos,
9052015) on a trial with a ta response and ka distractor. Since
906the response and distractor share the same voicing, the
907evolution of the Voicing field in this condition is qualita-
908tively the same as in the Identity case. The evolution of
909the Tongue Tip field is different, however. When the dis-
910tractor input starts at time step 250, the activation level
911of the Tongue Back field begins to rise, and eventually
912crosses v, introducing cross-field inhibition to the Tongue
913Tip field. The distractor input ends at time step 325, but
914by that time the Tongue Back field maximum is above h,
915so it maintains a somewhat elevated activation level for
916some time due to the interaction term, and the cross-
917field inhibition of the Tongue Tip field by the Tongue Back
918field therefore persists. As a result, the rate of rise of the
919Tongue Tip field activation level slows down compared to
920its rise in the Tone condition. Due to the cross-field

Fig. 12. Evolution of planning fields in individual simulated trials from
four experimental conditions. (A) The non-speech Tone condition. (B) The
Identity condition. (C) The Congruent condition (matched voicing, mis-
matched articulator). (D) The Incongruent condition. Vertical black
dashed lines at time steps 100 and 500 indicate the duration of the
response input. Vertical gray dashed lines (B–D) at time steps 250 and
325 indicated duration of the distractor input. A vertical black solid line
indicates the response time (RT) on each simulated trial. The within-field
threshold (h) is indicated by the horizontal green line. The cross-field
threshold (v) is indicated by the horizontal red line. (For interpretation of
the references to color in this figure legend, the reader is referred to the
web version of this article.)
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921 inhibition introduced to the Tongue Tip field by the Tongue
922 Back field, the Monitor has to wait longer for the Tongue
923 Tip field to cross j, and thus the RT on this trial is longer
924 than in the Tone condition, in this case at about time step
925 405.
926 Lastly, the evolution of the fields in a trial from the
927 Incongruent condition is shown in Fig. 12D, with a ta
928 response and a ga distractor. The evolution of the Tongue
929 Tip field is effectively the same as in the Congruent condi-
930 tion, due to the cross-field inhibition introduced from the
931 mismatching articulator of the distractor. The RT on this
932 simulated trial is determined by the relatively slow rate
933 of evolution of the Voicing field, which is due to the incom-
934 patible Voicing input from the ga distractor.
935 Whereas Fig. 12 shows the evolution of the maximum
936 activation level for each of the four planning fields,
937 Fig. 13 illustrates the effects of incompatible inputs intro-
938 duced to the same field. Fig. 13A shows the evolution of
939 the Voicing field for the Tone condition. Activation as a
940 function of time is now shown throughout the entire range
941 of VOT values. The single input corresponding to a voice-
942 less response contributes a peak of activation whose mean
943 VOT value is near 50 ms. Given the within-field dynamics
944 and the lack of any other input from a speech distractor
945 in this condition, the field rises quickly to a self-
946 sustained maximum activation around that VOT value.
947 However, fields do not simply reproduce input. The Voicing
948 field evolution in this single input case is contrasted in
949 Fig. 13B with its evolution in a condition where competi-
950 tion leads to decision of one versus another peak when
951 within-field lateral inhibition is engaged. Fig. 13B shows
952 that the introduction of distractor input with incongruent
953 voicing (ga) results in two peaks of activation forming in
954 the Voicing field, a large peak in the voiceless end of the
955 VOT continuum for the required response (ta) and a sec-
956 ond, smaller peak at the voiced end of the continuum for
957 the distractor (ga). These peaks inhibit each other due to
958 lateral inhibition (as seen in Fig. 7C). The rate of rise for
959 the voiceless response required for ta therefore is lower
960 than in the neutral Tone condition (as can be seen by com-
961 paring the rise in activation of the Voicing field
962 Fig. 12A and D). As a result, the Monitor has to wait longer

963for the Voicing field to reach j, which it does at about time
964step 450.

965Simulation results

966The RTs predicted in the dynamical model of phonolog-
967ical planning are determined by the totality of determinis-
968tic relations and interactions between the model
969components shown in the box diagram of Fig. 4 and
970explained above, but they are also affected by non-
971deterministic or stochastic forces in the model dynamics.
972Hence, the model’s efficacy in capturing the range of past
973experimental results can be determined by sampling
974across many repetitions of actuating or simulating the
975individual trial conditions. The relative arrangement of
976RTs across the different simulations are then compared to
977those obtained in experimental data.
978The results of the model simulations of both the voicing
979and articulator experiments from Roon and Gafos (2015)
980and the experiment from Galantucci et al. (2009) are
981shown in Fig. 14. Each experiment included 150 simulated
982trials for each of four conditions: Identity, Tone, Congruent,
983and Incongruent, yielding 600 trials per simulated experi-
984ment. On each trial, the RT was calculated as the time step
985at which both the Voicing field plus one articulator field
986reached criterion, minus 100, since that is the time step
987at which the cue is presented. The Identity condition (i.e.,
988response ta–distractor ta) yielded the fastest RTs, which
989were shorter than a neutral Tone. The Congruent condition
990(i.e., ta–ka or ta–da, respectively) had RTs slower than in
991the Tone condition, but faster than in the Incongruent con-
992dition (i.e., ta–ba). This is the same relative arrangement of
993RTs found in the experimental results.
994The Identity condition had the fastest simulated RTs
995because only in that condition were all inputs to the fields
996mutually reinforcing. This resulted in RTs faster than in the
997Tone condition, in which there was neither inhibiting nor
998reinforcing inputs. The slow-down in the Congruent condi-
999tion relative to the Tone condition has its source in differ-
1000ent model components. Specifically, in the articulator
1001experiment simulation, the slow-down was the result of
1002the within-field inhibition introduced by the mismatched

Fig. 13. Evolution of the Voicing field for a ta response in two conditions from the voicing experiment: (A) the Tone condition, in which there is no linguistic
distractor, corresponding to Fig. 12A, and (B) the Incongruent condition, where the voicing of the ta response and the gamismatch in voicing, corresponding
to Fig. 12D. The red circle indicates the incongruent voicing introduced by the ga distractor during the ongoing planning of ta. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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1003 voicing between the response and distractor (ta–da). In the
1004 voicing experiment simulation, the slow-down is due to
1005 the cross-field inhibition introduced by the mismatched
1006 articulator between the response and distractor (ta–ka).
1007 In both experiments, the slow-down of RTs for the Incon-
1008 gruent condition was due to the combination of cross-
1009 and within-field inhibition introduced by the mismatch
1010 in both articulator and voicing (ta–ga).

1011 Unknown voicing vs. unknown articulator

1012 Independent from the effects of articulator and voicing
1013 congruency, the experiments in Roon and Gafos (2015)
1014 revealed an unexpected result. Speakers responded slower
1015 when they did not know the voicing of the planned
1016 response than when they did not know the articulator.
1017 Specifically, in the voicing experiment of Roon and Gafos
1018 (2015), participants always knew the primary articulator
1019 in their response but the probability of the voicing for a
1020 given response was 50–50% (e.g., ta or da). In the articula-
1021 tor experiment the reverse was true. The voicing parame-
1022 ter for the response was known, but participants could
1023 not predict which of two articulators would be needed in
1024 their response (e.g., ta or ka). RTs in the experiment where
1025 voicing was unknown were 52 ms slower on average than
1026 in the experiment where the articulator was unknown
1027 (compare Fig. 3A and B), independent of distractor condi-
1028 tion. This result was new. It was also not predicted by
1029 any model or theory of speech production.
1030 This cross-experiment difference was replicated by our
1031 model, as can be seen in Fig. 14. RTs for the voicing exper-
1032 iment simulations were longer across the board than those
1033 for the articulator experiment. Note that this was not an
1034 effect of distractor—it applied across distractor conditions,
1035 including the Tone condition, just as in the experimental
1036 results. The source of the cross-experiment RT differences
1037 in the model lay in the difference between the trial-
1038 initial states of the planning fields due to differences in

1039task-knowledge inputs. Fig. 15 illustrates the differences
1040between the trial-initial states of the simulations of the
1041two experiments. The top panel of Fig. 15A shows the
1042trial-initial state of the VOT planning field in the articulator
1043experiment, in which the voicing of the response was
1044known and the possible responses were ta or ka. A single
1045peak of activation was introduced in each of the Voicing,
1046Tongue Tip and Tongue Back fields. The bottom panel of
1047Fig. 15A shows that the maximum activation level of each
1048of those three fields was higher than the resting activation
1049level shown for the Lower Lip field, which received no trial-
1050initial input, since no possible lower lip response was
1051anticipated. The top panel of Fig. 15B shows that the
1052trial-initial state of the Voicing field was different in the
1053voicing experiment, in which the voicing of the response
1054was not known and the possible responses were ta or da.
1055The critical difference was that in the voicing experiment
1056there were two small peaks introduced into one field,
1057due to the equal probability of a voiced or voiceless
1058response on each trial, whereas in the articulator experi-
1059ment no one field received two incompatible trial-initial
1060inputs. The introduction of two inputs of trial-initial,
1061incompatible activation to the Voicing field resulted in
1062peaks, albeit small ones, that were sufficiently close to
1063the threshold h to introduce some lateral inhibition in
1064the field. This lateral inhibition entails two small activation
1065peaks inhibiting each other and lowering the overall level
1066of activation in the Voicing field at the start of the trial,
1067as can be seen by comparing the trial-initial maximum
1068activation of the Voicing field (represented by the blue
1069lines) in the bottom panels of Fig. 15A and B. In contrast,
1070the dynamics of the cross-field inhibition are different,
1071and did not depress the trial-initial state of activation in
1072any field. Since the Monitor requires a Voicing value before
1073sending parameter values to Implementation, it had to
1074wait longer for the Voicing field to stabilize in all condi-
1075tions because the trial-initial state of the Voicing field
1076was lower in the voicing experiment (Fig. 15B) than in
1077the articulator experiment (Fig. 15A).
1078The different natures of the within- and cross-field inhi-
1079bition in the model were designed to meet different func-
1080tional and theoretical requirements. In the unknown-
1081articulator case, speakers must be prepared for one or the
1082other response on each trial and produce the required
1083response as quickly as possible upon seeing the cue. In
1084the trial-initial state, higher activation levels introduced
1085by the task input reflect this state of preparedness
1086(Kornhuber & Deecke, 1965). Crucially, concurrently higher
1087activation levels in multiple articulator planning fields do
1088not run afoul of any fundamental representational princi-
1089ples. In other types of tasks or utterances, articulator plan-
1090ning fields do not inherently inhibit each other. For
1091example, many speech sounds require concurrent constric-
1092tions of multiple articulators, e.g., concurrent lip rounding
1093along with tongue-tip and tongue-back constrictions for
1094English /ɹ/ (Campbell, Gick, Wilson, & Vatikiotis-Bateson,
10952010). In such a case, concurrent activation is desirable,
1096and cross-field inhibition would be detrimental. The
1097cross-field inhibition of our model is therefore specific to
1098this task and the utterances involved, and serves to sup-
1099press potential but not cued articulators as quickly as pos-

Fig. 14. Results of model response time simulations of the Articulator
(left) and Voicing (right) experiments. Distractor conditions: Identity
(white bars) was when the distractor was the same as the response (e.g.,
ta–ta); Tone (light gray bars) was when there was no linguistic distractor;
Congruent (dark gray bars) was when the distractor either mismatched
the response in voicing but matched in articulator for the Articulator
experiment (e.g., ta–da) or when the distractor mismatched the response
in articulator but matched in voicing for the Voicing experiment (e.g., ta–
ka); Incongruent (black bars) was when the distractor and response
mismatched in both voicing and articulator, (e.g., ta–ga).
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1100 sible once sufficient evidence for the cued articulator has
1101 built up.
1102 The unknown-voicing case is different. No utterance
1103 can be both voiced and voiceless. Preparing two inherently
1104 conflicting responses by introducing incongruous inputs to
1105 one field (here, the Voicing field), violates this basic princi-
1106 ple of phonological representation. Planning fields serve
1107 the purpose of determining a single production value
1108 based on one or more potentially conflicting—and mutu-
1109 ally exclusive—inputs. Although in the model the within-
1110 field threshold h is numerically higher than the cross-
1111 field threshold v, the interaction term in fact influences
1112 the field when activation levels are lower than h, with
1113 the result that the within-field inhibition affects the fields
1114 at lower activation levels than the cross-field inhibition
1115 does, as illustrated above. The design of the planning fields,
1116 including the fact that within-field inhibition engages early
1117 on in planning as part of the inherent field dynamics,
1118 therefore reflects this basic representational principle. This
1119 representational constraint cannot be superseded or mod-
1120 ified by task demands.
1121 Thus in the model, slower RTs in the experiment with
1122 unknown voicing are not caused by unknown voicing per
1123 se, but rather by incompatible inputs to one planning
1124 field—that is, two inputs that are inherently mutually

1125exclusive—at the beginning of the trial. For example, just
1126as no segment can simultaneously be voiced and voiceless,
1127the tongue tip cannot simultaneously make dental and
1128post-alveolar constrictions. The model predicts that RTs
1129should be similarly modulated regardless of the field that
1130receives such conflicting inputs, and that conflicting inputs
1131to separate fields should not slow down RTs to the same
1132degree.
1133Some support for this model prediction can be found in
1134the results reported in Roon, Klein, and Gafos (2014),
1135which used fricative-initial responses and distractors with
1136the same participants as in the voicing experiment from
1137Roon and Gafos (2015). Specifically, in this experiment,
1138responses were either fa or ʃa (‘‘sha”), and distractors were
1139either ha or sa, in addition to the neutral tone and no dis-
1140tractor conditions. The two potential responses involved
1141two different articulator planning fields (Lower Lip for fa,
1142Tongue Tip for ʃa) with fixed voicing throughout the exper-
1143imental session. The model predicts that RTs should be fas-
1144ter in this experiment than in the voicing experiment from
1145Roon and Gafos (2015), where the articulator was known
1146but the voicing was not. The reason for this prediction
1147can be traced to differences in the trial-initial states across
1148the two experiments and the implications of these differ-
1149ences in terms of field evolution, as discussed above. The

(A)
potential responses: ta or ka

(B)
potential responses: ta or da

Fig. 15. Effects of task knowledge on the trial-initial state of the Voicing planning field. All fields reflect the activation levels in the absence of input other
than task knowledge, i.e., no response or distractor input. (A) The top panel shows the trial-initial state of the Voicing planning field in the articulator
experiment. The bottom panel shows the maximum activation levels of three articulator fields (gray scale) and the Voicing field (blue). (B) The top panel
shows the trial-initial state of the Voicing planning field in the voicing experiment. The bottom panel shows the maximum activation levels of the fields. In
the bottom panels of A and B, the within-field threshold (h) is shown by the green line at 0.75, and the cross-field threshold (v) is shown by the red line at
�0.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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1150 trial-initial state of the Voicing planning field of the voicing
1151 experiment from Roon and Gafos (2015) is as shown in
1152 Fig. 15B, since there was conflicting task-knowledge input
1153 given the uncertain voicing of the response. The trial-initial
1154 state of the Voicing field in the model of the fricative-initial
1155 experiment is the same as in Fig. 15A, since the voicing of
1156 the two possible responses was the same. Therefore, no
1157 conflicting inputs were introduced to the trial-initial state
1158 of any field.
1159 While these data are useful because they allow for
1160 within-subject comparisons, we note that for phonetic rea-
1161 sons it is not possible to definitively compare RTs between
1162 stop- and fricative-initial utterances with acoustic data
1163 only. The onset of a fricative has an acoustic consequence
1164 of measurable aperiodic noise in a spectrogram. The acous-
1165 tic consequence of a stop onset is silence. Since the utter-
1166 ances in these data were not preceded by any other
1167 sound, it is impossible to determine when the oral closure
1168 for stops took place. This issue can be illustrated by results
1169 from a study by Rastle, Croot, Harrington, and Coltheart
1170 (2005), which also illustrates some important facts that
1171 bear on interpreting our data. That study used a delayed-
1172 naming task in which English speakers saw a cue indicat-
1173 ing the syllable they were about to say, and then waited
1174 for a go signal before speaking. Rastle et al. (2005) mea-
1175 sured the latencies of two acoustic landmarks from that
1176 go signal for each onset: the onset of acoustic energy of
1177 any kind, and the acoustic start of the vowel. Latencies
1178 for the onsets relevant to the experiments discussed here
1179 (before /əː/ and /a/ only) are shown in Fig. 16. For the stops
1180 /g, k, d, t/, the acoustic onset, indicated by the number at
1181 the left edge of each gray box, indicates the release of the
1182 oral closure. For fricatives /f, ʃ/ the acoustic onset indicates
1183 the beginning of frication. The right edge of each gray box
1184 indicates the onset of phonation for the vowel regardless of
1185 manner. Therefore, the number inside each gray box indi-
1186 cates VOT for the stops and frication duration for the frica-
1187 tives. Differences in latencies are indicative of inherent
1188 properties of producing those onsets, since all planning
1189 was presumably complete at the time of the go signal.
1190 While the onset of aperiodic energy indicates the achieve-
1191 ment of a constriction for fricative-initial utterances (rep-
1192 resented by the gray bars in the bottom two rows of
1193 Fig. 16), stop-initial utterances begin with silence, reflect-
1194 ing the closure of the vocal tract (represented by the cloud
1195 in the top of Fig. 16). As noted above, the achievement of
1196 that closure cannot be determined from the acoustics.
1197 There are two ways to explore whether these two sets
1198 of RTs from Roon et al. (2014) and Roon and Gafos
1199 (2015) are consistent with the prediction of the model.
1200 The first way to compare the two experiments is to esti-
1201 mate the closure duration of the stop-initial utterances
1202 (i.e., the size of the ‘‘cloud” in Fig. 16 for each stop) and
1203 subtract those estimates from the RTs reported in the
1204 Roon and Gafos (2015) voicing experiment, which were
1205 calculated from the release of the oral closure. These
1206 adjusted RTs can then be compared to the onset of aperi-
1207 odic energy of the fricative-initial responses from Roon
1208 et al. (2014). A study of the acoustic closure durations for
1209 American English stops from an extremely large spoken
1210 corpus by Byrd (1993) reported the following closure dura-

1211tions: /t/ = 53 ms, /d/ = 52 ms, /k/ = 60 ms, and /g/ = 54 ms.
1212Fig. 17A shows the comparison across the experiments,
1213broken down by response. Based on this estimation, the
1214RTs in the fricative-initial experiment were 39 ms shorter
1215than the stop-initial experiment, per the prediction of the
1216model.
1217A second way to estimate an appropriate comparison
1218between the two sets of RTs is to measure RTs from the
1219onset of phonation for the vowel, which is an acoustic
1220landmark common to each experiment (represented by
1221the end of all of the gray bars in Fig. 16). However, Rastle
1222et al. (2005) showed that there are inherent differences
1223in naming latencies based on the initial consonant that
1224would need to be taken into consideration in such a com-
1225parison. The shortest time to phonation in the Rastle et al.
1226(2005) data was 331 ms for /d/-initial responses (marked
1227by the vertical red line). The rightmost (red4) numbers in
1228Fig. 16 indicate the difference between phonation onset
1229times of the vowel in that consonant context compared to
1230the baseline of /d/, i.e., the ‘‘phonation onset lag”. RTs for
1231all trials for both the stop- and fricative-initial experiments
1232were then recalculated by subtracting the corresponding
1233phonation onset lag from each trial. Fig. 17B shows the mean
1234RTs adjusted for phonation onset lag. By this measure, RTs in
1235the stop-initial experiment (gray bars) were still longer than
1236in the fricative-initial experiment (white bars), here by
123725 ms.
1238While these analyses should be interpreted very
1239cautiously and statistical assessment would not be
1240appropriate, both comparisons provide tentative support
1241for the prediction of the model that RTs should be shorter
1242when the potential responses for a given trial do not
1243involve parameters that are inherently mutually exclusive,
1244compared to trials that force a choice between mutually
1245exclusive parameters. There are many ways to test this
1246prediction using a within-subject design. One would be
1247to combine tasks from the two different experiments of

Fig. 16. Naming latencies (ms) for English CV syllables by initial
consonant, as reported by Rastle et al. (2005). Boxes start at the average
acoustic onset for each consonant (leftmost number) and end at phona-
tion onset. Numbers inside boxes show the average frication duration of
fricatives and VOT of stops. Rightmost number indicates phonation onset
lag vs. /d/.

4 For interpretation of color in Fig. 16, the reader is referred to the web
version of this article.
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1248 Roon and Gafos (2015). The same participants in one
1249 experiment would produce in one task ta or da and in
1250 another task ta or ka. Another way would be to compare
1251 RTs from a task in which potential responses are ha or fa
1252 with RTs from a task in which the potential responses are
1253 ha or sa. RTs in the former should be faster than in the lat-
1254 ter, since ha and sa require different constriction locations
1255 of the same articulator (the tongue tip), while ha and fa
1256 require different articulators (the tongue tip and lower
1257 lip, respectively).

1258 Accounting for additional experimental data

1259 The response–distractor task and the results from the
1260 studies that adopt it offer a rich but sufficiently coherent
1261 dataset that makes model development possible. The
1262 model we have developed on the basis of this dataset for-
1263 mally instantiates, for the first time, how ongoing response
1264 planning is affected by perception and accounts for a range
1265 of results reported across several previous studies. It is
1266 specifically the time course dimension in setting phonolog-
1267 ical parameters for production while listening to speech
1268 that our quantitative model simulations above have
1269 focused on. However, the basic principles of the model
1270 we have developed, especially, time-dependence and local
1271 excitation/lateral inhibition, are not bound to a specific
1272 task. In this section, we show that these principles can be
1273 used to develop accounts or derive new predictions for a
1274 variety of other experimental settings. What follows serves
1275 to demonstrate further the nature of the model’s principles
1276 as well as the model’s promise in elucidating other aspects
1277 of the link between perception and production in speech.

1278 Effects of within- and across-category variation

1279 In the experimental results we have discussed so far,
1280 the distractor stimuli had fixed VOT values. It is a predic-
1281 tion of the model that distractor and response VOTs do
1282 not need to be identical in order to excite each other.
1283 Speed-up in RTs for congruent response–distractor pairs

1284should be observed even in the presence of variability in
1285the phonetic detail of the distractor stimuli.
1286The continuous representations used in our dynamic
1287fields provide a formal way of simultaneously accommo-
1288dating both the categorical nature of phonological con-
1289trasts, e.g., voiced /d/ vs. voiceless /t/, and the variation in
1290phonetic detail within a given category, e.g., VOT. Thus,
1291within any given category, say, the voiceless, the continu-
1292ous difference in VOT of /t/vot = 60 ms and /t/vot = 80 ms are
1293close enough that activation of one value increases neigh-
1294boring voiceless activation levels, via local excitation.
1295Across the two categories, an exemplar of a voiced /da/
1296and a voiceless /ta/ occupy two regions in the VOT contin-
1297uum that are sufficiently distant from each other so that
1298activation of one results in suppression of the other, via lat-
1299eral inhibition. ‘‘Close enough” in our description of local
1300excitation above is elaborated in the model by the kernel
1301term of the interaction, which is parameterized for dis-
1302tance within the relevant phonetic space (here, VOT) and
1303also for the slope of excitation as a function of distance
1304(thus effecting more or less excitation, depending on dis-
1305tance). Local excitation and lateral inhibition predict speci-
1306fic effects of distractors on responses. Hearing a distractor
1307with a mismatched voicing category (e.g., da–ka) should
1308result in slower RTs than in matched distractor–response
1309pairs (e.g., ta–ka), due to lateral inhibition between the dis-
1310tractor and response VOTs. The same applies when the
1311mismatch is in terms of articulator. These are the results
1312of Galantucci et al. (2009) and Roon and Gafos (2015) that
1313we have focused on so far. In these experiments, the stim-
1314ulus for a given distractor always used the same sound file,
1315and thus had the same phonetic properties. As we have
1316seen, the model predicts that phonetic variability in VOT
1317within voicing category should not affect the inhibition
1318effects introduced by another parameter, e.g., articulator.
1319That is, RTs should be longer for response–distractor pairs
1320like ka–ta or ta–ka than with pairs like ka–ka and ta–ta,
1321even if the voiceless distractors vary in their specific VOT
1322within the voiceless range.
1323An experiment by Klein et al. (2015) tested this predic-
1324tion in a response–distractor task with German speakers.
1325Distractor stimuli were ta and ka. In contrast to other

fa sha ta da ka ga

(A)

R
T 

(m
s )

40
0

45
0

50
0

55
0

60
0

fa sha ta da ka ga

(B)

R
T 

(m
s )

40
0

45
0

50
0

55
0

60
0

Fig. 17. Comparisons of mean RTs of Roon et al. (2014, white bars) with the Voicing experiment from Roon and Gafos (2015, gray bars). (A) RTs measured
from frication onset compared with estimated RTs for the Voicing experiment adjusted for closure duration. (B) All RTs measured from phonation onset and
adjusted for reported intrinsic RT differences.
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1326 response–distractor experiments, the VOT of the distrac-
1327 tors was not kept fixed. Specifically, for each distractor
1328 type, ta and ka, six stimuli were generated with VOTs rang-
1329 ing from 45 to 120 ms in 15-ms steps. Participants always
1330 responded with ta or ka. The predictions of the model were
1331 borne out. RTs were slower when the distractor and
1332 response mismatched in articulator than when they
1333 matched in articulator. This replicates the articulator effect
1334 reported by Galantucci et al. (2009) and Roon and Gafos
1335 (2015). The Klein et al. (2015) results further extend that
1336 finding, showing that this effect of articulator congruency
1337 is obtained despite within-category variation in VOT.
1338 Specifically, VOT step did not interact with articulator con-
1339 gruency regardless of whether the distractor matched (e.g.,
1340 ta–ta) or mismatched (e.g., ta–ka) the articulator of the
1341 response. In sum, as predicted by our model, robust con-
1342 gruency effects of articulator are obtained regardless of
1343 the within-category variation in VOT.

1344 Accounting for multiple (mis)articulations

1345 We noted above that some of the properties of the
1346 model accounting for the RT results in the core datasets
1347 from the response–distractor experiments we have
1348 reviewed above are task-specific. These properties include
1349 the variable values of the cross-field inhibition and the
1350 functioning of the Monitor. We first describe the way in
1351 which these properties reflect task-specific constraints
1352 and then turn to how lifting these constraints or imposing
1353 different constraints offers a handle to accounting for data
1354 from other experimental tasks.
1355 In the experimental datasets modeled above, all of the
1356 responses involved syllable-initial stops that have only
1357 one oral articulator. No response consonant required mul-
1358 tiple oral constrictions, as would be the case for conso-
1359 nants such as /w, l, or r/ in English or doubly-articulated
1360 = _ kp; _ gb= in, e.g., Yoruba (Ladefoged & Maddieson,
1361 1996). The cross-field inhibition for stops with one primary
1362 oral articulator may not be the same as for stops involving
1363 multiple oral articulators. In addition, the stimuli in these
1364 experiments were designed such that when participants
1365 realized they had to produce a stop with one articulator,
1366 it was also clear that the other articulators would not be
1367 needed. Therefore, the specifics of the task in the
1368 response–distractor studies we have considered so far
1369 implicate a stricter form of cross-field inhibition than in
1370 normal speech production, though this was not tested
1371 explicitly.
1372 The function attributed to the Monitor in the model
1373 may well be task-influenced if not task-specific. In
1374 response–distractor experiments, participants were
1375 instructed to reply as quickly as they could after the dis-
1376 play of the cue indicating the response on that trial. The
1377 Monitor criterion variable (j) was set to an activation
1378 value where it could be safely assumed that an articulator
1379 field and the Voicing field would stabilize once that value
1380 was passed. It seems reasonable to expect that in a differ-
1381 ent task, the read-out of field values could be externally
1382 imposed (as in the timed movement paradigm of Ghez
1383 et al., 1997; Schouten & Bekker, 1967), as opposed to being

1384left to the inherent dynamics of field evolution. In such a
1385case, the chosen production values could reflect the influ-
1386ence of multiple evolving articulator fields. For us, this
1387would mean that the Monitor could be forced to choose
1388production values at a particular point in time, thus reveal-
1389ing the gradual nature of parameter setting.
1390Yuen et al. (2010) present a task where this may plausi-
1391bly have been the case. Their participants had to produce
1392nonsense response utterances (e.g., ‘‘kab”) based on a
1393visual cue, which was presented immediately following
1394an auditory distractor. Crucially, the timing of distractors,
1395cues, and responses was tightly controlled. Participants
1396heard three tones each timed to be 500 ms apart. The first
1397indicated the start of the trial and the second was simulta-
1398neous with the presentation of the cue indicating the
1399required response. The third tone indicated the target
1400onset time of the response, i.e., participants had to respond
1401in sync with a beep that followed 500 ms after the presen-
1402tation of the cue. The distractor stimulus was presented
1403between the first and second tones. There was also a
1404phoneme-monitoring component to the task, in which par-
1405ticipants were occasionally asked after their response
1406whether the distractor contained a particular phoneme.
1407This component was included to ensure attention to the
1408distractors. Data were collected using electropalatography,
1409which registers regions of tongue–palate contact as some
1410part of the tongue raises to form a constriction on the
1411palate. The results of interest were that /k/ responses
1412(‘‘kab”) preceded by a /t/-initial distractor (‘‘tab”) showed
1413increased alveolar contact compared to the same responses
1414with /k/-initial distractors (‘‘kab”).
1415The results from these conditions can be simulated
1416using our model with minimal assumptions and changes
1417to the simulations reported in the previous section. In
1418terms of the model, there are only a few material differ-
1419ences between this experimental task and the response–
1420distractor task (see Appendix A for specific differences in
1421the parameter value settings, and Appendix B for a link
1422to the MATLAB scripts that were used to simulate this
1423experiment). First, in this task the distractor preceded the
1424response cue. This requires implementing negative SOAs
1425in the model as opposed to positive ones. Second, the par-
1426ticipants needed to attend to the distractor in this task,
1427whereas they were told to ignore it in the response–dis-
1428tractor task. Therefore, the distractor input needs to be
1429weighted such that the activation level of its planning field
1430remains sufficiently high, but not so much that the partic-
1431ipants respond with the distractor, which they were not
1432reported to have done. Third and lastly, since the partici-
1433pant’s response time was fixed, this task puts different
1434constraints on the way that production values are sent to
1435implementation in the model. We make the minimal
1436assumption that the values sent to implementation reflect
1437directly (i.e., linearly) the activation values of the corre-
1438sponding fields. That is, for fields with ‘‘on” states, higher
1439activation results in stronger constriction.
1440Fig. 18A illustrates the evolution of the fields in the sim-
1441ulation of a single trial in the congruent case, where the
1442distractor and response are the same, i.e., both ‘‘kab”. Time
1443step 0 corresponds to the time of the tone that preceded
1444the cue presentation. Shortly after that tone, the distractor
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1445 stimulus input begins, indicated by the vertical dashed line
1446 at time step 100 in Fig. 18A. The activation level of the Ton-
1447 gue Back planning field begins to rise, and the activation
1448 level of the Tongue Tip planning field begins to fall due
1449 to cross-field inhibition. The input for the required
1450 response begins at time step 500, resulting in the contin-
1451 ued rise of the activation level of the Tongue Back planning
1452 field. At time step 1000, the response input stops, and the
1453 Monitor specific to this task needs to send values from all
1454 planning fields that have stabilized in the ‘‘on” state to
1455 Implementation. In this case, only the Tongue Back field
1456 has such an activation level. Therefore, the production
1457 value of only the Tongue Back with the maximum activa-
1458 tion level is sent to Implementation. Fig. 18B shows a sim-
1459 ulated trial of the incongruent condition, where the
1460 distractor is ‘‘tab”. In this case, the distractor input raises
1461 the activation level of the Tongue Tip planning field, which
1462 behaves much the same as the Tongue Back planning field
1463 does in the congruent condition, rising toward a self-
1464 sustaining ‘‘on” peak and inhibiting the Tongue Back field.
1465 However, at time step 500 in this condition, the response
1466 input results in the activation level of the Tongue Back field
1467 rising, overcoming the inhibition from the Tongue Tip field
1468 and eventually inhibiting the activation level of the Tongue
1469 Tip field around time step 600, so that at time step 1000
1470 the Tongue Back field has achieved a higher activation level
1471 than the Tongue Tip field. Cross-field inhibition lowers the
1472 levels of both articulator fields, but does not prevent either
1473 of them from achieving and maintaining an ‘‘on” state.
1474 Therefore, in this condition, both the Tongue Tip and Ton-
1475 gue Back fields have achieved an ‘‘on” state, and their
1476 weighted production values are sent to implementation.
1477 On this trial, the model therefore predicts both dorsal (ton-
1478 gue back) and alveolar (tongue tip) constrictions, but with
1479 the dorsal contact being greater than the alveolar, since the
1480 Tongue Back field has higher activation than the Tongue
1481 Tip. This is what was found by Yuen et al. (2010).
1482 Fig. 18C shows the mean maximum activation levels of
1483 the Tongue Tip and Tongue Back planning fields at time
1484 step 1000 in the two different distractor conditions across
1485 100 simulated trials (50 for each distractor–response pair).
1486 On the left, the mean activation of Tongue Tip planning
1487 remains below resting level since there is no input to it
1488 and it is inhibited by the Tongue Back field. On the right,

1489the activation level of the Tongue Tip field is roughly equal
1490to the ‘‘on” activation level, meaning that on average, the
1491planning field corresponding to the distractor stimulus
1492achieves a stable ‘‘on” state and a tongue tip constriction
1493is therefore sent to Implementation. The activation level
1494of the Tongue Tip planning field is lower than the Tongue
1495Back planning field, so that even though tongue tip con-
1496strictions are sent to Implementation, they are weaker
1497than the tongue back constrictions. In summary, these sim-
1498ulations show that the model of phonological planning that
1499accounts for RT differences in the response–distractor task
1500can also provide an account of modulations in articulation
1501in another task where response times are externally
1502imposed.

1503VOT modulation

1504Finally, the model also makes predictions about the nat-
1505ure and phonetic detail of the other main phonological
1506parameter of the actual responses, i.e., voicing. The combi-
1507nation of inputs to the planning process can also result in
1508modulations of the implemented values of the utterance
1509being planned. We specifically focus here on the effects
1510of within-category gradient differences in input values
1511and the consequences of such differences for the value
1512chosen for implementation.
1513The dynamics of DFT are such that, on the one hand,
1514when two inputs are sufficiently close to each other, even
1515if they are not the same, they excite each other. This
1516mutual excitation results in a faster buildup of activation
1517for parameter values in the region of the two inputs than
1518if there were no re-enforcing input, thus the increased rate
1519of activation buildup. That is, local excitation introduced
1520by parameter values sufficiently close to each other
1521increases not just the activation levels of these values but
1522also the activation level of neighboring parameter values.
1523Therefore, given two inputs that are sufficiently close to
1524each other, one having peak a maximum activation at
1525parameter value x1 and the other having a maximum at
1526x2, all parameter values between x1 and x2 are excited by
1527both inputs. Assuming that the combined inputs are of
1528sufficient strength for the field to stabilize with a single
1529peak of activation, the parameter value with the maximum
1530activation level when the field stabilizes will be a value

Fig. 18. Simulation of the result from Yuen et al. (2010). (A) Evolution of the Tongue Tip and Tongue Back fields on a trial with the congruent (identical)
distractor–response pair, kab–kab. (B) Evolution of the same fields on a trial with the incongruent distractor–response pair, tab–kab. (C) Mean activation
levels of the Tongue Tip and Tongue Back fields at time step 1000 across 50 simulated trials for each distractor–response combination (error bars indicate
one standard deviation).
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1531 between x1 and x2, determined by the combined influence
1532 of the relative activation levels of the peaks, the width of
1533 those peaks, and noise.
1534 On the other hand, when there are two incompatible
1535 inputs to the same field, they do not mutually excite any
1536 parameter values that lie between them; they only mutu-
1537 ally inhibit each other. This means that in the case of two
1538 compatible (i.e., close) inputs, the field reaches a stable
1539 state with a peak faster than when there is no reinforcing
1540 input, but the actual parameter value chosen for output
1541 will be an intermediary value between the maxima of the
1542 inputs. It also means that in the case of two incompatible
1543 (i.e., distant) inputs, the field stabilizes more slowly than
1544 when there is only one input, but there is no influence of
1545 one input on the other in terms of the parameter value that
1546 gets sent to implementation. This behavior is qualitatively
1547 the same as seen in the model of saccade planning devel-
1548 oped by Kopecz and Schöner (1995).
1549 Therefore, the model predicts that the VOT of a
1550 response should be modulated by the VOT of a distractor.
1551 Consider a scenario where the intended VOT of the
1552 response /t/vot = 60 ms and a distractor comes in with a dif-
1553 ferent VOT value, e.g., /t/vot = 105 ms. Perception of the dis-
1554 tractor influences the on-going planning of the response.
1555 Specifically, the distractor’s VOT contributes a localized
1556 increase in activation to the VOT activation field of the
1557 planned response, shifting (in our example to a more
1558 extreme value) the locus of maximum activation toward
1559 the distractor’s VOT value. Thus, it is predicted that the
1560 VOT of the response should accommodate to that of the
1561 distractor. This prediction will be tested in a future study.
1562 Specifically, during a baseline block, participants will be
1563 prompted to produce 50 tokens of ta and 50 tokens of ka,
1564 without auditory distractors, in order to obtain a baseline
1565 VOT profile for each participant. The VOTs of each syllable
1566 in this block will be measured automatically, using soft-
1567 ware developed in our lab. This will permit us to use the
1568 participants’ baseline VOTs to generate proximal and non-
1569 proximal VOTs for distractors, and thereby assess the
1570 extent of modulation in phonetic details.

1571 Conclusions

1572 Perceptuo-motor effects obtained using the response–
1573 distractor paradigm offer insights on the nature of the per-
1574 ception–production link and help to identify design
1575 requirements that any account of this link must satisfy.
1576 We have argued that the source of at least one class of
1577 perceptuo-motor effects observed in response–distractor
1578 tasks is found in the process of phonological planning, that
1579 perceived stimuli affect this process, and that the princi-
1580 ples of excitation and inhibition embedded in an explicit
1581 computational framework are crucial in the planning pro-
1582 cess. A range of response time results concerning both
1583 complete identity and partial identity between planned
1584 responses and perceived inputs can be explained by the
1585 proposed model. The proposed model and the experimen-
1586 tal results from the response–distractor paradigm add
1587 coherence to an otherwise confusing set of previous psy-
1588 cholinguistic results by showing that fundamental proper-
1589 ties involved in phonetic description of linguistic contrast

1590also play a role in the interaction between speech produc-
1591tion and perception. Finally, the model serves as a tool for
1592deriving new predictions that can be used to guide further
1593experimental work on the relation between speech percep-
1594tion and speech production.
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1601Appendix A. Model parameter values

1602The constriction location input distribution for all artic-
1603ulator fields had a mean (val) of 0 and standard deviation
1604of 2, defined on an arbitrary scale of constriction locations
1605that ranged from �10 to 10. For the Voicing parameter, dis-
1606tributions for all voiced stimuli input had a mean of 5 ms
1607VOT and 45 ms for voiceless stimuli, both with a standard
1608deviation of 45 ms. The variable values used were: s = 150
1609and h = �2.1. Noise was added across all x values in each
1610field at every time step in the evolution of the field. It
1611was implemented by a discretized Wiener process with
1612time step dt using a normal distribution with zero mean
1613and unit variance, i.e., dW ¼

ffiffiffiffiffi
dt

p
N(0,1). The time step

1614was set to 1/150. The response input weight (r) was 2.7,
1615and was the same for inputs to both the articulator and
1616Voicing field of the required response. The distractor input
1617lasted for 400 time steps. The weight of the task input (p)
1618was 0.7. There were two different distractor input weights,
1619one for the articulator parameter (dartic), which was 9.5 for
1620all articulator fields, and one for the voicing parameter
1621(dvoice), which was 11. This difference is due to the fact that
1622the dynamics that give rise to the within-field and cross-
1623field inhibition are markedly different (as we discuss in
1624the main text). The distractor input lasted for 75 time
1625steps. The cross-field inhibition threshold (v) was �0.5.
1626The amount of cross-field inhibition subtracted on each
1627step from other fields when an articulator field was above
1628(v) was 1.25. The values for the parameters of the
1629interaction kernel term (Eq. (6)) were the same in all four
1630activation fields: h = 0.75, wexcite = 0.45, winhibit = 0.1, r = 1.
1631For the sigmoid threshold function (Eq. (5)), b was always
16321.5. The criterion value (j) was 6. A small amount of noise
1633was included in the inputRESPONSE(x, t), but not for
1634inputDISTRACTOR(x, t), since the distractor stimulus was the
1635same across trials. The settings of the parameter values
1636in the simulations of the task used by Yuen et al. (2010)
1637were the same as in the response–distractor task, except
1638the following changes: SOA was �500, the response input
1639duration was 500 time steps and its weight (r) was 3.5,
1640the distractor input duration was 100 time steps, and the
1641weights of the distractor were 2.5 for the articulator
1642parameter (dartic) and 2 for the voicing parameter (dvoice).
1643The specific values of the variables in the above equations
1644are not meaningful in and of themselves. The parameters
1645are interrelated so as to implement specific concepts, e.g.,
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1646 settling to a state corresponding to a localized distribution
1647 of activation over an entire field (a continuum) of phonetic
1648 values and maintaining that distribution even in the
1649 absence of input (stability). We note that while logically
1650 it should be the case that there are other (potentially
1651 unlimited) sets of parameter values that could qualita-
1652 tively match our data, the broad generalizations or predic-
1653 tions from the model do not depend on the specific
1654 parameter values and rather follow from the general prin-
1655 ciples of Dynamic Field Theory. For example, that congru-
1656 ency is faster than incongruency holds true for a wide
1657 class of parameter values and implementations of the
1658 interaction term in the dynamics. Their values relative to
1659 each other are more informative.

1660 Appendix B. Supplementary material

1661 Supplementary data associated with this article can be
1662 found, in the online version, at http://dx.doi.org/10.1016/
1663 j.jml.2016.01.005.
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